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Abstract—Safety-critical automotive applications require predictable
and deterministic execution to not miss the timing requirements. Logical
Execution Time (LET) is a paradigm already established in the auto-
motive industry to improve the predictability and correctness of time-
critical applications. Despite LET being already part of the AUTOSAR
Classic standard, no prior work has addressed the design of this model
on POSIX-based operating systems, which will be the base of next-
generation automotive Electronic Control Units (ECUs). This paper pro-
poses and discusses possible LET design approaches for these novel
systems. Different implementations are then evaluated and compared
through the WATERS Challenge automotive application running on a
multi-core heterogeneous hardware platform.
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1 INTRODUCTION
For decades, the automotive domain has been a very conserva-
tive industry, with software functionalities operated by simple
Electronic Control Units (ECUs). However, the recent increase
in the number and complexity of in-vehicle functionalities are
driving a technological shift towards the integration of multiple
functionalities on novel heterogeneous multi-core platforms.
During this transition and integration, it is of paramount
importance to preserve the non-functional requirements (e.g.
predictability, determinism, causality) of the safety-critical func-
tionalities.

Logical Execution Time (LET) is a paradigm originally pro-
posed in the context of the GIOTTO framework [1] to eliminate
output jitter and thus guarantee time determinism in control
applications. LET, in essence, delays the output of each task
(of its Runnables, in the automotive domain) at the end of
the task’s period, thus reducing the jitter and increasing the
predictability of the communication. This paradigm can be also
used to maintain the causality of legacy code when moving
from single-core to multi-core platforms. Specific designs also
allow to enforcement of freedom-from-interference (FFI) by
removing or controlling memory contention [2]. More recently,
the original paradigm has been extended to scenarios where
the time for communication is not negligible. To this aim,
System-Level LET (SL-LET) [3] has introduced the concept of
“timezones” and an additional “interconnect” task to formalize
the communication delay.

AUTOSAR (AUTomotive Open System ARchitecture) [4] is
an European consortium born in 2004 to create a standard and
interoperable software architecture for automotive ECUs. The
original specification (named AUTOSAR Classic [5]) provides

a reference model and programming API for ECUs executing
a tiny hard real-time operating system (RTOS) and signal-
oriented communications. Recently, there has been a growing
interest in the LET paradigm in the automotive field, where
software is heavily composed of control applications and de-
terminism is a key factor to guarantee safety. As a result, the
AUTOSAR Classic standard provides a model and API for
the LET paradigm [6], leaving each vendor free to design its
implementation.

The recent exponential increase in complexity of automotive
systems, due to the integration of novel functionalities like
assisted or autonomous driving, has forced the consortium to
create an additional standard, called AUTOSAR Adaptive [7].
The software stack for this kind of ECUs consist of a general-
purpose OS based on the POSIX API (e.g. Linux) and a set of
C++ libraries to support multi-thread applications. In addition,
the original signal-oriented paradigm has been replaced by
a modern service-oriented architecture (SoA) [8]. This novel
standard, however, does not include the LET paradigm due
to the inherent difficulties in implementing this model on a
dynamic general-purpose OS based on the POSIX standard [9].
Contribution. In this paper, we propose and analyze two dif-
ferent approaches to designing the LET paradigm on dynamic
POSIX-based operating systems. In particular, we propose a
design at both kernel space and user space. After formalizing
and explaining the design of the communication protocol, the
synchronization mechanism, and the involved data structures,
we implement the two designs and make a performance com-
parison on a real multi-core platform running an automotive
application (namely, the WATERS Challenge [10]).
Paper structure. The paper is organized as follows. Section 2
provides the needed background information. Section 3 ex-
plains the model and the notations used in the paper. Section 4
illustrates the design and the formalization of the proposed
approach, including the communication mechanism and the
dynamic protocols. Section 5 presents the implementations of
the LET model for both user and kernel space, illustrating
all the main functionalities through pseudo-code. Section 6
provides the evaluation of the two implementations and a per-
formance comparison. Finally, Section 7 discusses the related
work, and Section 8 concludes.

2 BACKGROUND AND PROBLEM DEFINITION

Many control applications are still designed using the Bounded
Execution Time (BET) programming model, where the response
time of a task may vary with each execution but never exceeds



2

kT (k+1)T (k+2)T

RTk RT(k+1)

Fig. 1: The BET model of execution. Red and blue arrows
denote input/output operations respectively performed by
tasks.
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Fig. 2: Logical Execution Time paradigm

the Worst-Case Response Time (WCRT) [11]. One problem that
affects this model is of course the jitter of the response time. In
the presence of jitter, causality in the task chain can be broken,
leading to a degradation of the performance of the control [12].
Even worse, whether jitter occurs or not depends on the actual
execution time of the involved tasks and other conditions (e.g.
system load), making the system behavior not deterministic.
Moreover, the problem of jitter increases with the number of
cores, since more tasks can execute in parallel and interfere with
each other on shared hardware resources like memory.

Figure 1 shows an example of execution using the BET
model where two periodic tasks are scheduled using rate mono-
tonic scheduling [13]. Comparing the two activations of τ2, we
can see that the output of task τ2 experiences a significant jitter
due to the interference of τ1, which has a variable execution
time and executes at higher priority.

Another issue of the BET model is the loss of causality
that can occur when moving from single-core to multi-core
platforms, which can lead to an increase of an end-to-end
latency of a given cause-effect chain [11].

2.1 Logical Execution Time
In the original LET proposal [14, 15], the execution of tasks is
predictable and deterministic, with preservation of the order of
execution. Determinism is applied also for communication and
actuation times.

Figure 2 shows how the LET paradigm works. Input and
output operations are performed at the beginning and at the
end of the period, respectively. One approach to implement-
ing such semantics is to use additional local variables whose
content is filled/copied only at the period boundaries. The
computation of the task within the period is done only using
local variables.

It is easy to infer that, in the presence of a task chain, the LET
paradigm causes an increase in end-to-end latency. Following
the work presented by Davare et al. [16] and considering that
LET the output is provided at the end of the task period (with
respect to the semantic described in [2]), in a chain p of tasks
the end-to-end latency (as defined [16]) is bounded by

E2Ep =
∑

k:τk∈p

2Tk, (1)

where the notation τk ∈ p indicates that task τk belongs to
chain p and Tk is the period of τk. In this work, we use the

W

A

S

R

W

A R

S

A R A R

Logical e2e latency

Fig. 3: Schedule of LET communication with GIOTTO
semantics. The producer task has a period Tp=2Tc. The
marked squares in red and blue are operations that con-
tribute to end-to-end latency respectively for sensing/read
and actuation/write operations. Legend: S = sensing, R =
read, A = actuation, W = write.

original GIOTTO semantics [1], which assumes a negligible
time (i.e. zero logical time) for input/output operations [15,
17]. However, in real implementations, communication phases
must be scheduled for execution. The order of execution of
input/output operations leads to different time properties.
To ensure determinism, this semantics specifies an order of
execution for the input and output operations using LET, which
can be recapped as follow:

• Perform data writing and control output operations;
• Perform input and data read operations.

This order is applied for every instance of each task. However,
if more than one task activates at the same time, input and
output operations are grouped and executed together.

Figure 3 illustrates a scheduling example of LET communi-
cation between a producer τp and a consumer τc with GIOTTO
semantics. All communication operations are performed at the
beginning of each period, giving precedence to writing and
actuation operations. The end-to-end latency with which the
system reacts to the control input is deterministic — i.e., it is
independent of the tasks’ response time and equal to the sum
of the periods of both Tp and Tc, as long as the tasks complete
their execution before the release of their next instance, ignoring
the time required to perform input/output operations.

The LET paradigm also represents a possible solution to
restore causality when moving legacy software from single-
core to multi-core platforms [18, 19]. Moreover, it is possible to
exploit the additional benefit of scheduling precisely in time the
accesses to the communication variables and to perform buffer
optimization to improve the efficiency and the performance of
the LET communication [2].

2.2 LET on POSIX Systems
As already mentioned, LET has been already standardized
in the AUTOSAR Classic specification [6] and, accordingly,
many different implementations nowadays exist. However, the
automotive industry is putting more and more interest in the
emerging AUTOSAR Adaptive standard (AP) [7]. This novel
specification aims at addressing the requirements of mod-
ern automotive software but does not yet provide sufficient
mechanisms to guarantee determinism in publish-subscribe
communications. Indeed, the first attempt at improving the
determinism of execution and communication (namely, Deter-
ministicClient) might be soon removed from the specification
due to overengineering and poor adoption.

In this work, we tackle the challenge of supporting the LET
paradigm in dynamic software systems, defining the formalism
for dynamic protocols required to handle the dynamicity of the
system and ensure determinism. In particular, the major chal-
lenges are related to (i) allow tasks to join the LET paradigm
at runtime, (ii) provide a core synchronization mechanism able
to guarantee the respect of LET semantics, and (iii) ensure that
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LET communication operations are performed at the right times
to guarantee deterministic behavior. The implementation is
designed for POSIX-compliant systems, leaving the possibility
of porting the approach to AP.

3 SYSTEM MODEL

We focus on a system where real-time tasks communicate
through the producer-consumer paradigm [20] exchanging
messages based on topics. In our model, an application consists
of a set of n periodic real-time tasks τi = (Ci, Ti, Di, Ri), each
one characterized by a Worst-Case Execution Time (WCET) Ci,
a period Ti, a relative deadline Di and a response time Ri.
The application is executed on a platform that comprises m
cores denoted as P = {P1, P2, ..., Pm}, and a global memory
M . According to producer-consumer relationships, tasks can
also be organized into chains, where the k-th task in the chain
produces data to be consumed by the (k+1)-th one in the same.

We assume that tasks are executed on a real-time POSIX
operating system that supports the following scheduling poli-
cies: partitioned Earliest Deadline First (pEDF), First-In-First-
Out (FIFO), Round Robin (RR), and hierarchical scheduling.
In particular, the real-time tasks are scheduled using pEDF.
For each core, there are two instances of FIFO schedulers,
one of which is dedicated to the scheduling of LET tasks and
has higher priority than pEDF. Other non-real-time tasks are
scheduled using the other instance of the FIFO scheduler, which
has lower priority w.r.t. all the other schedulers, except for the
dummy one.

It is important to notice that, in the absence of any task to
schedule, the kernel will execute the dummy process, which
will eventually cause a process context switch.

Tasks are mapped into different cores at the design time of
the application and task migration is not available. The com-
munication model used in this work is based on the principles
of the topic-based publish-subscriber model [21]. Producer and
consumer tasks share a topic and communicate through the use
of messages implemented as data structures. For each topic, it
is possible to have only one producer and multiple consumers.

Table 1 summarizes the notation used in the paper.

Sym. Description
bi,l Private buffer of task i for topic l
Q(i,t) Activated tasks at time t on core i
Lri Set of reg. tasks to LET paradigm on core i
C(t) Cores involved in LET op. at time t
Lb Set of dereg. task to LET paradigm
ΓL LET task implemented for user-space
γi Alias of task i
LΓL

LET task private set of registered tasks
So(t) Reg. set for output at time t
mreg Mutex for reg./dereg. to Lri
Si(t) Reg. set for input at time t
mch Mutex for reg./dereg. to Lb

Fr Flag registration notification
spinb Spinlock for barrier synchronization
Fd Flag deregistration notification
spins Spinlock for cores synchronization

TABLE 1: List of the main symbols.

4 SYSTEM DESIGN

In this section, the design of the system is explained, starting
from the communication mechanisms adopted to the formal-
ization of all the protocols introduced to integrate the LET
paradigm into POSIX-compliant dynamic systems.

Producer Consumer

Channel

Metadata section

Buffer section

Producer's
private buffer

Consumer's
private buffer

write read

Fig. 4: Interaction between producer and consumer based
on a communication channel.

4.1 Communication Mechanism
Communication between tasks is essential whenever there is
a task chain with data-dependency constraints. For each topic
l, a task τi is provided with a private buffer bi,l. Each time
a producer must publish new data, it writes the message
on its private buffer. In the same manner, consumers read
from their private buffer for new messages. The design of the
communication mechanism is inspired by the implicit commu-
nication mechanism present in Classic AUTOSAR [5], where
runnables read from and write into global variables only at
the beginning and at the end of their execution respectively.
All other operations are performed on local copies, avoiding
interfering with other runnables. The code implementing the
read from and write into shared global variables is generated
as part of the RTE code at the beginning and the end of the
runnables. In the proposed approach, private buffers act as local
copies of the variables that can be accessed anytime during
the execution of tasks, without incurring any interference from
other tasks. Since tasks can access only their private buffers,
a mechanism is required to transfer the message from the
producer to consumers’ private buffers. Hence, communication
channels are used.

As shown in Figure 4, a channel is a logical entity, rep-
resenting a topic, acting as a communication bridge between
tasks. When new data are available on the producer’s private
buffer, the message is copied into the message buffer owned
by the channel during the LET output phase. On the other
hand, during the LET input phase, the message is copied from
the channel’s message buffer to the consumers’ private buffers.
Each channel is represented as a data structure containing the
information explained below.

4.1.1 Metadata Section
This section contains information related to the channel itself
and all the producer and consumer tasks that adhere to the
communication. The information contained in the metadata
section is the following:

• Topic: it is used as a unique identifier of the channel
in the system. Each time tasks want to join a specific
channel, the topic must be specified with a string;

• Status: it specifies whenever new data are made avail-
able from the producer. It is used to optimize the com-
munication phase in the presence of oversampling of the
consumers, avoiding accessing aged data. The status of
the channel is updated by the producer only if new data
are produced;

• Message size: it specifies the data size of the message
exchanged between producer and consumers;

• Timestamp: it specifies when consumers are ready to
accept new data. It is used to optimize the communica-
tion phase, avoiding the producer to overwrite unused
data.

• Members: it specifies how many tasks use the channel;
• Producer CPU: it specifies the CPU where the producer

is executing. It is used to check anytime a consumer
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Fig. 5: Communication protocol. Blue and red arrows repre-
sent LET output and LET input phases, respectively.

joins the channel if it executes on the same CPU of the
processor, allowing hence to enable intra-core commu-
nication;

• Buffers references queue: it keeps track of all the
buffers related to the tasks that joined the channel. This
queue is used to manage intra-core communication;

• Consumers references queue: it keeps track of all the
consumers that adhere to the channel;

• Producer reference: it keeps track of the producer for
that channel.

4.1.2 Buffer Section
This section contains the references to the buffers of the chan-
nels:

• Message buffer: it is a reference to a buffer, owned
by the channel, where the message is stored. It can be
accessed only during the communication phases. Not
the producer, nor the consumers are allowed to access
directly this buffer;

• Spare buffer: it is a reference to a buffer used for
intra-core communication to overcome communication
problems when producers and consumers have non-
harmonic periods.

• Unused buffers list: it is used to keep track of all
unused tasks’ private buffers that are registered to the
channel and adhere to intra-core communication.

• Updated buffer pointer: it is a pointer to the last
updated buffer by the producer.

Figure 5 represents a communication flow between pro-
ducer and consumer tasks. During their executions, tasks can
access anytime their private buffer to write output or read
input. In such a way, private buffers emulate the behavior of
local variables of the tasks, even if they are not part of the
task’s stack. Tasks involved in communication are unaware of
LET operations, hence do not care to notify other tasks for
communication.

4.2 Intra-core communication
Depending on the hardware, cores can be equipped with a
private scratchpad memory that can be accessed without any
contention from other cores [22]. It is possible to exploit a
core’s private memory to improve efficiency in communication
between tasks that execute on the same core, avoiding unnec-
essary global memory accesses. If the architecture does not
provide the core’s private memory, it is possible to emulate such
behavior to improve the intra-core communication mechanism,
even if buffers are allocated in global memory.

4.2.1 Pointer-swap protocol
Communication between tasks scheduled on the same core is
operated by the pointer-swap protocol, which aims at mimick-
ing zero-time and zero-copy communication policies [23].

The protocol from [23] was extended to support non-
harmonic tasks, introducing a spare buffer for each channel.

W

R

W

R

Fig. 6: Extended pointer-swap protocol with channel’s spare
buffer. Black arrows denote which buffer is accessed by each
producer and consumer task’s instance. Legend: W = write,
R = read.

Each time a LET communication must be performed, pointers
to the buffers used by tasks, avoiding expensive operations to
copy data.

The key idea of the protocol is to allow the producer
task to always access a buffer that is currently unused, while
consumer tasks can access always the latest buffer updated
by the producer (provided that it is not currently used by the
producer itself). Figure 6 shows how the proposed extended
pointer-swap protocol works. Consider a producer τp with
period Tp associated with a buffer Bp and a consumer τc with
period Tc associated with a buffer Bc. Denote with Bs the spare
buffer of the communication channel. Assume also that τp is
scheduled with higher priority w.r.t. τc and both tasks activate
at time t = 0. During the first instance, both the producer and
the consumer access their corresponding buffers without any
interference. In the second instance of the producer task, its
buffer is swapped with the channel’s spare buffer, leaving the
previously used buffer free. Finally, in the second instance of
the consumer task, its buffer is swapped with the latest buffer
freed by the producer, which allows access to the latest updated
data. Note that multiple consumers can access the same buffer
without compromising the data integrity since consumers can
only perform read operations.

The intra-core communication protocol is formalized as
follows:

R1 At its creation, the spare buffer is empty as the list of
unused buffers and the updated buffer pointer.

R2 During the LET output phase, the producer’s private
buffer is swapped with the spare buffer of the channel,
and referenced by the last updated buffer pointer.

R3 During the LET input phase, the consumer’s private
buffer is marked as empty and swapped with the chan-
nel’s spare buffer. If the spare buffer is already marked
as empty, the consumer’s private buffer is inserted into
the unused buffer list, referring to the last updated
buffer as the new consumer’s private buffer.

It is possible to generalize the protocol for multicast communi-
cations in a task chain with n tasks providing a lower bound
for required buffers. Consider that all consumers, whose period
is less or equal to the one of the producer, share the same last
updated buffer. Define with Nc the number of such consumers,
hence the number of buffers required is n − Nc + 1. For this
purpose, the unused buffer list of the channel keeps track of
all the consumers’ private buffers that are not used in any LET
communication operations.
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4.3 Dynamic Membership Protocol
Unlike static systems, where the configuration occurs before
execution, on POSIX-compliant systems the configuration can
change at run-time. For this reason, a set of protocols is re-
quired that allow tasks to dynamically join the LET paradigm
and ensure the respect of LET semantics when performing
communication operations. The key idea is to allow tasks to
register themselves to the LET paradigm anytime during their
execution. Registration on behalf of other tasks is not permitted.
In the same manner, each task can only deregister itself from
the LET paradigm at any time. For the registration, tasks must
register also at least one topic used for the communication.
However, tasks can repeat the registration process multiple
times during their execution, to register different topics at
different time instances. On the opposite, deregistration can
be performed only once as it deregisters the task to the LET
paradigm as well as all its related topics. The Dynamic Mem-
bership Protocol (DMP) manages all requests from tasks that
want to join the LET paradigm, providing registration and
deregistration functionalities. The set Lri is used to keep track
of all the tasks, running on core i, that adhere to LET. Whenever
a task τ sends a join request, a related alias γ is created and
used as a new entry for the registration set. Logically, the alias
is a reference to the task which can be implemented as a data
structure that represents a registration element composed of
different fields described as follows:

• Task name: it specifies the name of the task to which
the alias is referred;

• activation time: it specifies the activation time of the
referred task;

• period: it specifies the period of the referred task;
• channels list: it specifies the list of all the channels to

which the task is linked. The list is sorted to place first
all the channels where the task is the producer, then all
the channel where the task interact as a consumer;

• buffers list: it specifies the list of all the private buffers
that are related to the task. Note that the order of the
private buffers follows the one used for the channels list.
In particular, for each channel on the channels list, also
a private buffer related to that topic exists. The relation
between the channel and the topic is specified as the
position number of the list;

• Current CPU: it specifies the CPU where the task exe-
cutes;

• Registration number: it refers to a global progressive
number assigned to each task that is registered to the
LET paradigm.

To exploit parallel execution during the registration phase,
there exists a set Lri for each core. To complete the registration
phase, tasks must also register the communication channels
related to the topics that they treat. For this purpose, the set
Lb is used to keep track of all communication channels created
by registered tasks. Unlike the set of registered tasks Lri , the set
Lb is global for all the cores and shared during the registration
phase. Hence, synchronization mechanisms must be taken into
account when managing the set of registered channels. Below
the formalization of the registration and deregistration proto-
cols follows.

The registration protocol complies with the following state-
ments:

R1 In the first place, the alias of the task is created, together
with its private buffers;

R2 Then, the communication channels are linked to the
alias. With link operation, the reference of the channel
is stored in the channel list field of the alias, allowing
direct access to the channel. Otherwise, if the channel is
not existing, it is created and registered to Lb. registra-
tion fails due to the lack of free memory available, the
registration phase is aborted;

Registration to
S(o,t)

Deregistration
to S(o,t)

Output Phase

Deregistration
to S(i,t)

Registration to
S(i,t)

Input Phase

Fig. 7: Illustration of the six phases of inter-core synchro-
nization protocol.

R3 The alias created in the first step is registered to Lri .
If a failure occurs, the registration of the channels to
Lb committed in the previous step is revoked and the
registration phase is aborted;

R4 Mutual exclusion mechanisms are used to protect the
registration of the task’s alias to Lri from concurrent
execution of tasks running on the same core, while
the registration of communication channels to Lb from
concurrent execution between all tasks in the system.

The deregistration protocol complies with the following
statements:

R1 In the first part of the deregistration phase, the alias of
the task is removed from Lri , and all its private buffers
are destroyed;

R2 All communication channels are then unlinked and, if
needed, deregistered from Lb;

R3 Mutual exclusion mechanisms are used to protect the
deregistration of tasks’ aliases to Lri from concurrent
execution on the same core, while the deregistration of
communication channels to Lb from concurrent execu-
tion between all cores.

4.4 Inter-Core Synchronization Protocol
As stated in chapter 2, GIOTTO semantics is required to pre-
serve causality and ensure a deterministic behavior [1]. Since
tasks belonging to the same task chain can be executed in
parallel on different cores, the respect for GIOTTO semantics
is ensured through an inter-core synchronization protocol. Due
to the dynamicity of the system, it is not possible to predict
offline when cores will perform the LET communication phase.
Denote with So(t) and Si(t) the set of cores that, at time t,
aim to perform the output and input operations, respectively.
Define with LETcycle(t) the LET cycle as the amount of time
it took to perform read and write operations on all cores that
started at time t. In particular, define with ∆W(i,t) the amount
of time used to perform write operations for all tasks activated
on core i at time t, and with ∆R(i,t) the amount of time used to
perform read operations for all tasks activated on core i at time
t, hence:

LETcycle(t) =

M−1∑
i=0

∆W(i,t) +∆R(i,t). (2)

As depicted in Figure 7, the inter-core synchronization
protocol can be divided into six phases which comply with the
following rules:

R1 At the beginning of the LETcycle(t), both So(t) and Si(t)
must be empty, i.e. So(t) = ∅ and Si(t) = ∅;

R2 Before starting the output phase, each core Pi ∈ C(t)
must register to So(t). Once registration is done, the
output phase can be undertaken;

R3 Before starting the input phase, each core Pi ∈ C(t)
must register to Si(t) and deregister to So(t). Despite
this order of execution is not mandatory, it enforces
GIOTTO semantics.
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Fig. 8: Example of schedule on two cores with the inter-
core synchronization protocol. Task running on processor
P1 has activation at times 0 and 2, while task running on
processor P2 only at time 0. Legend: R = registration to
So(t), O = output phase, S = switch phase, I= input phase,
D = deregistration to Si(t).

R4 Input phase can start only when So(t) = ∅ and Si(t) =
C(t). Otherwise, cores already registered to Si(t) must
perform a busy wait;

R5 After input phase is terminated, each core Pi ∈ C(t)
deregister to Si(t).

The example in Figure 8, illustrates how inter-core synchroniza-
tion protocol works.

Consider two processors P0 and P1 executing tasks with
different activation times. According to the rules of inter-core
synchronization protocol, at time t = 0 both processors are
required to perform LET communication operations, hence
C(0) = {P0,P1}. In this example, after the output phase, dereg-
istration to So(t) and registration to Si(t) are merged in a single
phase called switch phase (S). Once P0 ends the switch phase, it
must wait for P1 before starting the input phase. After P1 ends
the switch phase, both processors can start the input phase,
followed by the deregistration phase to Si(t). At t = 2, the
execution flow is the same as t = 0, but since only P0 is
involved in the LET communication phase, there is no busy-
wait synchronization.

5 IMPLEMENTATION
The overall implementation of the LET paradigm is based on
different functions that take care of: (i) initialization of all
the data structures, (ii) implement the DMP, (iii) implement
the inter-core synchronization protocol and (iv) implement the
communication mechanism between tasks. The communication
function represents the main difference between kernel-space
and user-space implementations. In particular, the kernel-space
communication phase is executed within a kernel routine, while
the user-space implementation exploits a dedicated task for
each core, called LET task and denoted with ΓL, running
at the highest priority of the system that takes care of the
communication between tasks. Input and output operations
implement the buffer optimization technique [2], according also
to the intra-core or inter-core communication mechanism. In
particular, for the second case, the communication is based on
simple memory copies.

5.1 Dynamic Membership Protocol
The implementation of the DMP can be divided into two dif-
ferent functions executing: (i) the registration phase and (ii) the
deregistration phase. In the kernel-space implementation, these
functions are available as system calls. On the opposite, in user-
space implementation, these functionalities are available as
simple functions embedded in a C library. It is important to note
that the implementation of both registration and deregistration
functions are valid for kernel space and user space, with minor
differences.

Algorithm 1 shows the pseudo-code of the implementation
for the registration function. The arguments required for the
registration phase are related to (i) the core number where

Algorithm 1 Registration pseudocode

1: function LETREGISTRATION(Pi, l, pτj , γj , at, s)
2: if γj == null then
3: alias γj = CreateAlias(pτj );
4: end if
5: buffer bj,l = CreatePrivateBuffer(s);
6: LinkPrivateBuffer(γj .buffers list, bj,l);
7: MutexLock(mch);
8: ch = SearchChannel(Lb, l);
9: if ch == null then

10: ch = CreateAndRegister(l, Lb);
11: end if
12: Link(ch, γj , bj,l, at);
13: MutexUnlock(mch);
14: MutexLock(mreg);
15: if TaskNotRegistered(γj , Lri ) then
16: RegisterAlias(γj , Lri );
17: end if
18: MutexUnlock(mreg);
19: FinalizeRegistration();
20: end function

the task is running, (ii) the topic of the channel, (iii) the
reference to the task’s parameters, (iv) the reference to the alias,
if previously created, (v) the type of access to the channel and,
finally, (vi) the size of the data exchanged through the channel.
Note that the reference to the task’s parameters can be specified
with a data structure containing the activation time, the period,
and the task’s name. The type of access to the channel, instead,
specifies if the registering task is a producer or a consumer. Ac-
cording to the formalization of the registration phase described
in Section 4.3, the first operation is to create the alias and the
private buffers of the task (line 2-5). If the alias passed as an
argument is not valid, it is created starting from the parameters
of the task and linked to the buffer. Then, the channel is created,
if needed, and linked to the alias (line 8-12). Finally, the alias is
registered to the list Lri if not done yet (line 15-17). Note that
the function at line 19 differs from kernel-space and user-space
implementations. In particular, in the first case, the finalization
of the registration can be performed simply by updating the
task’s data structure and linking the alias to it. In the second
case, it is possible to finalize the registration with a notification
to ΓL. Such notification is implemented using a shared flag,
denoted with Fr , set every time a new task requests to finalize
the registration, and is reset once ΓL finalizes the registration.

Algorithm 2 illustrates the pseudo-code of the implementa-
tion of the deregistration phase for both kernel space and user
space. The arguments required by the deregistration function
are (i) the core number where the task executes and (ii) the
alias obtained during the registration phase. Note that, for the
kernel-space implementation, the alias is not passed as an ar-
gument, but instead retrieved through the kernel data structure
of the task. When a task is deregistered it is removed from the
list Lri first (line 3). Then all the channels related to the task are
unlinked from the alias and, for each channel, the number of
active members is decreased. If a channel has only one member,
it can be deregistered from list Lb and deleted. When deleting
a channel, also all the buffers in the unused buffers queue are
deleted, as well as the message buffer and the spare buffer.
For each channel unlinked, the correspondent private buffer
belonging to the task requesting the deregistration is deleted
(line 7-14). Once all the channels are unlinked, the alias is
deleted (line 16). Also, in this case, the implementation of the
function at line 5 differs from kernel space and user space. In
the first case, it is possible to update the task’s data structure
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Algorithm 2 Deregistration pseudocode

1: function LETDEREGISTRATION(Pi, γ)
2: MutexLock(mreg);
3: RemoveToList(γ, Lri );
4: MutexUnlock(mreg);
5: FinalizeDeregistration();
6: MutexLock(mch);
7: for each ch ∈ γ.channel list do
8: if ch.members == 1 then
9: DeleteChannel(ch, Lb);

10: else
11: ch.members = ch.members - 1;
12: end if
13: DeleteBuffer(γ.buffers list);
14: end for
15: MutexUnlock(mch);
16: Delete(γ);
17: end function

by unlinking the alias, meaning that the task is not registered
anymore to the LET paradigm. For user-space implementation,
instead, the deregistration to the list Lri is completed with a
notification to the LET task with a shared flag denoted as Fd,
set every time a new task is deregistered. The flag is reset once
ΓL finalizes the deregistration.

5.1.1 Race conditions analysis
Registration and deregistration operations can be executed in
parallel with tasks executing in different cores, leaving the
possibility that race conditions occur. In particular, multiple
tasks may register different channels at the same time, leading
to a possible data inconsistency when sliding the list Lb. Even
if the Lri list is private to the core, during the registration
of the alias a task can be preempted by higher priority tasks,
leading to data inconsistency. Hence, to avoid race conditions,
registration operations to each list Lb and Lri are protected
using mutual exclusion mechanism. In particular, the mutex
used for the registration and deregistration of the channel is
shared between all cores, since the list Lb is global. The mutex
used for the registration to the list Lri , however, is local for each
core. In both kernel-space and user-space implementations, the
mutex mch is not shared with the LET communication function.
In particular, the kernel routine and the LET task directly
access the channels during the communication phase using
the links stored in the alias registered to the set Lri instead
of scrolling the list Lb, which avoids race condition between
communication and registration phases. For what concerns the
mutex mreg , in the kernel-space implementation is possible to
access the alias directly through the reference stored in the task
data structure, avoiding hence the need to contend the mutex.
As opposed, the LET task needs to access the list Lri to find
the alias of newly registered tasks, requiring hence to acquire
the mutex. Thus, a scheduling point is introduced inside the
LET task, which can be preempted in favor of tasks that need
to finish the registration to the list Lri , increasing the overhead
introduced by the LET communications.

5.2 Inter-core Synchronization Protocol
The inter-core synchronization protocol is embedded inside
the LET communication function. Also in this case, it can be
divided into two different functions executing: (i) the regis-
tration to the writing phase and (ii) the registration to the
read phase. The protocol is implemented without violating
the formalization described in chapter 4.4 and respecting the
GIOTTO semantics.

5.2.1 Temporal Drift Problem
During the normal execution of the system, multiple tasks
scheduled in different cores can have the same activation time.
In this scenario, the cores must be synchronized to execute
the LET communication to guarantee the respect of GIOTTO
semantics. However, synchronization can fail due to temporal
drift that can occur when handling events. Take, for example,
two tasks τi and τj executing on different cores P0 and P1, with
the same activation time. When both tasks are activated, P0 and
P1 must execute the LET communication function registering
to the write phase first, and then to the read phase. However,
one of the processors can execute faster than the others due
to a different computational load performed before the LET
communication function. In this scenario, the ”fastest” proces-
sor starts immediately the write and read operations, since the
”slowest” one is not yet registered. Hence, the GIOTTO se-
mantics is not respected. To avoid synchronization failures, an
algorithm is required to guarantee the correct synchronization
between cores. The algorithm is formalized as follows:

• For each core, a timestamp related to the nearest activa-
tion of LET communication is assigned.

• For each execution of the LET communication function,
each core checks if it is already registered to the set
So(t). If not, it registers itself and other cores with the
same timestamp value.

• Once the read phase is executed, each core updates its
timestamp with the nearest LET communication activa-
tion time.

5.2.2 ICSP with Regulated Memory Access
This implementation is inspired by the work done in [2], in
which it is explained how to regulate the global memory
accesses by the LET communication function to avoid mem-
ory contention. We adapted the original algorithm designed
for AUTOSAR Classic [5] system for a POSIX-like system. In
particular, in the original implementation, an absolute order
is established between cores accessing the global memory,
assigning a priority to each of them. However, in this work it
is assumed that the number of tasks joining the LET paradigm
can vary over time, creating new LET transactions and making
it difficult to adopt an absolute priority order. Hence, the
algorithm adopted is based on a relative order for cores that
access the global memory based on the FIFO policy. Each core
is provided with a ticket, that is retrieved every time it is
required registration to So(t). The ticket is implemented as a
data structure containing the following fields:

• CPU id: it represents the core number of the owner of
the ticket;

• wait spinlock: it is used to perform busy wait for both
the write and read phases.

During the initialization phase, one ticket is created for each
core with its spinlock initialized as busy. Every time a core
needs to perform a write or read phase, its ticket is added to
the FIFO list. Vice versa, when the core exits the LET commu-
nication phase, the ticket is removed from the FIFO list. The
algorithm used to implement the inter-core synchronization
protocol with regulated access to memory is formalized as
follow:

• To start write phase, the core Pi must register the related
ticket to the set So(t). Write operations can immediately
start only if the ticket of Pi is the first element of So(t)
and Si(t) ̸= ∅. Otherwise, it waits its turn with a busy
wait;

• To start the read phase, the core Pi must register the
related ticket to the set Si(t). Read operations can im-
mediately start only if So(t) ̸= ∅ and the LET communi-
cation function is the first element of Si(t). Otherwise,
it waits its turn with a busy wait;
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Algorithm 3 Write synchronization with RMA pseudocode

1: function WRITESYNCHRONIZATION(Pi)
2: SpinLock(spins);
3: ticket tk = RetrieveTicket(Pi);
4: RegisterCores(So(t));
5: if tk is first in So(t) then
6: SpinUnlock(spins);
7: return ;
8: end if
9: SpinUnlock(spins);

10: SpinLock(tk.spinlock);
11: end function

Algorithm 3 illustrates the pseudo-code of the synchro-
nization protocol with regulated memory access works. The
function at line 4 implements the algorithm for the temporal
drift problem. In case the core Pi is the first of the list, according
to the FIFO policy, exit the synchronization function to execute
the writing phase (line5-8). Otherwise, it waits on the spinlock
of its ticket until another core unlocks it (line 9). The registration
to the set So(t) is protected with mutual exclusion mechanism
to avoid cores registering multiple instances of the same ticket.

Algorithm 4 Read synchronization with RMA pseudocode

1: function READSYNCHRONIZATION(Pi)
2: SpinLock(spins);
3: ticket tk = RetrieveTicket(Pi);
4: DeregisterCore(So(t), tk);
5: RegisterCore(Si(t), tk);
6: if So(t) ̸= ∅ then
7: SpinUnlock(spins);
8: ticket tkf = first element of So(t);
9: SpinUnlock(tkf .spinlock);

10: SpinLock(tk.spinlock);
11: else if Si(t) ̸= ∅ then
12: SpinUnlock(spins);
13: ticket tkf = first element of Si(t);
14: SpinUnlock(tkf .spinlock);
15: SpinLock(tk.spinlock);
16: else
17: SpinUnlock(spins);
18: return
19: end if
20: end function

Algorithm 4 shows the read phase in which the core first
deregisters from the output phase and registers to the input
phase (line 4-5). Cores can proceed for the read phase only if
So(t) and Si(t) are empty (line 16-18). Otherwise, it will first
unlock the next core waiting for the output phase (line 8-9) or
the ones waiting for the read phase, if So(t) is empty (line 13-
14). Note that, since the spinlock of the ticket is initialized as
busy, every lock operation will result in a busy wait.

Once the read phase is terminated, the next element of the
set Si(t) is unlocked if it is not empty. Otherwise, if So(t) ̸= ∅,
is unlocked the first element waiting for the writing phase. This
last case can happens only if multiple LET cycles overlap.

5.2.3 ICSP with Synchronization Barrier
The second approach for the inter-core synchronization proto-
col exploits the synchronization barrier between cores, which
does not avoid memory contention but is easier to implement.
Denote with spinb the mutex used as a barrier. Define also a

counter ct, which keeps track of the number of cores registered
to So(t) at time t. The pseudo-code in Algorithm 5 illustrates the
implementation of the synchronization for the writing phase.

Algorithm 5 Write synchronization with Barrier pseu-
docode

1: function WRITESYNCHRONIZATION(Pi)
2: SpinLock(spins);
3: if Pi /∈ So(t) then
4: RegisterCores(So(t));
5: UpdateCounter(ct);
6: SpinInit(spinb, LOCKED);
7: end if
8: SpinUnlock(spins);
9: end function

The function at line 4 is the same used for Sec. 5.2.2. It is pos-
sible to notice that, during the registration to write phase, only
the first core attempting to register to the set So(t), registers
also all other cores that require to perform LET communication,
updates the counter of cores registered, and locks the barrier
mutex (line 3-7). Note also that, since the synchronization
barrier is applied only before the read phase, cores can execute
the writing phase in parallel. The pseudo-code in Algorithm
6 illustrates the implementation of the ReadSynchronization
function.

Algorithm 6 Read synchronization with Barrier pseudocode

1: function READSYNCHRONIZATION(Pi)
2: SpinLock(spins);
3: DecrementAndRead(ct);
4: SpinUnlock(spins);
5: if ct ̸= 0 then
6: SpinLock(spinb);
7: SpinUnlock(spinb);
8: else
9: SpinUnlock(spinb);

10: end if
11: end function

The first operation to perform is to decrease the counter of
registered cores (line 3). If the counter reaches the value zero,
then the core Pi is the last one deregistering from the set So(t).
Hence, it will unlock the first core blocked on barrier mutex
(line 9). Otherwise, it will wait on the barrier, and notify the
next core waiting on the barrier once it has been unlocked from
the busy wait (line 6-7). In this way, once all cores awaken
from the barrier, they will start the read phase in parallel.
Note that, since the barrier mutex is first locked during the
write synchronization, every attempt to lock it in the read
synchronization will end with a busy wait. It is important to
notice that, if multiple LET cycles overlap, it is possible to
incur violations of GIOTTO semantics. Hence, it is required
that only one LET cycle at a time must be processed for this
implementation to work correctly.

5.3 LET communication kernel routine
The key idea is to minimize the delay between task activation
and effective LET communication operations. Each task activa-
tion is handled as an event that is fired when the activation time
of the related task occurred. Hence, the routine is executed after
all time events are collected. However, since not all events are
related to tasks’ activations, the LET communication routine
must be skipped if not required. For this purpose, a queue
is used to keep track of tasks that are activated at certain
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times. Denote with Q(i,t) the queue of tasks activated on the
processor Pi at time t. Each time a fired event is recognized
as an activation event of a task τi that is registered to the
LET paradigm, the related alias γi is inserted in the queue
Q(i,t), ordered based on the registration number of the alias,
enforcing time determinism. This process is implemented as a
function that is called inside the handler of the activation time
event. The pseud-code in Algorithm 7 illustrates the algorithm
for the kernel routine that takes charge to perform the LET
communication operations in kernel space implementation.

Algorithm 7 LET kernel routine pseudocode

1: function LETOPERATIONS(Pi, t)
2: if Q(i,t) ̸= ∅ then
3: WriteSynchronization(Pi);
4: for each γ ∈ Q(i,t) do
5: OutputOperations(γ);
6: end for
7: ReadSynchronization(Pi);
8: for each γ ∈ Q(i,t) do
9: InputOperations(γ);

10: end for
11: UpdateNextActivation();
12: end if
13: end function

As it is possible to see from the pseudo-code, the communi-
cation operations take place if there are tasks activated at time
t (line 2). The function at line 11 is undertaken to update the
timestamp related to the next activation of the kernel routine. If
the inter-core synchronization protocol used is with regulated
memory access, this function also updates the ticket related to
the core executing the kernel routine.

5.4 Design of LET task
For user-space implementation, the key idea is to exploit a
dedicated task for each core, denoted with ΓL, running at
the highest priority of the system, to perform LET commu-
nication operations. In the original work [2], the dedicated
task is designed as a Generalized Multiframe Task [24] and
implemented as a periodic task with a period of 1 millisecond.
In this work, however, the LET task is designed as a non-
real-time task, scheduled under FIFO policy. This choice has
been made according to the kernel used for this work, where
it is possible to set the FIFO scheduler with higher priority
w.r.t. EDF scheduler. Moreover, designing ΓL as a periodic
task under the EDF scheduler does not guarantee the priority
required for the execution.

activation new task
registered? W/R operations set next

activation

wait for signal
or next

activation

synchronize
private queue

Y

N

Fig. 9: Block diagram of LET task.

Once the task is activated, it performs a synchronization
phase with Lri searching for new registered or deregistered
tasks. In particular, the LET task uses a private queue of aliases,
denoted as LΓL , to store information related to all the tasks
joining the LET paradigm. The private queue is sorted in as-
cending order concerning the activation time, updated at each
iteration, of the tasks related to the aliases. The synchronization

phase must be performed only when a new task registers
or deregister from Lri , otherwise, it can be skipped. Then,
the communication phase is undertaken, which involves the
inter-core synchronization, the output, and the input phase.
After the communication is completed, the timestamp related
to the nearest activation time of ΓL is updated, according to
the algorithm explained in chapter 5.2.1. Finally, the task self-
suspend waiting for an external signal upon new registration or
deregistration of tasks to the LET paradigm or the time event
related to the nearest activation time of the LET communication
phase. Note that, since the task can be activated upon signal
related to the registration and deregistration phase, it is possible
that no communication operations must be performed. The
pseudo-code in Algorithm 8 of the LET task is illustrated.

Algorithm 8 LET task body pseudocode

1: function LETTASKBODY(Pi)
2: do
3: MutexLock(mreg);
4: SynchronizeQueue(Fr , Fd, Lri , LΓL

);
5: MutexUnlock(mreg);
6: Q(i,t) = SelectActivatedTasks(LΓL

, t);
7: if Q(i,t) ̸= ∅ then
8: WriteSynchronization(Pi);
9: for each γ ∈ Q(i,t) do

10: OutputOperations(γ);
11: end for
12: ReadSynchronization(Pi);
13: for each γ ∈ Q(i,t) do
14: ReadOperations(γ);
15: end for
16: UpdateQueue(LΓL

);
17: end if
18: t = SelectNewActivationTime(LΓL

);
19: TimedWait(Vcond, t);
20: while 1
21: end function

The task takes as an argument the core number where
it is executed. It is important to remark that it is allowed
only one LET task for each CPU. The function related to the
synchronization phase requires, as parameters, the flags used
to notify new registration or deregistration events, introduced
in chapter 5.1, the set of all registered tasks, and the private
queue of the LET task (line 4). Note that, in the same manner
of Lri , also the set LΓL is private for each LET task. Note that
the lock and unlock operations represent a scheduling point. In
general, the LET task cannot be preempted by any task during
communication operations. However, since the synchronization
phase involves resources shared with other tasks running at
a lower priority, it is reasonable to allow preemption only if
required for tasks to complete the registration phase. Then,
all the aliases of tasks activated at time t are selected for
LET communication operations if any (line 7-17). In particular,
all the activation times of the aliases in the queue Q(i,t) are
updated according to the related period and inserted in the
queue LΓL which will be reordered according to the ascending
activation time policy (line 16). Finally, the new activation time
of the LET task is selected from the first element of the set LΓL ,
and a timed wait operation is performed (line 18, 19). This last
operation is undertaken using a timed condition variable Vcond

and the timestamp of the new activation time. Each time a new
task registers or deregister to the LET paradigm, it sends a no-
tification on Vcond, which will trigger the activation of the LET
task. However, if no registration or deregistration operations
are undertaken, the wait operation will go into a timeout when
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reaching the new instance of the LET communication phase.

6 EXPERIMENTAL EVALUATION
This section describes an experimental evaluation that was car-
ried out to determine the feasibility of the proposed approach
and its impact on timing performance. Both kernel-space and
user-space LET implementations discussed in chapter 5 are
evaluated on an automotive application generated from a
model provided by Bosch for the WATERS 2017 challenge [10],
which is representative of a realistic engine control application.
The evaluation is made running the application on a Xilinx
ZCU102 board equipped with a Zynq Ultrascale+ MPSoC
that provides a quad-core Arm®Cortex®-A53 running at 1.2
GHz, a dual-core Cortex-R5F real-time processor, FPGA pro-
grammable logic and 4 GB of RAM, connected to a Lauterbach
TRACE32®PowerTrace to perform debugging and tracing. The
kernel adopted for the implementations and the evaluations
is a proprietary PSE53 [9] kernel module designed for the
automotive field. Every time it performs a process context
switch, the kernel considered for the evaluation also invalidates
the cache to enhance inter-process isolation.

6.1 Waters Challenge
The WATERS 2017 challenge included a model of an engine
control application made up of 1250 runnables organized into
21 tasks/ISRs that access 10000 labels. Approximately 5000
labels are fixed, whereas the others are actual communication
variables. The model specifies which labels each runnable ac-
cess, the type of access (read or write), and the number of
accesses. It also provides runnable execution times, net of mem-
ory access, and memory contention times. The task periods and
the ISRs’ minimum inter-arrival times are also provided. The
model includes a quad-core platform with statically assigned
tasks. Since the original work was designed for AUTOSAR,
some modifications were necessary to generate the applica-
tion adapted for the PSE53 kernel and the implementations
proposed, and the platform used. Despite the original model
being designed for a quad-core platform, this work is based
on the implementation of the challenge for ERIKA OS [25],
where only three cores are used. Hence, one core and the
corresponding tasks have been discarded. Moreover, all the
ISRs tasks have been treated as periodic tasks using, as periods,
the same parameters proposed in [2]. The tasks execution flow
has been preserved, as all the data dependency between them.
However, all the labels used in a single communication have
been grouped in a single data structure as a unique message
exchanged between tasks. This operation was required to be
compliant with the implementations of LET for both kernel
space and user space. Each task registers itself at the beginning
of its period and deregisters only before its destruction. All
the memory access parameters are maintained according to the
original model.

6.2 Experimental Results
Experiments have been performed to evaluate the performance
and make a comparison between user-space and kernel-space
implementations w.r.t. the overhead introduced by the LET
communication operations. Moreover, further analysis of per-
formance has been conducted in order to evaluate the impact of
the different inter-core synchronization protocols implementa-
tions described in chapter 5.2. All the evaluations are performed
running all the tasks of the application with 2000 iterations,
giving the possibility for all tasks to execute with the same
activation time at least three times.

Figure 10 shows the average overhead introduced for both
user space and kernel space implementations. From an initial
analysis, it is possible to notice that the overhead introduced

L Protocol C# Average Execution Times [µs]
Reg. Writes Dereg. Reads Update

K

SB
1 0.18 2.28 0.25 0.2 0.36
2 0.2 3.18 1.61 0.74 0.44
3 0.2 12.96 3.6 5.6 0.36

RMA
1 0.26 2.44 1.44 0.2 0.51
2 7.12 2.09 1.58 0.62 0.57
3 19.31 12.5 6.92 5.37 0.51

U

SB
1 0.61 2.04 22.2 0.55 0.95
2 0.62 2.9 122.06 0.67 0.75
3 0.7 11.59 82.9 6.54 1.38

RMA
1 0.68 2.19 26.13 0.6 1.13
2 115.59 2.6 16.5 0.7 0.93
3 98.98 11.28 9 6.05 1.53

TABLE 2: Average execution times of the different phases
of LET communication. Legend: L = Level, K = Kernel, U
= User, C# = Core Number, SB = Synchronization Barrier,
RMA = Regulated Memory Access.

in the kernel-space implementation is lower w.r.t. the user-
space, regardless of the inter-core synchronization mechanism
adopted. The overhead increases not only with the number of
tasks executed on each core but also with the amount of data
exchanged. A deeper analysis has been performed to under-
stand where the LET communication functions spent most of
the time in execution.

Table 2 shows the execution times, for each core, of all
phases composing the communication function, from kernel-
space and user-space implementing both synchronization bar-
rier and regulated memory access mechanism related to Figure
10 Configuration 1). For kernel space, the third core experienced
the highest overhead, where the main computation happens
during the write operations. However, using the synchroniza-
tion barrier, the time spent in synchronization is definitely
lower w.r.t. the regulated memory access, which requires some
microseconds to execute. in particular, with the RMA protocol,
the highest execution time is recorded during the deregistration
phase. Hence, it is possible to infer that memory contention,
which is currently using a synchronization barrier, inflates less
on overhead introduced w.r.t. a protocol that avoids memory
interference but imposes an access order. For what concerns the
LET task on user-space implementation, the main computation
time is spent in the inter-core synchronization protocol. Note
that, with both synchronization mechanisms, the major over-
head occurs when waiting for other LET tasks before the read
phase. The reason behind this behavior is due to the process
context switch to the dummy process that happens since there
are no tasks belonging to the WATERS challenge to execute,
which cause also an invalidation of the cache. In general, how-
ever, it is reasonable to infer that the user-space implementation
suffers from higher overhead due to longer execution time
when acquiring spinlocks w.r.t. the kernel-space and for delays
that occur when the cache is invalidated. To analyze better the
behavior of the communication phase, three more tasks are
added to the application, with the lowest priority possible, that
work as idle tasks in order to avoid any invalidation of the
cache due to context switch between processes.

As it is possible to see from Figure 10 Configuration 2),
the overhead of the LET communication phase for both kernel-
space and user-space is lower w.r.t. The analysis shown in
Figure 10 Configuration 1), due to the absence of the delay
introduced with the invalidation of the cache, results also in a
lower time spent in write and read operations.

Since the overhead introduced by the LET communication
phase directly impacts all the tasks executing on the systems,
an analysis of the response time of eleven representative tasks
of the challenge model is carried out in Figure 11.

The analysis is performed by taking the normalized re-
sponse time of the tasks w.r.t. their periods and comparing the
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Fig. 10: Comparison of LET communication function between kernel-space and user-space, considering the inter-core
synchronization protocol with both implementations based on synchronization barrier (SB) and regulated memory access
(RMA). In Configuration 1) the analysis with the system incurring in process context switches, and in Configuration 2) the
analysis with the system avoiding any process context switches.
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Fig. 11: Longest observed normalized response time under
vanilla communication compared with both user-space and
kernel-space LET-RMA.

execution with and without LET communication operations,
running the application in the worst scenario where the cache
is invalidated every time there is a process context switch. The
response time of all tasks running under the LET paradigm
considering both kernel-space implementation and user-space
implementation is slightly higher. In particular, user space
implementation suffers from a task’s context switch every time
the LET task is woken up and a delay introduced when the
cache is invalidated, which increases the overhead introduced.
Hence, as a conclusion, it is reasonable to infer that kernel-
space implementations do not degrade the performance of
the application, giving however the benefit of a deterministic
execution, while user-space implementation can seriously put
in danger the correct execution of the application.

Finally, one last analysis has been performed to analyze
the behavior and the performance obtained by exploiting the
intra-core communication mechanism. Hence, tasks have been
remapped to cores according to a data-driven policy, executing
tasks with the highest communication load in the same core. In
particular, the Task10ms is moved from the third core to the
second core. As in the previous case, the application is executed
in the worst scenario where the cache is invalidated, to high-

Level Protocol Core # Average Execution Times [µs]
Writes Reads

Kernel

SB
1 2.28 0.2
2 3.18 0.74
3 12.96 5.6

SB OPT
1 2.33 0.2
2 3.68 0.27
3 5.1 0.26

User

SB
1 2.04 0.95
2 2.9 0.67
3 11.59 6.54

SB OPT
1 2.07 0.58
2 2.68 0.6
3 4.78 0.62

TABLE 3: Average execution times of read and write opera-
tions under synchronization barrier protocol with and with-
out mapping optimization. Legend: SB = Synchronization
Barrier.

light the benefit of the intra-core communication mechanism.
Table 3 shows the performance, in terms of average overhead
introduced, with the remap of the tasks for both kernel-space
and user-space implementations.

It is possible to notice that exploiting the intra-core mecha-
nism allows, for both kernel-space and user-space implementa-
tions, to reduce the computational load of the communication
phase on the third core, obtaining an improvement of about
60% for the write operations and 94% for the reads operations
w.r.t. the default mapping configuration, maintaining the com-
putational load on the second core more or less unchanged.
This result shows that the implementations described in this
work are strongly dependent on the mapping of the tasks to
the cores, giving new parameters of optimization for increased
performance of the system.

7 RELATED WORK
Menard et al. [26] analyzed the issue of the non-determinism
problem in AP. In particular, they took as an example the
emergency brake assistant available in the AUTOSAR Adaptive
Demonstrator and showed how the Reactors model can be
effectively used to enforce determinism. The semantics of the
Reactors model (forming also the basis of the Lingua Franca
framework [27]) is indeed well-defined and very powerful.
However, this novel programming model could meet the reluc-
tance of the automotive industry which is quite conservative
and already familiar with the LET model.
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An implementation of the LET paradigm for predictable
execution of AUTOSAR applications is developed in [2] where
the authors highlight different LET semantics and how they
affect the performance achieved and propose an implemen-
tation that allows scheduling memory access to avoid mem-
ory contention. Even if this approach has been developed
for Classic AUTOSAR applications, it contains key concepts
useful for the implementation of the LET paradigm for dynamic
POSIX-compliant systems. In particular, it has been taken into
consideration for the development of the Regulated Memory
Access protocol explained in section 5.2.2.

Several efforts have been spent by Kai-Björn Gemlau et
al. [3] for the development of the LET paradigm for distributed-
systems architecture in the automotive field. In this work, the
LET paradigm has been generalized to extend it to a distributed
system and implemented at the system level, preserving the
determinism and the causality during the execution of AU-
TOSAR applications with data dependencies and running on
different ECUs. Also, in this case, the solution proposed targets
the AUTOSAR Classic platform and hence it is not suitable for
dynamic systems.

Yano et al. [28] presented a paper that explains a new
theoretical algorithm for the parallel and distributed execution
of real-time tasks using multi-/many-core platforms under the
LET paradigm while avoiding memory contention, which is
then implemented in the later work of the same author [29].
One of the problems addressed is the overhead introduced by
the LET communication operations which are assumed to be
undertaken on a dedicated core and can cause deadline-miss. In
our work, we mitigate the problem of overhead by splitting the
LET communication workload on all the cores. In this way, the
LET operations are undertaken only in these cores that require
communication, avoiding unnecessary waiting time on cores
that do not.

Another relevant work is the one made by Kluge et al. [30]
which aims to implement the LET model on a time-predictable
platform. The authors used MOSSCA [31], which is a fac-
tored operating system [32], with the assumption that each
core has its local memory where the operating system and
application code and data can be stored. Moreover, since all
communication is based on explicit messages, a NoC is required
with the assumption to provide hard real-time guarantees. The
authors made also an evaluation of the overhead introduced
by all the relevant code that takes charge to perform LET
communications, making a comparison between execution with
global memory and local scratchpad memory. A comparison
with the evaluations performed with our work, however, is not
possible due to the different assumptions and design of the
implementations proposed, which fit the real-time operating
system used.

Finally, the work done by Henzinger et al. [14] related to the
GIOTTO framework has been taken into account to understand
better the semantics adopted for the LET paradigm.

8 CONCLUSION AND FUTURE WORK

In this work, we presented a design for a practical implemen-
tation of the LET paradigm on POSIX-compliant systems for
multi-core platforms. We analyzed the behavior of the system
considering the additional computational load introduced by
LET communication. The kernel space implementation always
performs better w.r.t. the user space implementation, introduc-
ing an overhead that does not harm the correct execution of the
system. On the other hand, the user-space implementation can
achieve results similar, but slightly worse, to the kernel space
only when no process context switch is present. Otherwise, the
system’s temporal constraints can be broken due to significant
delays introduced. Despite our kernel-space implementation
being strictly dependent on a proprietary real-time operating

system, the approaches presented in the paper and, in particu-
lar, the findings related to the user-space implementations can
be generalized to every Posix-like operating system supporting
real-time schedulers.

Possible future work can involve a system-level LET for a
distributed system with an AUTOSAR Adaptive system as a
target for a possible deployment.
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[17] M. Beckert, M. Möstl, and R. Ernst, “Zero-time communication
for automotive multi-core systems under spp scheduling,” in
2016 IEEE 21st International Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE, 2016, pp. 1–9.

[18] S. Resmerita, A. Naderlinger, M. Huber, K. Butts, and W. Pree,
“Applying real-time programming to legacy embedded control
software,” in 2015 IEEE 18th International Symposium on Real-Time
Distributed Computing. IEEE, 2015, pp. 1–8.

[19] J. Hennig, H. von Hasseln, H. Mohammad, S. Resmerita,
S. Lukesch, and A. Naderlinger, “Towards parallelizing legacy
embedded control software using the let programming paradigm,
in 2016 ieee real-time and embedded technology and applications
symposium (rtas),” IEEE Computer Soc, pp. 1–1, 2016.

[20] D. Zmaranda, G. Gabor, and A. Nicula, “Producer-consumer
paradigm in real-time applications,” Journal of Computer Science
and Control Systems, no. 1, p. 83, 2009.

http://www.autosar.org
https://www.autosar.org/standards/classic-platform
https://www.autosar.org/standards/classic-platform
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/standards/adaptive-platform
https://www.autosar.org/standards/adaptive-platform
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1342418
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1342418
https://waters2017.inria.fr/challenge/#Challenge17


13

[21] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM computing surveys
(CSUR), vol. 35, no. 2, pp. 114–131, 2003.

[22] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Mar-
wedel, “Scratchpad memory: design alternative for cache on-
chip memory in embedded systems,” in Proceedings of the tenth
international symposium on Hardware/software codesign, 2002, pp. 73–
78.

[23] M. Beckert and R. Ernst, “The IDA LET machine—an efficient and
streamlined open source implementation of the logical execution
time paradigm,” in International Workshop on New Platforms for
Future Cars (NPCar at DATE 2018), 2018.

[24] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multi-
frame tasks,” Real-Time Systems, vol. 17, pp. 5–22, 1999.

[25] [Online]. Available: https://retis.santannapisa.it/∼a.biondi/
LET/

[26] C. Menard, A. Goens, M. Lohstroh, and J. Castrillon, “Achieving
determinism in adaptive autosar,” in 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2020, pp.
822–827.

[27] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a lingua
franca for deterministic concurrent systems,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.

[28] A. Yano, S. Igarashi, and T. Azumi, “Contention-free scheduling
algorithm using let paradigm for clustered many-core processor,”
in 2021 IEEE/ACM 25th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT). IEEE, 2021, pp.
1–4.

[29] ——, “Let paradigm scheduling algorithm considering parallel
processing on clustered many-core processor,” Journal of Informa-
tion Processing, vol. 30, pp. 646–658, 2022.

[30] F. Kluge, M. Schoeberl, and T. Ungerer, “Support for the logical
execution time model on a time-predictable multicore processor,”
ACM SIGBED Review, vol. 13, no. 4, pp. 61–66, 2016.

[31] F. Kluge, M. Gerdes, and T. Ungerer, “An operating system for
safety-critical applications on manycore processors,” in 2014 IEEE
17th International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing. IEEE, 2014, pp. 238–245.

[32] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos)
the case for a scalable operating system for multicores,” ACM
SIGOPS Operating Systems Review, vol. 43, no. 2, pp. 76–85, 2009.

https://retis.santannapisa.it/~a.biondi/LET/
https://retis.santannapisa.it/~a.biondi/LET/

	Introduction
	Background and Problem Definition
	Logical Execution Time
	LET on POSIX Systems

	System model
	System Design
	Communication Mechanism
	Metadata Section
	Buffer Section

	Intra-core communication
	Pointer-swap protocol

	Dynamic Membership Protocol
	Inter-Core Synchronization Protocol

	Implementation
	Dynamic Membership Protocol
	Race conditions analysis

	Inter-core Synchronization Protocol
	Temporal Drift Problem
	ICSP with Regulated Memory Access
	ICSP with Synchronization Barrier

	LET communication kernel routine
	Design of LET task

	Experimental Evaluation
	Waters Challenge
	Experimental Results

	Related Work
	Conclusion and Future Work
	References

