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Abstract—Deep neural networks exhibit excellent performance
in computer vision tasks, but their vulnerability to real-world
adversarial attacks, achieved through physical objects that can
corrupt their predictions, raises serious security concerns for
their application in safety-critical domains. Existing defense
methods focus on single-frame analysis and are characterized by
high computational costs that limit their applicability in multi-
frame scenarios, where real-time decisions are crucial.

To address this problem, this paper proposes an efficient
attention-based defense mechanism that exploits adversarial
channel-attention to quickly identify and track malicious objects
in shallow network layers and mask their adversarial effects in
a multi-frame setting. This work advances the state of the art
by enhancing existing over-activation techniques for real-world
adversarial attacks to make them usable in real-time applications.
It also introduces an efficient multi-frame defense framework,
validating its efficacy through extensive experiments aimed at
evaluating both defense performance and computational cost.

Index Terms—adversarial attacks, real-world adversarial de-
fense, neural network analysis, robust and secure AI

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have demon-
strated remarkable performance in several computer vision
tasks. At the same time, they have been shown to be quite
vulnerable to adversarial attacks [1], where small perturbations
of input data can cause a model to output wrong predictions.
To address this problem, an increased research effort has been
devoted to make DNNs more reliable, robust, and secure, to
be adopted in cyber-physical systems (CPS), as autonomous
vehicles and robots [2]–[4].

Although adversarial perturbations represent a concrete se-
curity threat for DNNs, they raised significant discussions
in the CPS community, mainly questioning the practical rel-
evance of these attacks. It is indeed not entirely realistic
to consider threat models in which the attacker has access
to the digital representation of the frames captured by a
vision system, to run adversarial attacks against DNNs, while
not having the capability of compromising other software
components in the system that could be even easier to attack.
In response to this argument, research efforts have been shifted
towards real-world adversarial attacks [5], which are deployed
through physical objects, such as billboards and patches, that
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are specifically crafted and strategically placed in the external
environment to fool DNNs [6], [7].

To enhance the robustness of DNNs against such real-world
adversarial attacks, various techniques have been proposed in
the literature (discussed in Section II). A common paradigm
that can be found in previous work consists in producing
at run-time a mask to cover adversarial objects, thereby
preserving the predictions of the DNNs under attack.

Although recent defense methods have shown a promising
performance to contrast such types of attacks, even on complex
real-world scenarios, previous work mainly focused on single-
image (i.e., single-frame) cases and without paying particular
attention at the computational cost of the proposed defense
method, resulting in more inference passes or additional ex-
pensive neural models. These limitations make state-of-the-
art approaches inadequate for CPS, where efficient solutions
capable to operate in real time on video streams (i.e., multiple
frames) are required.

This work. To face these challenges, we take inspiration
from recent studies [10], [11] that assess strong and prov-
able connections between anomalous over-activations in deep
network layers and real-world adversarial effects on the model
output. In particular, this work delves deep into understanding
the over-activation phenomenon by observing the presence of
specific channels even in the first layers of DNNs, which are
predominantly targeted by the real-world attack for propagat-
ing adversarial effects. We systematically identified this attack
pattern through channel-wise weights, denoted as adversarial
trace, that enable a significantly faster and more accurate
identification of attacks by means of a proper attention strategy
designed in this work. This allows for the immediate removal
of adversarial features before their spatial propagation in the
deep layers, hence detecting and masking attacks in a single
inference pass.

After presenting the results of our analysis and providing
insights into the nature of the adversarial trace, we propose a
defense algorithm for multi-frame vision applications named
Adversarial-Channel Attention Tracing (ACAT). To enable the
efficient tracing of adversarial physical objects in a video
stream, ACAT requires to know a starting spatial position of
the objects, which can be extracted using a single inference
pass of state-of-the-art single-frame defense methods. As
witnessed by the experimental results reported in the paper,
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Fig. 1: Schematic and simplified overview of the proposed multi-frame defense paradigm compared to state-of-the-art, single-frame defense
paradigms. At frame k = 0, with a first inference pass (yellow arrow in the figure), a single-frame defense mechanism extracts a mask to
inhibit the detected attack. Another inference pass is required at frame k = 0 to apply the defense mask (orange arrow in the figure). With
the proposed approach, the mask is used to implement pattern analysis in the shallow layers for the next frames k > 0, which is the core
task performed by ACAT. This allows extracting an adversarial trace that allows for a quick identification of the shape of the adversarial
object, hence efficiently generating and applying defense masks (right side of the figure). At the bottom, we show illustrations of the defense
mechanism in a simulated attacked Carla driving scenario [8] with the BiseNet model [9], where the adversarial object is highlighted in the
red area. For completeness, we also report the output of the same frame without any defense mechanism and the ground truth.

this improves both efficiency in terms of running times and
computing load, as well as the attack detection effectiveness.
The proposed approach is illustrated in Figure 1.

In summary, this work makes the following contribution:
• It advances the understanding of adversarial over-

activations in shallow DNN layers when aiming at de-
tecting real-world adversarial attacks, hence introducing
the concept of the adversarial trace.

• It proposes ACAT, an algorithm for multi-frame applica-
tions based on a channel-attention mechanism to make
more computationally efficient and more effective the
defense from real-world adversarial attacks.

• It presents extensive experiments and ablation studies to
show the benefits of the proposed approach in terms of
defense performance and computational costs, focusing
on autonomous driving scenarios.

II. RELATED WORK

a) Real-world adversarial attacks: In the context of the
analysis of adversarial perturbations [12], real-world (RW)
attacks have received particular interest from the secure AI

community, due to their capability of fooling the model out-
comes from the physical environment in which they operate.
Indeed, from the standpoint of the attacker, the RW attack
paradigm ideally avoids injecting adversarial features digitally,
thus circumventing the need for compromising a computing
system. To this end, different use cases addressed in the
literature illustrate how physical attacks pose significant threats
to AI systems. These include deceiving intrusion detection sys-
tems [13]–[15], manipulating the identification of pedestrians
or cars in driving scenarios [6], [16], and fooling steering
angle predictor [17]. From an architectural point of view,
all the vision models can be susceptible to physical attacks,
as image classification [5], [18], semantic segmentation [6],
object detection [19], depth estimation [20].

To comprehensively assess the model’s robustness against
these threats, recent studies have also emphasized the necessity
of proposing proper benchmarks to evaluate model robustness
against RW attacks [8], [21].

b) Defense methods: To enhance the robustness of vision
models against these attacks, various defense mechanisms have
been proposed. While some focus on flagging the presence



of attacks only, thus allowing to just reject the attacked
frames [6], [22]–[25], more sophisticated mechanisms aimed
at mitigating the attack effects at run-time, providing an attack-
free DNN output. The main idea involves segmenting the
position of the adversarial object within the image with the
purpose of generating a pixel mask, which is capable of
inhibiting the attack effects in the input space or directly in
the network layer.

Some techniques [26]–[28] used a secondary encoder-
decoder model to compute the mask. The mask is then used
to eliminate the adversarial attack from the image before it
is passed to the DNN of the target vision application. These
approaches significantly increase the overall computational
cost for each input (even for the non-attacked ones). More
classic approaches instead, as LGS [29], aim at filtering
out adversarial features from the image using gradient-based
filters, assuming the adversarial features of objects have high
frequency.

Other strategies, instead, are based on internal analysis of
DNN layers to identify anomalous over-activations at run
time [10], [11], which proved to be highly correlated with
real-world adversarial effects in any targeted vision tasks.
Specifically, these defense mechanisms extract masks by ad-
dressing the spatial over-activation of deep features. These
approaches tend to exhibit a more predictable and robust
behavior compared to those based on a secondary model.
Nevertheless, they require two inference (i.e. forward) passes
as the attacks are detected when analyzing deep layers of
the model, where the effects of the attacks are not anymore
recoverable. The second pass is hence needed to process the
input image with the pixel mask applied.

Overall, although all the approaches presented in previous
work to defend from RW attacks have shown promising
performance and the capability to generalize among different
vision tasks, little to no efforts have been made in addressing
their usage in real time within CPS applications.

III. BACKGROUND AND PRELIMINARIES

This section concisely provides background and preliminary
concepts for the rest of the paper. We consider vision models
that take as input an image with dimensions H ×W pixels
and C channels, denoted by x ∈ R3×H×W . The model output,
denoted as f(x), depends on the specific vision task under
consideration.

For simplicity, the notation is introduced by referring to a
simple feed-forward DNN, with a list of layers {L1, ..., LNL},
where the input is forwarded sequentially. To this end, we use
the operational notation f i→j to denote the processing flow
of features from layer Li to layer Lj . The layer index 0 is
used to refer to the input of the model. For instance, f(x) is
equivalent to f0→NL(x) or f j→NL(f0→j(x)).

A. Real-World Adversarial Attacks

Real-world adversarial attacks can be generated by intro-
ducing adversarial physical objects into specific regions of the
scene captured by the input image x. Following previous work,

we can model these objects as rectangular patches denoted by
δ, where δ is an image of size H̃ × W̃ with C channels,
where H̃ ≤ H and W̃ ≤ W . Crafting an adversarial patch
involves solving an optimization problem aimed at minimizing
a specific attack loss function, while enhancing the robustness
of the patch features against realistic transformations that can
occur while filming the patch in the physical world [5].

Formally, we craft an adversarial patch δ by solving the
following optimization problem:

δ = argmin
δ

Ex∼X,γ∼Γ LAdv(f(x̃),yAdv), (1)

where X is a set of images to attack, x̃ = x + γ(δ) is
the attacked image, Γ is a set of appearance and placement
transformations that can be randomly selected to apply a patch,
yAdv is the adversarial output target, and LAdv is the adversarial
loss function that specifies the objective of the attacker, the
lower LAdv the more adversarial effect. Please refer to [5],
[6], [18] for further details.

B. Defense Mechanisms and Internal Analysis
As discussed in Section 2, several defense strategies have

been proposed in the literature to mitigate real-world adver-
sarial attacks, particularly in single-frame applications. In this
context, our approach aligns closely with works that perform
internal analysis of neural models during inference.

Following this paradigm, we denote by hl ∈ RCl×Hl×W l

the features produced by any layer Ll, where Cl, H l,W l are
the corresponding tensor dimensions, i.e., hl = f0→l(x). The
notation (T )c,i,j is used to denote a single element of any 3D
tensor T , where c, i, and j are the indices for the channel,
height, and width dimensions. Given an attacked input x̃, a
defense mechanism based on internal analysis studies one or
more deep features to extract a heatmap H ∈ RHl×W l

, which
can in turn allow to highlight the position of the adversarial
object within the input image.

Then, the heatmap can then be binarized, using a threshold,
to obtain a mask Mδ ∈ {0, 1}H

l×W l

, where the elements
set to 0 are deemed adversarial while those set to 1 are not.
Formally speaking, these steps can be summarized by means
of a function Λξ : RCl×Hl×W l → {0, 1}Hl×W l

, which takes
as input the features hl from a given layer and produces a
mask based on a pre-determined threshold ξ. The resulting
mask can then be applied at any layer Lz (e.g., even the input
image itself, z = 0) to filter out the adversarial object, thereby
aiming at making the attack ineffective, i.e.,

fz→NL(f0→z(x̃)⊙ rl→z(Mδ)) ≈ f(x), (2)

where ⊙ is the Hadamard product operator on the spatial
dimensions and rl→z is a resizing function to apply a mask
extracted at the l-th layer to the z-th layer (clearly not
needed when l = z). In general, function rl→z consists of
a simple interpolation. Finally, it is also convenient to define
the complementary mask M̄δ = 1−Mδ .

Since this work proposes a defense mechanism for multi-
frame cases, from Section IV-B on we adopt a discrete-
time notation with the superscript k to refer to the symbols



introduced above when related to the k-th frame, where
k ∈ {0, . . . ,K}.

IV. ADVERSARIAL-CHANNEL ATTENTION

Inspired by prior research on RW attacks and internal
over-activation analysis for neural networks, we observed that
attacks can be detected by even analyzing shallow network
layers only (as opposed to deep layers as done by previous
work). In the following, we provide insights into the existence
of over-activation patterns within shallow layers and then
address the definition of adversarial trace, which is later
used to enable the implementation of an adversarial attention
mechanism for multi-frame scenarios.

A. Single-frame Adversarial Attention Analysis

We start by providing insights that link abnormal activations
induced by adversarial objects with a particular pattern of
channels in the shallow layers.

Observation 1: An adversarial object δ is designed to
minimize a specific adversarial loss function by influencing
certain network features (see Eq.(1)). As for instance shown
in Figure 2(a), we argue that in any layer Ll with activations
hl, there exists a subset of channels targeted by the adversarial
object. The channels can be identified by leveraging some
channel weights σ ∈ [0, 1]C

l

that, if applied to hl, amplify
the adversarial features, i.e.,

LAdv(f
l→NL(σ · hl),yAdv) ≤ LAdv(f

l→NL(hl),yAdv).

Observation 2: As known from previous work [30], the
adversarial features introduced by physical attacks are charac-
terized by over-activations. Therefore, from the perspective of
an internal analysis (as introduced in Section III-B), a proper
definition of σ also allows focusing on the channels that are
more subject to over-activation within the attacked area. This
results in a better separation of the attacked area from all
the others in the heatmap H, which can be interpreted as a
more accurate computation of defense masks. Formally, this
observation can be formulated by means of the intersection-
over-union (IoU) [31], which provides the amount of overlap
between two masks. IfMGT is the ground-truth mask capable
of perfectly masking the attacked area in the input image, this
observation can be written as a function of the IoU between
the predicted attacked area and the ground-truth mask, i.e.,

IoU
(
Λξ

′

(σ · hl), MGT

)
≥ IoU

(
Λξ

′′

(hl), MGT

)
,

where ξ
′

and ξ
′′

are two thresholds used to extract the masks
from activation values (σ · hl) and (hl), respectively.1

Channel weights σ play a pivotal role in efficiently identi-
fying over-activated areas associated with adversarial features,
even in shallow layers. In fact, while the over-activation phe-
nomenon may look straightforward to detect, our preliminary
experiments revealed that simple operations directly applied to
all channels, e.g., a channel-wise sum compared to a threshold,
do not allow detecting the presence of adversarial objects.

1Note that the thresholds must be different because σ scales hl.

(a) y-axis: mean activation; x-axis: channel-index

(b) Heatmaps with (right) and without (center) the channel-attention

Fig. 2: (a) Mean channel-wise activation from the first spatial
BiSeNet [9] layer during the inference of the attacked image; (b)
representation of the heatmap w/ and w/o the attention mechanism.

B. Computing the Adversarial Trace

Following the above observations, we propose a practical
usage and update of channel weights σ, which are used to
track an adversarial object over time. As anticipated in the pa-
per introduction (see Figure 1), the proposed implementation is
conceived to be complemented with a defense method capable
of providing a starting maskM0

δ . When and how this starting
mask needs to be computed will be discussed in Section V,
where the complete defense framework is presented.

The adversarial trace is defined as a sequence of weights
that highlight the channels over-activated by adversarial at-
tacks. Formally, given a layer Ll, the adversarial trace at time
k, denoted by σk, is a vector of Cl elements in [0, 1] that
enables the computation of an accurate heatmap Hk at time
k > 0 as follows:

Hk =

Cl∑
c=1

(σk)τ · hl,k, (3)

where parameter τ is introduced to amplify the attention
pattern within the heatmap. Figure 2(b) shows the benefits
of using attention based on the adversarial trace. Once the
heatmap is obtained, a threshold parameter ξk (defined below)
can be used to devise the binary mask Mk

δ .
In this work, we proposed a per-frame update of the

adversarial trace, so that the next element for time k+1 can be
computed as a function of the mask and activations computed
at time k:

σk+1 =

N

(∑H,W
i,j=1

(
hl,k ⊙ M̄k

δ

)
c,i,j

|M̄k
δ|

−
∑H,W

i,j=1

(
hl,k ⊙Mk

δ

)
c,i,j

|Mk
δ|

)
,

(4)

where Mk
δ is the predicted mask at time k, M̄k

δ denotes
a complementary mask to address all other tensor values not
interested by Mk

δ , and N represents a normalization function
that scales the values to the [0, 1] range. In our experiments, we
implemented N as a ReLU function followed by a channel-
wise min-max normalization.



In particular, the first fractional term in Eq. (4) provides
attention to over-activated patterns within the area of the
adversarial object, while the second term provides negative
attention to activations outside the same.

The effectiveness of using information obtained from the
current frame to compute the next adversarial trace element
σk+1 was verified by means of experiments (see Section VI).
Summary of the approach. Figure 3 provides a schematic
representation that illustrates the use and update of the ad-
versarial trace for a frame at time k. Note that a noise filter
(e.g., a Gaussian filter) can be introduced into the pipeline for
computing the heatmap. As highlighted in [11], noise filters
help mitigate the effects of small spurious activations.

Fig. 3: Illustration of the operations to implement adversarial atten-
tion mechanism performed at time k. The resulting output is the next
element σk+1 of the adversarial trace.

Threshold definition. Differently from previous work, which
adopted a static threshold computed offline on a calibration
dataset, this work adopts an adaptive threshold that is dynam-
ically computed frame by frame. This is necessary due to the
attack-specific channel weighting of the attention mechanism,
which makes not effective thresholds computed a priori. In
ACAT, the threshold is updated at each frame as follows:

ξk+1 = max(H̄k) + ψ(H̄k). (5)

In the above equation, H̄k = Hk ⊙ D(M̄k
δ), where D(·)

is an operator that expands M̄k
δ by means of an unitary

kernel convolution. This expansion is designed to account for
uncertainty in the areas around the mask, coping with potential
spurious activations close to its border. After applying an
unitary convolution, non-integer values can be obtained: hence,
the operator D(·) eventually binarizes all values using a
threshold equal to 0.5.

To further reduce false positives, an extra safety margin
ψ(H̄k) is included in Eq. (5). It is computed as the difference
between the v-th percentile of the values in H̄k and the mean
value of the same. In our experiments, we used v = 70, which
proved to offer effective resilience to uncertainty.

V. ACAT FRAMEWORK

This section shows how to integrate adversarial-channel
attention within the continuous processing loop of vision

applications. Algorithm 1 reports the pseudocode of the oper-
ations to be performed at each frame (retrieved with function
capture frame()). To improve readability, the discrete-time
notation with the superscript k is omitted in the pseudocode,
as all variables are updated to be used at the next cycle.

Algorithm 1 Adversarial-Channel Attention Tracing

1: σ ← None
2: while True do
3: x← capture frame()
4: if σ is None then
5: (y,Mδ,h

l)← inference with SoA method(x, f )

6: if Mδ is not None then
7: #Attack notified
8: σ ← ACAT update(hl, Mδ) #Eq. (4)
9: ξ ← compute threshold(hl, Mδ) #Eq. (5)

10: y = f(x⊙Mδ) # Inference with masked input
11: end if
12: Continue #Wait for next frame
13: end if
14: hl = f [0→l](x)

15: H = noise filter
(∑Cl

c=1(σ)
τ · hl

)
#Eq. (3)

16: Mδ ← Λξ(H) #Apply threshold to get mask
17: if |M̄δ| < λM then
18: σ ← None #Stop adv. tracing
19: y = f [l→L](hl)
20: else
21: σ ← ACAT update(hl,Mδ) #Eq. (4)
22: ξ ← compute threshold(hl, Mδ) #Eq. (5)
23: y = f [l→L](hl ⊙Mδ) #Inference with masked layer

24: end if
25: end while

For each frame, it checks if the adversarial trace σ exists. If
not, it means no adversarial attack was detected at the previous
frame. In this case, a state-of-the-art attack detection method,
e.g., [11], is executed (line 5) with a single inference pass.
If the latter detects an attack, the algorithm initializes the
adversarial trace σ, computes the threshold ξ, and leverages
the mask compute by the state-of-the-art method to defend
from the attack (lines 8-10). The processing of the current
frame can hence end.

Otherwise, when the adversarial trace σ is available from
the previous frame, the algorithm leverages it to compute the
defense mask following the results of Sec. IV-B (lines 14-
16). If the mask is meaningful (details provided next), it also
computes the next adversarial trace and threshold (lines 21-
22), still based on Sec. IV-B, and continues the inference
process by applying the mask at the inner layer Ll to defend
from the attack (line 23).

a) Reset criterion: Knowing about the connection be-
tween the mask size and the induced adversarial effect by
the masked attack [11], we use the number of pixels detected



in the predicted complementary mask to decide whether to
reset adversarial tracing or not. This could mean that the
adversarial object is either too small or far away from the
camera. Specifically, we disable adversarial tracing when the
computed mask has less than λM pixels (line 17), where the
latter is a configurable parameter.

b) Timing performance: State-of-the-art approaches re-
quire two inference passes to defend from adversarial attack
while, as it can be noted from Algorithm 1, once an attack has
been detected at a certain frame, ACAT allows defending from
the same with just one inference pass (completed in two stages
at lines 14 and 23, respectively) for the next frame. This holds
until tracing is active, i.e., the reset criterion is not reached.
Once a new attack will be detected the same will hold for the
next frames, and so on and so forth. Overall, ACAT allows
significantly improving the timing performance of the defense
mechanism (quantitative results provided in the next section)
by halving inference times in general, except for the very first
frame in which the attack manifests.

VI. EXPERIMENTAL EVALUATION

The experimental evaluation is focused on semantic seg-
mentation models designed for autonomous driving, which
have recently garnered attention due to the need to address
real-world adversarial attacks in outdoor scenarios [6], [32].
Please note however that defense mechanisms based on over-
activation also work for different computer vision tasks, where
the connection between over-activation and adversarial effect
persists [6], [30].

In the following, we first provide details on the experimental
settings. Then, we present and discuss different tests and
ablation studies conducted to validate the design and bene-
fits of the proposed defense algorithm. All the experiments
were implemented using PyTorch [33] on a machine with
8xNVIDIA-A100 GPUs.

A. Experimental settings

Complete multi-frame benchmarks to evaluate the effective-
ness of defense methods against real-world adversarial attacks
are not available from previous work.

For this reason, we addressed two evaluation approaches:
(i) attack scenarios generated with the CARLA simulator [35],
used to test the attention mechanism of ACAT only, and
(ii) digitally attacked video generated with Cityscapes [36],
which instead allow testing the whole ACAT framework.

a) Attacks in CARLA-simulated scenarios: With the in-
tent of facing with realistic settings, we utilized the Carla-
Gear framework [8], which offers 9 photo-realistic scenarios
(50 test images each) collected in areas of Carla-town 10 [35],
integrating adversarial billboards specifically designed for each
model in use. Please note that the framework only provides
random viewpoints of the area next to the adversarial bill-
boards, which are not sequential videos. For this reason, this
setting allows evaluating the benefits of adopting adversarial-
channel attention only, i.e., improving the capabilities of state-
of-the-art defense mechanisms when used on a single frame,

while not enabling meaningful tests to evaluate ACAT as a
whole.

b) Digitally attacked video datasets: To address the lack
of a dedicated video dataset featuring attacked driving scenes,
we generated custom videos that include digital adversar-
ial attacks. Three extended sequences from Cityscapes [36]
videos2 were utilized with images sized at 2048x1024 pixels.
Within each video, a dynamic adversarial patch was digitally
introduced in the frames, which, at every frame, changes its
position and scaling factor, following a sinusoidal trend. The
patch position and scale were computed as follows:xpos

ypos

s

 =

cx +Ax sin (αx · k + ωx)

cy +Ay sin (αy · k + ωy)

1 +As sin (αs · k + ωs)

 , (6)

where k is the frame index, xpos and ypos are coordinates of
the position of the patch, cx, cy are the center coordinates of
the frame, and s is the scaling factor of the patch. In our
experiments we set (Ax, Ay, As, αx, αy, αs) = (500, 300, 0.3,
0.05, 0.05, 0.05). The ω values represent a phase used to
randomize tests among different initial positions. With these
settings, the patch can partially go beyond the image bound-
aries while holding a size that is sufficient for producing an
adversarial effect [6], [19]. The α values provide a smooth
trend of the patch among subsequent frames.

The attack mechanism used to generate the patch was
the Over-Activation-aware Expectation Over Transformation
(EOT) optimization [5], [11], where a parameter β ∈ [0, 1] is
used to regulate the over-activation level of the patch within the
internal layers while reducing the adversarial effect (the lower
the β the lower the over-activation, and so the adversarial
effect). This approach is particularly useful for evaluating the
robustness of our approach when the attacker tries to limit
over-activation to mount attacks that are difficult to detect.

c) Network models and defense methods: Following
related work on semantic segmentation [8], we considered
real-time high-performance DNN models: DDRNet-Slim23
version [34] and BiSeNetX39 [9]. We use the pre-trained
versions available from [8].

We compared our method ACAT with two lightweight
single-frame approaches designed to mask real-world attacks.
The first is LGS [29], which applies gradient-based filter-
ing of the image to mask adversarial pixels. The second is
ZMask [11], which, as for ACAT, is based on over-activation
but necessitates of two forward passes at any frame, since
addresses also deep network layers. For both, we utilized the
original settings provided by the respective authors.

For ACAT, we set τ = 2, and the kernel size to 5, 3
and 31, 11 for the Gaussian filter and dilatation operators
for Bisenet and DDRNet, respectively. The different sizes
are due to the different spatial dimensions of the features.
The layers analyzed by ACAT are in the shallower blocks of
the considered model, specifically the output of the second

2https://www.cityscapes-dataset.com, leftImg8bit demoVideo.zip



Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Scene 9

No Attack 28.35 29.66 28.88 24.71 25.10 26.51 20.56 24.46 23.68

No Def -10.2 -4.32 -2.81 -6.4 -5.06 -9.5 -7.00 -2.93 -6.75
ACATGT -2.9 [1] +0.59 [1] -2.67 [1] -2.11 [2] -0.9 [1] -5.4 [1] -2.87 [1] -0.63 [1] -0.78 [1]
ACATZM -2.9 [2] -3.4 [1] -3.15 [12] -2.82 [2] -1.1 [7] -5.33 [1] -2.89 [21] -5.92[1] -5.12[1]
ZMask -5.32 -2.35 -2.81 -3.01 -1.7 -5.87 -4.84 -3.0 -5.89
LGS -8.63 -5.09 -4.09 -6.43 -4.04 -6.65 -6.01 -1.60 -5.83

No Attack 33.04 34.11 34.39 34.22 31.01 33.26 30.73 31.86 37.41

No Def +0.65 -1.74 -0.6 -6.53 -1.01 -2.31 -12.69 -3.03 -1.11
ACATGT +1.59 [1] -1.58 [1] +0.66 [3] -3.29 [1] +0.4 [1] -0.83 [1] -1.52 [1] -1.11 [1] -0.86 [1]
ACATZM +0.59 [2] -1.73 [3] -0.67 [15] -3.52 [6] +0.35 [5] -2.85 [1] -4.25 [33] -2.22 [16] -1.01 [5]
ZMask -2.27 -3.2 -1.32 -5.2 -0.97 -5.55 -3.58 -0.98 -1.01
LGS +0.45 -3.51 +1.01 -8.30 -0.87 -4.06 -11.97 -1.22 -1.25

TABLE I: Variation of the multi-class mIoU w/ and w/o defense mechanisms across the 9 driving scenarios of CarlaGear [8]. Results for
both BiseNet [9] (top) and DDRNet [34] (bottom) are reported. The values inside square brackets denote the number of times ACAT required
to be re-initialized (reset criterion). The results of ACAT are averaged across 5 random shuffling of each scene dataset.

block of DDRNet and the output of the first context layer of
BiSeNet. Ablation studies were also performed to understand
the selection process of these layers (see Sec. VI-E).

d) Metrics: Different metrics were used to assess the
performance of the addressed mechanisms. Given the unavail-
ability of annotations for the Cityscapes videos, we use the
binary Intersection-over-Union (IoU), referred to as Mask-IoU,
to measure the overlap between the predicted complementary
mask M̄k

δ (whose values equal to 1 denote the predicted
adversarial region) and the corresponding ground-truth mask
M̄k

GT. Intuitively, Mask-IoU quantifies the quality of the
predicted defense mask: the higher the better.

For the tests conducted on the Carla-Gear dataset, as
indicated in the benchmark, we measured the effectiveness
of adversarial attacks by addressing the original multi-class
MIoU [8], [36] of the task, since annotations are available.

B. Performance Evaluation on Carla

Table I highlights the advantages of our approach across
nine scenarios of the Carla-Gear dataset on BiSeNet (top part)
and DDRnet (bottom). Regarding ACAT, which is designed to
integrate with state-of-the-art defenses, we conducted analyses
under two settings: ACATZM and ACATGT. The former utilizes
ZMask [11], reflecting a realistic scenario built upon an
already available approach. In the second setting, ACATGT

assumes the knowledge of an ideal, ground-truth mask at first
frame in which the attack is detected. While this setting depicts
a less realistic scenario, it serves to highlight the intrinsic
performance of ACAT, independently from the defense method
with which it is integrated.

In the table, the first line for each scenario depicts the task
MIoU without an adversarial billboard, while subsequent lines
show the drop in MIoU with the adversarial billboard and/or
without the related defenses. The value between the brackets
for the ACAT results depicts the number of times that the reset
criterion takes effect, necessitating the extraction of a new
starting mask. As also mentioned in [8], there are instances
where certain attacks can be particularly challenging for a
specific model and scenario, leading to a poor reduction in

the MIoU. To assist the reader, in Table I we highlighted in
gray the scenarios that have resulted in a more pronounced
adversarial effect.

As it can be noted from the table, ACAT consistently
outperforms the other methods, significantly reducing the
number of extra inference passes, reaching the reset conditions
only a few times. Note also that ACATZM generally improves
the performance of ZMask. However, when ZMask fails to
return an accurate mask, it may jeopardize the initialization
of ACAT, resulting in lower performance (e.g., scene 8 -
BiSeNet and scene 7 on DDRNet). This is not the case for
ACATGT, confirming that the lower performance is not due
to ACAT. Concerning LGS, as known from previous work, it
loses accuracy in real-world scenarios [11], [27].

Please note that, in these tests only, we did not update the
trace and threshold of ACAT (lines 21-22 in Algorithm 1).
As anticipated above, this is because the tested images do not
pertain to sequential video. The whole ACAT framework is
instead addressed by the following experiments.

It is however interesting to also observe the number of times
ACAT required a re-initialization (reset criterion) during these
tests, even if updates are disabled. As one may expect, we
found scenarios in which the mask provided by ZMask was
frequently required (e.g., note the numbers between square
brackets in Table I for Scenes 3 and 7), while surprisingly, in
other cases, it was not at all. This means that the attention
mechanism offered by ACAT is sometimes effective even
with sporadic updates (see also the other experiments below).
Conversely, in the former case, we found that the reset criterion
was prominently triggered because the mask provided by
ZMask was not particularly accurate, as ACATGT almost never
requires to be re-initialized.

C. Performance Evaluation on Digital Attacks

In Figure 4, we studied the Mask-IoU for the digital attacked
video. To show that ACAT provides high robustness even when
the adversarial trace and thresholds are not updated at every
frame as mandated by Alg. 1, we measured the average Mask-
IoU under ACATZM on attacked video streams from Cityscapes,



varying the period with which the trace and thresholds are
updated. The period is expressed in number of frames and
is reported on the x-axis of the figure (e.g., value 1 on the
x-axis means that the update occurs at each frame). In the
analysis, we tested two digital adversarial patches, with β =
0.6 and β = 0.8, to better investigate on the robustness of
ACAT. We also evaluated ZMask, which achieves (0.66, 0.75)
and (0.70, 0.72) of Mask-IoU with (β = 0.6, β = 0.8) for
Bisenet and DDRNet, respectively. The results for LGS are
not reported since it does not provide a binary defense mask,
but rather a soft filtering of the input image, for which it is
not possible to compute the Mask-IoU.

The figure shows that ACAT surprisingly works well even
with sporadic updates of the adversarial trace and thresholds.
This was also due to the fact that the Cityscapes videos
are related to rather static scenarios. In fact, despite some
changes in the appearance of adversarial patches and their
background, the over-activated pattern of the patch in these
cases continuously insist on a similar set of channels to
induce the adversarial effect. An update of the parameters
is anyway required in more dynamic scenarios with more
frequent changes of the background and appearance of the
adversarial object. The figure also shows that sporadic updates
always provide better performance than ZMask.

DDRNet

BiseNet

Fig. 4: Mask-IoU performance by varying the update period (in
frames, x-axis of the figure) of the adversarial trace and thresholds.
The upper plot refers to the DDRNet architecture, while the second
one pertains to BiseNet. The tests evaluate the performance of
ACATZM for two distinct digital patches (β = 0.6 and β = 0.8).
The results are the average of five different initializations of the ω
parameters in Eq. (6).

D. Ablation Studies

To better understand the contribution of each operation
performed by ACAT to its overall performance, Table II
reports the Mask-IoU of ACATGT on the attacked videos
under different settings. With the aim of acquiring a deeper
understanding about the attention mechanism of ACAT, we
independently examined the two fractional terms defined in
Equation (4) to update the adversarial trace. The first term

provides positive attention within the attacked area, which
is the most important part of the attention mechanism. We
hence introduce a flag Att+ to indicate a setting of ACAT that
uses this term. The second term refines the previous operation
by introducing negative attention to the elements outside the
attacked area. Another flag Att− is also introduced to denote
if this second term is used by ACAT.

As shown in the table, it is clear that using both Att+ and
Att− leads to better results, hence motivating the construction
of Equation (4). In general, it is evident that the use of the at-
tention mechanism significantly improves the Mask-IoU when
compared to not using attention (both Att+ and Att− disabled,
first rows of the table). Its benefits are especially notable in
the results obtained with DDRNet, where adversarial over-
activations in the shallow layers proved to be very difficult to
detect without attention. These observations are also illustrated
with an example frame in Figure 5.

The ablation studies also tested ACAT with and without the
update of the adversarial trace and the threshold of Eq. (5)
(flag Upd in Table II), and with and without the noise filter
(flag NF).

Bisenet DDRNet
Att+ Att− Upd NF δ0.6 δ0.8 δ0.6 δ0.8

11.9 16.2 0.00 0.01
✓ 89.0 88.7 7.2 0.6

✓ ✓ 90.7 90.2 76.91 84.90
✓ ✓ ✓ 91.3 90.8 72.05 83.05
✓ ✓ ✓ 92.24 91.9 85.56 84.22
✓ ✓ ✓ ✓ 92.23 92.18 86.12 86.42

TABLE II: Experimental results of ablation studies with respect to
the different components used to update the adversarial trace. The
results are in terms of Mask-IoU and related to the digitally-attacked
Cityscape videos using ACATGT as a defense mechanism. Two model-
specific patches were utilized, one with β = 0.6 and another with
β = 0.8.. In the table, Att+ and Att− denote two flags to enable the
two attention terms of Equation 4, respectively, while Upd and the
NF are other two flags to enable the update of the trace and threshold,
and the usage of the noise filter, respectively.

Fig. 5: (a) Comparison of the adversarial effect of a patch with
β = 0.6 (left), with ACATGT mechanism (right), and without the
ACATGT mechanism (middle). (b) Illustration of the heatmap among
different settings, from left to right: (i) only NF enabled, (ii) only
Att+ and NF enabled, (iii) Att+, Att−, NF, and Upd enabled.



E. Layer-wise Ablation

Figure 6 reports the Mask-IoU by varying the layer of the
DDRNet model with which ACAT operates (parameter l in
Alg. 1). As observed, the more shallow the layer the better
the performance. In fact, if addressing deeper layers, the mask
based on the over-activation extends beyond the ground-truth
position (in the figure, only the yellow parts denote a complete
overlap of the ground-truth and the predicted mask). This is
attributed to the fact that the features of shallow layers are
less spatially compressed (i.e., they have a higher spatial size)
than those in deeper layers.

Note that, for fair comparisons, in layer l = 3, we used
the same kernel size as layer l = 2 (i.e., 3), which provided
better performance than kernel size 1 (i.e., no Gaussian filter).
While, for layer l = 5, we did not use the Gaussian filter
due to the high compression of the spatial dimension. These
results highlight how ACAT allows focusing on shallow layers
so that attacks can be masked within a single inference pass,
as opposed to previous work that analyzes deep layers and
hence requires another inference pass to mask attacks.

Layer2 - 128x256 Layer3 - 64x128 Layer5 - 32x64
86.12 / 86.42 72.05 / 61.32     52.47 / 49.73

Fig. 6: Mask-IoU (in black) for the digital adversarial patch with
β = 0.6 and 0.8 on attacked cityscapes video using the ACATGT

on different layers of DDRNet. The figures show the overlapping
between the predicted mask and the ground truth for β = 0.6, with
the highest color indicating the degree of overlap. The depth of the
DDRNet layer and the spatial dimension are denoted in white.

F. Timing Evaluation

To demonstrate the improvements provided by ACAT in
terms of running times, we measured the inference times when
testing the attacked Cityscapes videos. Figure 7 reports the
overall inference time required on average to process a frame
by the tested defense mechanisms, with the baseline labeled
by No Def, denoting the original model without defenses. Two
inference times are reported for ZMask: when an attack is not
detected and when an attack is detected, which are separated
by a slash in the figure. As expected, when ZMask detects an
attack, its inference time is approximately twice the one of the
baseline model. Conversely, when no adversarial attacks are
detected, ZMask is particularly efficient and hence represents
an excellent choice to work in conjunction with ACAT, which
activates only when an attack is first detected (see Alg. 1).

The figure also reports the results for another state-of-the-art
defense mechanism, named MaskNet [27], which incorporates
a secondary model. It is relatively more expensive due to
the necessity of always running an encoder-decoder model in
tandem with the original model.

Note that LGS exhibits comparable timing performance
with respect to ACAT, since it focuses on specific filters that

are directly applied to the input image. However, as shown by
the results in Table 1 and other studies in previous work [11],
[27], LGS tends not to perform well in detecting adversarial
attacks that can be carried out in real world, i.e., by means of
physical adversarial objects.

In summary, these results remark on how ACAT provides
a well-balanced trade-off between defense performance and
overall inference time.

Fig. 7: Overall inference time with and without defense mechanisms
for DDRNet and BiseNet.

VII. CONCLUSION

This work established a novel understanding of the feature
over-activation induced by physical adversarial objects in
modern neural networks. Differently from previous work, this
work proposed an approach that allow identifying physical
adversarial attacks by analyzing the first layers of the network,
enabling the implementation of efficient defenses for multi-
frame vision applications that mostly require just an inference
pass to inhibit attacks. Based on these findings, we proposed
Adversarial-Channel Attention Tracing (ACAT), a framework
based on the concept of adversarial trace that focuses on
specific channels (within a given layer) that are primarily
responsible for propagating the adversarial effect. ACAT is
used to extend single-frame defense mechanisms from previ-
ous work, which instead may require two inference passes to
defend from attacks.

Experimental results demonstrated that ACAT allows both
improving the defense capabilities of state-of-the-art defense
methods, even when used for a single frame, as well as pro-
viding a lower computational cost by detecting and defending
attacks in a single inference pass.

Future work should aim at providing a more comprehensive
integration of the approach into complex AI-based vision
systems. We believe that, beyond the presentation of the ACAT
framework, our findings and analyses will also contribute to
gaining a deeper understanding of the nature of these physical



attacks and, consequently, the development of even more
effective defense strategies.
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