
Achieving Predictable Multicore Execution of
Automotive Applications Using the LET Paradigm

Alessandro Biondi and Marco Di Natale
Scuola Superiore Sant’Anna, Pisa, Italy

E-mail: {alessandro.biondi, marco.dinatale}@sssup.it

Abstract—Next generation automotive applications require sup-
port for safe, predictable, and deterministic execution. The Logical
Execution Time (LET) model has been introduced to improve
the predictability and correctness of time-critical applications.
The advent of multicore architectures, together with the need to
ensure time predictability despite the complex memory hierarchy
and the hardware resources shared by the cores, is an additional
motivation for the use of the LET paradigm in conjunction with
a suitable scheduling and memory access model. In this paper,
we show how an implementation of the LET model on actual
multicore platforms for automotive systems brings the potential
to improve time determinism at the price of a modicum run-time
overhead. Multiple implementation options are discussed using
the automotive AUTOSAR model and operating system standard,
and a realistic application defined by Bosch for the 2017 WATERS
challenge. Experimental data of executions on the Infineon Aurix
platform show the feasibility of the proposed approach. The paper
also provides a discussion on further implementation optimizations
and other issues related to the general problem of memory-aware
analysis of automotive applications on multicores.

I. INTRODUCTION

The introduction of safety-critical functions in automotive
systems, together with the advent of multicore platforms, brings
the need to rethink the development and execution paradigms
for embedded functionality. Developers need high levels of
predictability, testability, and ultimately determinism in the
execution of their code. The LET model was introduced as
part of the GIOTTO framework [1] to eliminate output jitter
and provide time determinism in the code implementation of
controls. Recently, there has been a renewed interest in the
LET execution paradigm by automotive electronics vendors, as
witnessed by the recent WATERS challenges [2].

In essence, the LET delays the program output of a task
(or any function executed inside the task) at the end of the
task period, trading delay for output jitter. The LET model is
also characterized by an execution model of functional units
with execution order (causality) constraints. The adoption of
this model brings to the foreground not only the concept of
timeliness, but also of causality, which is typical of synchronous
languages and their implementations.

A key observation is that the LET execution model not only
avoids output jitter but has the additional benefit of scheduling
precisely in time the accesses to the communications variables.
This can be extremely valuable in the multicore execution of
tasks communicating remotely. Several techniques have been
proposed to analyze the time performance of real-time tasks
on multicores in the face of the sharing of memory and
other hardware resources, including interconnects, arbiters and
I/O devices. Unfortunately, COTS multicore platforms are not
designed with the aim of providing predictability, with the
consequence that conventional analysis techniques can be at
best pessimistic. The LET execution model can improve and

restore predictability by controlling the time when memory
resources are accessed.

For modern automotive systems, the AUTOSAR standard [3]
provides a reference model for the development of applications,
including a model of the functions and the tasks, a standard
API for communication and execution, and a standard platform
architecture. In AUTOSAR, the application consists of a set
of communicating runnables grouped into tasks and statically
allocated and scheduled on the system cores. The AUTOSAR
model is based on the concept that the task model and the
communication implementation are automatically generated by
dedicated tools based on configuration information, the model
of the application, and platform constraints. Such aspects are of
paramount importance when designing a LET implementation
for automotive applications.
This paper. In this paper, we draw analogies from all these
concepts and propose an integrated approach to face the prob-
lem of implementing and scheduling task communications in
multicores. We first provide a characterization of possible vari-
ants of the LET paradigm. Next, we discuss the implementation
of the LET paradigm in agreement with the AUTOSAR model
and API on a multicore platform that is very common in the
automotive domain and representative of typical HW configu-
rations: the Infineon Aurix microcontroller. Then, we provide
an analysis of possible actual implementation options based
on the ERIKA RTOS (compliant with the OSEK automotive
standard and a de-facto representative of the typical behavior of
AUTOSAR OS kernels). Finally, we provide our results on the
evaluation of a code implementation of the application proposed
by Bosch in the context of the WATERS 2017 challenge [2],
executed with our LET implementation on the Aurix. Other
related issues will be shortly discussed but are not the main
concern of this work, including the schedulability analysis with
explicit consideration of memory contention.

II. MODELING AND BACKGROUND

This paper considers applications composed of a set of n
periodic tasks Γ = {τ1, . . . , τn}, each characterized by a
worst-case execution time (WCET) Ci, a period Ti, and a
relative deadline Di ≤ Ti. A bound on the response time
of τi is denoted by Ri. The tasks execute upon a platform
that comprises m processors P1, . . . , Pm, with local memories
M1, . . . ,Mm (one for each core), and a global memory Mm+1.
The platform disposes of a crossbar switch that enables point-
to-point communication between each core and each memory.
Concurrent accesses to memories are arbitrated with a FIFO
policy. Blocking memory access is assumed, i.e., no write or
read buffers. Tasks are scheduled according to partitioned fixed-
priority scheduling, and hp(i) denotes the set of tasks with
higher priority than τi. Each task is statically allocated to a

given processor P (τi). The symbol Γx denotes the set of tasks
allocated to the processor Px, while Γ(τi) denotes the set of
tasks allocated to the same processor to which τi is allocated.

As a representative model for automotive AUTOSAR appli-
cations, each task τi is composed of an ordered sequence of
ni runnables ρi,1, . . . , ρi,ni , each of which has WCET Ci,j .
The WCET of a task τi is simply computed (as a first-order
approximation) as the sum of the WCETs of its runnables.

Runnables communicate by means of labels: variables that
can be read and written in an atomic manner. Each runnable ρi,j
may read or write labels from a set L = {`1, `2, . . . , `q, . . .}.
Each label `q is characterized by a size (an integer number of
bytes no larger than the processor word) and an access cost
λq . Li denotes the set of labels accessed by task τi, which
can be constructed by looking at all the labels accessed by
the runnables in τi. Each label is written by at most one task,
while it can be read by multiple tasks. Labels that are written
and read by tasks on different cores are mapped to the global
memory, while all the other labels (including constant data) are
mapped to the local memories (including their duplicates). The
set of labels mapped in global memory and accessed by τi is
denoted by LGi ⊆ Li. Task τi accesses label `v at most Ni,v
times. For a given pair of communicating tasks, a producer τP
and a consumer τC , LW (τP , τC) denotes the set of labels that
are written by τP and read by τC . LR(τC , τP) denotes the set
of labels that are read by τC and written by τP . In order to
compare the effects of different memory access policies, the
WCETs do not include the execution cost to read and write the
memory labels.

A. Logical Execution Time
The LET model we assume is inspired by the original

proposal in [1]. However, in Section III we discuss other
semantics and implementation options that are still inspired
by the need for predictable and deterministic execution. In
addition, we include a model for the implementation of the LET
execution paradigm in the context of the AUTOSAR standard.
For this option, we adopt from AUTOSAR definitions and
most of the semantics for the activation and communication
of functions (runnables in AUTOSAR).
Functional and runnable model. In the original LET proposal,
the execution of functions is characterized by a predictable and
deterministic execution that preserves the order of execution of
the functions and provides for deterministic communication and
actuation times. In the LET model, the system is a network of
functional blocks B = {b1, b2, . . . , bn}. Communicating blocks
may be related by execution order constraints (expression of
causality). Each block is characterized by a periodic activation
and execution. Each block can perform multiple reads and
multiple writes. Communication may occur between blocks
with different periods, and each writer can have multiple readers
for the same piece of information. In the LET execution model,
blocks are executed by tasks (or threads) and their input and
output operations are grouped together at the task level.

The LET execution model can be summarized as depicted
in Figure 1. In the figure, the output of task τ2 (denoted
by the upward arrow at the end of the box representing the
task execution) has a significant jitter. Because of variable
interference from τ1, it occurs late in the first task instance
and much earlier in the second. The LET solution is shown
in the bottom timeline for task τ3 (taken as an example). The

from program to output variables

τ1

τ2

τ3

τ3

LET input LET output

LET

from input to program variables

Fig. 1. The LET model of execution. The short arrows upon the dots denote
the input/output operations performed by the tasks.

input of the task data is performed at the task activation, and the
output is performed at the end of the task period. All task inputs
are stored in local variables at the task activation. Similarly, all
outputs need to be stored in local variables and are actually
output only by the LET code at the end of the cycle. This
requires to allocate memory for local variables mirroring all
input and output variables.

Several mechanisms can be used to enforce the LET syn-
chronization of input and output operations. In essence, LET
is a sample and hold mechanism with synchronized execution
of the input and output part.

III. LET SEMANTIC OPTIONS

The following sections present and discuss three different
LET semantics characterized by different timing properties and
implementation concerns using a simple running example.
Running example. Consider a producer task τP communicat-
ing with a consumer task τC by means of a shared label `.
Task τP acquires input data from a sensor, then it elaborates
the data producing an update for `. In a dual manner, τC reads
data from `, performs further elaboration on such data, and then
performs a control output operation.

A. The GIOTTO LET semantic
In abstract terms, the LET paradigm assumes that the in-

put/output operations happen in zero time. However, in a real
implementation, the actual input/output operations must be
scheduled for execution. The order with which they are exe-
cuted influences the timing properties of the systems, especially
when flow preservation along communication chains is re-
quired. To ensure time determinism, the GIOTTO programming
paradigm [4] specifies an order of execution for the writes and
reads of blocks communicating using LET to enforce causality
(see GIOTTO micro steps in [4]).

Without delving too much in details, the order of execution
in GIOTTO can be recapped as follows: (i) first, data write and
control output (i.e., actuation) operations are performed, then
(ii) input (i.e., sensing) and data read operations are undertaken.
This order is applied at every periodic instance of the tasks
in the system and considers the input/output operations of all
the tasks in a holistic manner, i.e., if the period instances of
two tasks begin at the same time, then the communication is
collapsed within a pair of phases (i) and (ii), each comprising
the communication operations for both tasks.

Figure 2 illustrates an example schedule of LET communi-
cation with GIOTTO semantic. The communication phases are
scheduled at the beginning of each periodic instance, which
is compatible with the case in which they are performed by

a high-priority task. As shown in the figure (dashed arrow),
write operations have precedence on read operations, and the
third periodic instance of τC reads the data written by the first
instance of τP .

w

A

S

R

w S

A RA R A R

time
logical end-to-end latency

τP

τC

Fig. 2. Example schedule of LET communication with GIOTTO semantics.
The producer task τP has a period of TP = 4 ms while the consumer task τC
has a period of TC = 2 ms. Legend: W = write, A = actuation, S = sensing, R
= read. The operations that do not contribute to the end-to-end latency indicated
in the figure are colored with light grey.

As long as the tasks complete their execution before the
release of their next instance (i.e., according to the implicit-
deadline model), and ignoring the time needed to perform
the actual input/output operations, the end-to-end latency with
which the system reacts to the control input is deterministic,
i.e., it is independent from the tasks’ response times and equal
to TP + TC .

The same semantic can be realized by scheduling the in-
put/output operations at different times than the ones in Fig-
ure 2: implementation issues related to the scheduling of LET
communication are addressed in Section V.

B. Interleaved LET communications
By altering the order with which the input/output operations

are performed, it is possible to obtain different end-to-end
latencies. For instance, consider the case where the LET
communication phases are grouped by tasks, i.e., input and
output operations are interleaved. This case is compatible with
a LET implementation where each task delegates the LET
communication for its input/output operations to a dedicated
high-priority task.

Figure 3 illustrates an example schedule of LET commu-
nication where the input/output operations of task τC have
precedence on those of τP , i.e., they follow the rate-monotonic
order (note the periods of the tasks in the figure caption). As
it can be observed from the figure, differently from the case
discussed in the previous section, the third periodic instance of
τC is not able to read the data produced by the first instance
of τP . This happens because the read operations of τC are
scheduled before the write operations of τP . As a consequence,
the data produced by the first instance of τP are only available
to the fourth instance of τC , which determines an increase of the
end-to-end latency with which the system reacts to the control
input. Specifically, the latter becomes TP + 2TC .

C. LET for task chains
In the particular case in which a producer task τP only

communicates with a consumer task τC , the LET model can
be dropped for the internal communication of the chain and
restored only at its boundaries, by enforcing an order of
execution with an explicit activation signal. Under this scenario,
the tasks have the same period TP = TC = T , but the consumer
task τC incurs in release jitter, which depends on the response
time of τP .

w

A

S

R

w S

A RA R A R

time
logical end-to-end latency

A R

τP

τC

Fig. 3. Example schedule of LET communication with interleaved communi-
cation phases. The producer task τP has a period of TP = 4 ms while the
consumer task τC has a period of TC = 2 ms. The same legend of Figure 2
applies.

w

A

S

R

w S

A R

time
logical end-to-end latency

A

w

A

S w S

AR

time
logical end-to-end latency

(a)

(b)

τP

τC

τP

τC

Fig. 4. Two examples of LET communication for a task chain. When it
completes its execution, the producer task τP activates the consumer task
τC (dotted arrow). Both the tasks have the same period, but τC incurs in
release jitter. The same legend of Figure 2 applies. The marker with a large
dot indicates the completion of a job of τP . Inset (a) depicts the case where
the GIOTTO semantic is applied, while inset (b) depicts an alternative case
where data write and read operations are scheduled when τC is activated.

Figure 4(a) illustrates an example schedule for the considered
task chain where LET communication follows the GIOTTO
semantic introduced in Section III-A. Since the communication
phases are performed at the beginning of the periodic instances,
the data produced by the first instance of τP is available to
the second instance of τC . As a result, the (logical) end-to-end
latency is equal to TP+TC = 2T . However, this latency may be
reduced while still preserving the flows of data values between
two consecutive instances of such tasks, i.e., the data produced
by a job of task τP must be available to the successor job of
τC explicitly activated at the completion of τP . As illustrated
in Figure 4(b), data writes and reads are performed at a time
instant (e.g., at the response time of τP as in the figure) within
the period of the tasks. Nevertheless, the LET paradigm can
be retained for external inputs and outputs, thus maintaining
predictability for the control timing. In other words, this scheme
can be seen as a LET paradigm applied in a holistic manner to
the task chain, rather than to each individual task. As depicted
in Figure 4(b), the resulting end-to-end latency with which the
system reacts to the control input is equal to T .

IV. REALIZING LET WITH GIOTTO SEMANTICS ON
MULTICORES

This section presents a method for realizing the LET commu-
nication with GIOTTO semantics on a multicore platform. To
generalize the proposed method, the following sections consider

the abstract platform model in Section II. The method is later
instantiated for a real platform in Section V. The local copies of
the labels required by the LET are allocated to local memories,
i.e., a task τi running upon processor Pk and accessing a
label `q disposes of a local copy for `q , named `i,q , allocated
to Mk. Since application tasks work only on local copies,
their execution is not affected by memory contention. The
global communication labels are allocated to the global memory
Mm+1. Contention in the access to such labels is avoided by the
LET communication mechanism at the price of a (predictable)
synchronization delay. For the sake of simplicity, only data read
and write operations are considered: possible improvements and
optimizations are discussed at the end of this section.

A. LET as an opportunity to avoid memory contention
A major issue in executing real-time applications upon

multicore platforms is the contention of architectural shared
resources in the memory hierarchy (e.g., levels of caches and
global memories). Works in the literature [5], [6] addressed
such a problem by proposing clever solutions to improve the
predictability of memory traffic.

As discussed in Section III-A, LET communication can be
realized by scheduling data write and read operations at various
time instants provided that the order of their execution preserves
the specified causality. However, scheduling the communication
phases at the beginning of the periodic instances of tasks,
as illustrated in Figure 2, carries considerable benefits in
controlling the memory traffic. In fact, this approach allows
localizing the memory accesses within precise time windows
that are determined by the task periods, and allows to arbitrate
the access to the global memory Mm+1.

Consider a label ` that is read by two tasks executing upon
two different cores. The tasks dispose of local copies that
must be updated by the LET communication mechanism by
reading the global copy of `, which is mapped to the global
memory Mm+1. Although the read operations can be performed
in parallel on the two cores, each benefiting of a low latency
in accessing the corresponding local memory where the private
copies of ` are allocated, their timing is mutually coupled due
to the potential contention in accessing the global memory.
Without a proper synchronization mechanism, in the worst-case
the memory accesses issued by one core can interfere with the
other, and viceversa, leaving room for pathological scenarios
that inevitably affect the tasks’ response times. Conversely, by
localizing the accesses to the global memory in precise time
windows, the interference generated by memory contention can
be avoided by design.

As a drawback, the execution of the communication phases
at the release of periodic task instances requires specific jobs
with priority higher than all the tasks. This determines a
priority inversion, as the LET communication for a low priority
task delays the execution of a high priority task. The impact
of this drawback is discussed in the experimental results in
Section VIII.

B. Timing of LET communications
First, it is necessary to identify the subset of memory

accesses that are required to safely realize the LET paradigm.
Depending on the task periods, a producer does not need

to always update the shared copies of the accessed labels at
every periodic instance. For example, consider a producer task

τP executed with a rate of TP = 2 ms that is communicating
with a consumer task τC running with a rate of TC = 10 ms.
Suppose also that both the tasks are synchronously released at
the system startup. As a function of the ratio of their periods,
for each job of τC there are TP /TC = 5 jobs of τP that overlap
over time. For a given job JC of τC , the data produced by the
first four overlapping jobs of τP are never used by JC , as they
are overwritten by the data write operations performed by the
last overlapping job, i.e., the last job of τC that completes no
later than the release of the next job of τC (following JC).

In a dual manner, a consumer does not always need to read
the shared copies of the labels. By leveraging these observa-
tions, it is possible to derive an analytical characterization of
the timing of LET communications.

time
(a)

0

time
(b)

0

τC

τP

⌊kTC/TP ⌋ jobs

τP

τC

⌈kTP /TC⌉ jobs

kTC

kTP

Fig. 5. Illustration of the timing of LET communications. Inset (a) depicts the
case of write operations, while inset (b) depicts the case of read operations.
To preserve the LET semantic, it is sufficient that only the jobs in red perform
the update of (resp., the read from) global copies. Dashed arrows indicate the
communications that involve the kth job of the consumer task (inset (a)) and
the producer task (inset (b)).

Timing of write operations. Consider a producer task τP
communicating with a consumer task τC , both synchronously
released at time t = 0. If the period of τP is larger than (or
equal to) the period of τC , i.e., TP ≥ TC , then a job of τC will
always be released between two jobs of τP . As a consequence,
the producer task must update the global copies of each label
` ∈ LW (τP , τP) at every periodic instance. Otherwise, if
TP < TC , then multiple jobs of τP can overlap with one job
of τC . It is then sufficient that the global copies are updated by
the last overlapping job that completes before the release of a
job of τC . For the generic kth job of τC , which is released at
time kTC , there are bkTC/TP c periodic instances of τP that
are fully contained within the time window [0, kTC]. Hence, the
job of interest is the one that completes at time bkTC/TP cTP .
This scenario is illustrated in Figure 5(a).

Generalizing such results, the jobs of τP that must update
the global copies are those whose periodic instances complete
at times ηWC,P (k) · TP , for k ∈ N≥0, where

ηWC,P (k) =

{⌊
kTC

TP

⌋
if TP < TC ,

k otherwise.
(1)

Timing of read operations. Consider the same two tasks τP
and τC . If the period of the consumer task is larger than

(or equal to) the one of the producer task, i.e., TC ≥ TP ,
then a job of τP will surely be released between two jobs
of τC . Consequently, the consumer task must read the global
copies of each label ` ∈ LR(τC , τP) at every periodic instance.
Otherwise, if TC < TP , it is sufficient that the global copies
are read by the first job of τC that is released after (or at) the
release of a job of τP . Considering the generic kth job of τP ,
released at time kTP , there are dkTP /TCe periodic instances of
τC that overlap with the time window [0, kTP]. Hence, the first
job of τC released after (or at) time kTP is the one released at
time dkTP /TCeTC , as shown in Figure 5(b).

Generalizing such results, the jobs of τC that must actually
read the global copies are those activated at times ηRC,P (k) ·TC ,
for k ∈ N≥0, where

ηRC,P (k) =

{⌈
kTP

TC

⌉
if TP > TC ,

k otherwise.
(2)

When applying the properties identified above to every pair
of communicating tasks in the systems, it is clear that LET
communication requires a workload with multiple periodic
patterns (i.e., one for each pair of communicating tasks), which
can be realized with a multiframe task.

C. Deriving a multiframe task with inter-core synchronization

The generalized multiframe (GMF) task model [7] has been
proposed to cope with computational activities that exhibit a
variable behavior across multiple instances. Specifically, a GMF
task is characterized by an ordered sequence of frames each
defined by a WCET, an inter-arrival time to the next job, and
a relative deadline. A GMF task releases jobs by following the
cyclically repeating order of the frames.

The proposed approach to realize LET communication is
based on the following design principles:

(i) Synchronous activation of all the tasks in the system (i.e.,
all the tasks on all the cores are synchronously released
at startup time t = 0).

(ii) Definition of a GMF task τLET
x for each processor Px

that performs the copies of labels from the corresponding
local memory to the global memory (write operations),
and viceversa (read operations). Such tasks run at the
highest priority.

(iii) Adoption of an inter-core synchronization protocol to
arbitrate the accesses to the global memory performed
by each frame of the GMF tasks.

The results derived in the previous section can be leveraged
to match principle (ii); that is, as a function of the timing of
LET communications, it is possible to identify the time instants
at which data write and read operations must be performed.
Then, the operations that must be scheduled at the same time
instant are merged into a frame of a GMF task. This strategy
is summarized in the algorithm in Figure 6.

Given a processor Px, the algorithm identifies all the time
instants in which a producer task τP ∈ Γx must update the
global copies of the accessed labels, hence writing in the global
memory (lines 2-8). In a dual manner, the algorithm proceeds
by identifying all the time instants in which a consumer task
τC ∈ Γx must update its local copies of the accessed labels
by reading from the global memory (lines 10-16). Finally, by
means of the function called at line 17, the algorithm constructs

1: procedure GENERATEGMFBEHAVIOR(Px)
2: for each (τC , τP) ∈ Γ× Γx do
3: for each tk = ηWC,P (k) · TP , k ∈ N≥0 do
4: for each `q ∈ LW (τP , τC) do
5: schedule write(tk, `q = `P,q)
6: end for
7: end for
8: end for
9:

10: for each (τC , τP) ∈ Γx × Γ do
11: for each tk = ηRC,P (k) · TC , k ∈ N≥0 do
12: for each `q ∈ LR(τC , τP) do
13: schedule read(tk, `C,q = `q)
14: end for
15: end for
16: end for
17: build frames()
18: end procedure

Fig. 6. Algorithm to generate the behavior of a GMF task that implements
LET communications on processor Px.

the frames of the GMF task by (i) looking at all times instants
tk for which there is at least one operation scheduled, and
(ii) for each of such time instants, defining a frame that has
as workload all the corresponding write operations followed
by the read operations. The times tk to be considered in the
algorithm can be limited to the hyperperiod of all the tasks in
the system. A practical implementation of the GMF tasks will
be discussed in Section V.

To avoid contention in global memory, the execution of
the GMF communication tasks on each core are strictly syn-
crhonized. Flow preservation requires that all tasks complete
before the end of their period and that all writes are performed
before the corresponding reads. To ensure that writes are
performed before reads, the GMF communication tasks execute
all their writes in a strict order (following principle (iii)). When
all writes are completed, the GMF tasks execute the read
operations in order. The order of execution may be different
for each GFM execution instance, given that some GMF from
some core may not need to read or write for a given periodic
instance. The resulting protocol to regulate the access to global
memory complies with the following rules:
R1 For each execution instance of a GMF task τLET

x released
at time tk, two sets of processors are defined: Wx(tk) and
Rx(tk).

R2 Before performing the write operations scheduled in a
frame, τLET

x must wait until all the write operations sched-
uled at time tk for the GMF tasks of the processors in
Wx(tk) are completed.

R3 Before performing the read operations scheduled in a
frame, τLET

x must wait (i) that all the write operations
scheduled at time tk are completed, and (ii) that the read
operations scheduled at time tk in the GMF tasks of the
processors in Rx(tk) are completed.

R4 The GMF tasks busy-wait to guarantee rules R2 and R3.
The corresponding pseudocode for the frames (instances) of

the GMF tasks is illustrated in Figure 7.
The sets Wx(tk) and Rx(tk) determine the order with

which the communication operations are performed. A simple
definition for such sets can be devised by enforcing a fixed
global order of processors, where some processors can be
skipped when their corresponding GMF task does not have

1: procedure FRAME(Px, tk)
2: wait(Wx(tk))
3: do write operations(tk)
4: wait all writes()
5: wait(Rx(tk))
6: do read operations(tk)
7: end procedure

Fig. 7. Pseudocode for the frame released at time tk of the GMF task running
on processor Px.

W

time

W

W

W W W RRRR

WR R

R

0 2 4

W R

W R

6 8

τ
1

LET

τ
2

LET

τ
3

LET

Fig. 8. Example schedule of three GMF tasks with inter-core synchronization.
The GMF task on processor P1 is fully periodic. The GMF task on processor
P1 has three frames released at times 0, 4, and 6, while the GMF task on
processor P2 has two frames released at times 0 and 2. For simplicity, the
hyperperiod is 8 and all the frames execute just one write and one read
operation.

to perform communication. The resulting scheme is a token
passing with busy-waiting. A practical implementation of the
proposed protocol is presented in Section V. An example sched-
ule of the GMF tasks is illustrated in Figure 8, where the sets
referred in rules R2 and R3 for the frames at time 0 are defined
as follows: W1(0) = R1(0) = ∅, W2(0) = R2(0) = {P1}, and
W3(0) = R3(0) = {P1, P2}.

The proposed approach requires that the frames of the GMF
tasks are sufficiently spaced, i.e., the minimum inter-arrival time
between two frames released on any processor is significantly
larger than the longest time a frame takes to complete all the
communication operations.

D. Improvements and Optimizations
The proposed approach can be improved and optimized in

several directions. First, it is possible to schedule tasks not
affected by global reads and writes during the busy-waiting,
hence improving their response times and the processor uti-
lization. The same can be done to cope with control input
and output operations as long as the adopted I/O devices are
not shared by multiple processors. Second, the algorithm in
Figure 6 can be improved to reduce the number of reads
from global memory, e.g, when the same label is read by
multiple tasks running on the same processor. Third, further
parallelism in performing the copies of the labels can be
achieved by adopting a DMA and a different label allocation.
Lastly, different scheduling schemes can be devised to reduce
the interference introduced by the GMF tasks, e.g., by deferring
some communication operations.

V. IMPLEMENTING LET ON AURIX TRICORE

This section presents an implementation of the approach
proposed in the previous section on the popular Aurix Tricore
platform by Infineon. The implementation has been performed
upon the ERIKA open-source real-time operating system [8],
which is certified OSEK/VDX and implements most of the

AUTOSAR OS requirements. The code is publicly available
on-line [9].

A. The Aurix Tricore platform
The Aurix Tricore is an automotive-grade multicore platform

widely adopted as a main processing unit in several types of
electronic control units (ECUs), such as for engine control.
The Aurix Tricore includes three cores, each associated with a
program memory interface (PMI) and a data memory interface
(DMI) (Figure 9). The DMI includes a scratchpad memory (i.e.,
a local memory under the control of the programmer) and a set-
associative data cache. The PMI includes a program scratchpad
memory and program cache (i.e., to store instructions). The
caches can be disabled. The microcontroller also includes a
local memory unit (LMU) and a program memory unit (PMU).
Despite the name, the LMU is a 32KB memory that is external
to the core subsystems, and can be considered as a global
memory. The PMU includes a 384KB data flash memory, and
two 2MB program flash memories.

In the Aurix platform, the scratchpads are used as the core lo-
cal memories in the abstract model of Section II, and the LMU
is the global memory. Despite their names, the local scratchpads
are accessible from any core. In the Aurix, the memory map of
the microcontroller allows any core to access any of the above-
mentioned memories by means of a cross-bar interconnect. The
memory map is the same for all cores. As an example, Table I
reports an excerpt from the memory map of the Aurix Tricore
TC275 (taken from the corresponding datasheet [10]), which
shows the addresses at which the scratchpads of the CPUs are
accessible from any core.

TABLE I
EXCERPT FROM THE TC275 MEMORY MAP

Address Range Size Description Access Type
Read Write

5000 0000
5001 DFFF 120 KByte CPU2 Data

Scratch-Pad access access

6000 0000
6001 DFFF 120 KByte CPU1 Data

Scratch-Pad access access

7000 0000
7001 BFFF 112 KByte CPU0 Data

Scratch-Pad access access

The access to a scratchpad memory of a remote core
does not involve the global memory. The core subsystems
are asymmetric. One of the three cores has a different CPU
architecture than the others. The cores also differ in the sizes
of the local memories. For instance, the first core has a 112KB
data scratchpad, while the other two cores have a 120KB
data scratchpad. At a high level, the abstract platform model
introduced in Section II matches the architectural characteristics
of the Aurix Tricore.

B. Implementation
The implementation of the approach proposed in Sec-

tion IV-C required facing with three major issues: (i) the syn-
chronization of the task activations, (ii) the efficient realization
of GMF tasks, and (iii) the implementation of the inter-core
synchronization protocol to explicitly regulate the access to the
global memory.
Synchronizing the task activations. The first issue has been
solved by exploiting the remote procedure call (RPC) features
that are available in ERIKA. In accordance to the OSEK/VDX

Fig. 9. Architecture of the Aurix Tricore microcontroller (from infineon.com).

standard, alarms ar provided to periodically activate tasks. In
our implementation, all the alarms are driven by a single OSEK
counter, which is realized with a timer that periodically sends
interrupts to the first core (with a rate of one millisecond).
Using ERIKA RPC features, such alarms can be used to activate
tasks on any processor. Inter-core interrupts are leveraged to
synchronously activate tasks on remote processors. Hence, in
the resulting design, the first core is in charge of activating all
the tasks in the system; synchronization of the tasks’ periods is
ensured because all task activations are generated by the same
time reference, modulo some negligible synchronization delay
introduced by the RPC mechanism.

Realizing GMF tasks. The realization of the GMF tasks
required facing a memory vs. time trade-off. A straightforward
implementation of the method proposed in Section IV-C would
require the definition of a table that stores the set of labels to
be read and written (or a pointer to a function performng the
set of reads and writes) for each frame instance of the core
GMF tasks up to the hyperperiod of all the tasks in the system.
Each frame instance would be characterized by the release time
(or the inter-arrival time to the next frame) and a code section
with all the communication operations to be executed within
the frame. While this choice would have a limited impact in
terms of runtime overhead, it is memory eager for realistic
applications. First, the required table may be very large for
realistic values of the hyperperiod. Second, this method would
require a lot of duplicated code among the code sections of the
frames, i.e., there may be several frames that perform mostly
(if not exactly) the same data write and read operations.

To contain the memory footprint when realizing the GMF
tasks, the solution adopted in our implementation is based on
providing two counters for each pair of communicating tasks:
one for write operations, and one for read operations. Such
counters can be used to identify the time instants in which the
LET communications for a pair of tasks must be performed.
For instance, consider a producer task τP communicating with
a consumer task τC with TP < TC . By following the timing
of LET communications derived in Section IV-B, it is possible
to observe that the number of jobs of τP between each com-

munication phase is known a-priori and given by Equation (1).
Furthermore, note that Equation (1) produces values with a
periodic pattern that is repeated every hyper-period of the two
tasks: therefore, it is sufficient to consider only the values of
ηWC,P (k) up to k = lcm(TP , TC)/TC , where lcm(a, b) denotes
the least common multiple of a and b. Similar observations can
also be made for read operations by considering Equation (2).

The key idea of our proposal is to use the counters to count
the number of jobs that separate the communication phases.
For each processor Px, the corresponding GMF task has been
implemented as a periodic task running with period T LET

x equal
to the MCD of the periods of all the tasks executing upon Px.
Each instance of such a task is in charge of decrementing all the
above-mentioned counters. Each counter is associated with a
code section that implements the corresponding communication
phase. Such code sections are executed when the corresponding
counter reaches zero, where the latter is re-initialized to the next
value. This strategy can be realized with a code generator, as
done for the case-study presented in Section VIII.
Inter-core synchronization. Finally, by exploiting the char-
acteristics of the Aurix Tricore, it is possible to devise a
lightweight implementation of inter-core synchronization. For
each processor Px, two atomic spin variables allocated to the
corresponding local memory Mx are provided: one to wait for
write operations, and another to wait for read operations. Such
variables are initialized to zero. Each frame of a GMF task that
has to wait before executing a communication phase (see the
algorithm in Figure 7) performs the busy-wait by spinning in a
loop executed as long as the spin variable is zero. Leveraging
the feature of the Aurix Tricore that allows a core to write
in the scratchpad of another core, it is possible to notify a
GMF task that is spinning by simply updating one of its spin
variables. Note that such notifications do not involve accesses
to the global memory. Furthermore, the number of notifications
issued in a given time window can be computed off-line as
a function of the configuration of the GMF tasks. Since the
platform includes a write buffer, the DSYNC instruction can be
provided after the write on a remote spin variable to flush the
write buffer, thus enforcing the consistency of the notification.
The GMF tasks perform the busy-waiting by continuously
accessing their corresponding local memory: hence, they do
not generate memory traffic that compromises the arbitration
of the accesses to the global memory. The actual spin variables
to be used, and the GMF tasks to be notified, can change frame
by frame depending on the desired order with which the cores
must access the global memory.

C. Pseudocode of the GMF tasks
Figure 10 reports the pseudocode for GMF task τLET

x running
on processor Px. First, the function do write tick(), decrements
all the counters associated with write operations. Then, the
function invokes the write operations for the counters that
are down to zero (implemented using a bitmask for each
task). Subsequently, the task busy-waits on the spin variable
spin P x write (line 3) until another core signals its comple-
tion, i.e., passing to Px the token to access the global memory.
Once the token has been acquired, depending on the value of the
bitmask of each task running on Px, the set of scheduled write
communications are executed by updating the global copies
of the corresponding labels (line 5). Once the write phase is
completed, another core is notified to proceed with its write

operations (line 6). A similar scheme is provided for read
operations (lines 8-12).

To avoid memory interference due to the implementation of
the multiframe mechanism, the data (i.e., the counters and the
bitmasks) managed by the do write tick() and do read tick()
functions must be allocated to the local memory Mx. Note the
execution of such functions (by all the GMF tasks in system)
is performed in parallel, thus reclaiming part of (or possibly
even all) the time that a task has to busy-wait.

An example of the do write tick() function is reported in
Figure 11, where the counter associated to a pair of commu-
nicating tasks is managed. At line 7, the function modifies the
bitmask of a producer task τ6 to notify that the communication
labels read by a consumer task τ8 must be updated within the
current frame of the GMF task. Such operations will then be
accomplished by the do write() function of Figure 10.

1: procedure LET TASK P X()
2: do write tick()
3: busy wait(spin P x write == 0)
4: spin P x write = 0
5: do write()
6: notify next processor write()
7:
8: do read tick()
9: busy wait(spin P x read == 0)

10: spin P x read = 0
11: do read()
12: notify next processor read()
13: end procedure

Fig. 10. Pseudocode for the GMF task τLET
x running on processor Px.

1: procedure DO WRITE TICK()
2: 〈...〉
3: cnt write T6 T8 = cnt write T6 T8 -1
4: if (cnt write T6 T8 == 0) then
5: k6,8 = (k6,8 + 1) mod kmax

6,8

6: cnt write T6 T8 = jobs T6 T8[k6,8] ·T6/T
LET
1

7: write flags T6 | = TURN ON FLAG T6 T8
8: end if
9: 〈...〉

10: end procedure

Fig. 11. Example of function do write tick() showing the management of the
counter for the pair of tasks τ6 (producer) and τ8 (consumer) with TP < TC .
Variable k6,8 is initialized to zero, jobs T6 T8[k] = ηW6,8(k + 1)− ηW6,8(k),
and kmax

6,8 = lcm(T6, T8)/T8.

VI. WORST-CASE ANALYSES WITH AND WITHOUT LET
This section provides a comparison of possible approaches

for bounding the worst-case cost of memory accesses in mul-
ticore platforms, including the blockings for contention in the
case of any-time (in the context of the task execution) memory
accesses and in the case of our proposed LET implementation.

A. Memory-aware response-time analysis for any-time ac-
cesses

Following standard response-time analysis, under the as-
sumption of constrained deadlines, the worst-case response time
of a task τi is bounded by the least positive fixed-point of the
following recurrent equation:

Ri = Wi +
∑

τj∈hp(τi)
τj∈Γ(τi)

⌈
Ri
Tj

⌉
Wj +MCi(Ri) (3)

where Wi = Ci +
∑
`v∈Li

Ni,v · λv (i.e., the worst-case
execution time of the task plus the cost for accessing the labels)
and MCi(Ri) represents the delay due to memory contention
incurred by τi and all the high-priority tasks, which transitively
affect the response time of the task under analysis.

Memory contention arises when tasks access to communi-
cation labels mapped to the global memory. Since memory
contention is resolved according to the FIFO policy, a safe
bound on the term MCi(Ri) can be obtained by simply
inflating the terms Wi to account for m−1 contentions for each
memory access. However, this approach may lead to excessive
pessimism, thus resulting in very coarse upper-bounds on the
response times. Rather, in this work an inflation-free analysis
strategy [11], [12] is adopted.

An inflation-free analysis explicitly accounts for each mem-
ory access that may originate a contention while task τi (under
analysis) is pending. To this end, a bound is derived for the
maximum number of accesses NRAx(t) to the global memory
issued by tasks executing on remote processors Px 6= P (τi) in
an arbitrary time window of length t, that is

NRAx(t) =
∑
τj∈Γx

∑
`v∈LG

j

⌈
t+Rj
Tj

⌉
Nj,v. (4)

Note that the above equation considers the sum over all the
tasks allocated to Pk as they can produce memory contention
independently of their priority (FIFO arbitration). The term
d(t+Rj)/Tje is a safe bound on the maximum number of
pending jobs of τj ∈ Γx in any time window of length t [11],
[12].

Similarly, a bound is derived for the number of accesses
NLAi(t) to the global memory issued by the local processor
P (τi) in a busy-period of length t where τi is pending, that is

NLAi(t) = Ni,v +
∑

τj∈hp(τi)
τj∈Γ(τi)

∑
`v∈LG

j

⌈
t

Tj

⌉
Nj,v. (5)

Due to the FIFO arbitration and the fact that the memory
accesses are blocking and non-interruptible, it follows that each
memory access issued by a remote processor can delay at most
one access issued by the local processor. Hence, the following
bound for the contention delay holds:

MCi(t) =
∑

Px 6=P (τi)

min {NRAx(t), NLAi(t)} · λR, (6)

where λR is the cost to access a label in global memory.
Equation (6) can be used in Equation (3) to bound the re-

sponse times of the tasks. The term NRAi,x(t) depends on the
response time of the tasks allocated to the remote processors:
this additional recursive dependency can be addressed with
an iterative loop in which Equation (3) is solved for all the
tasks until all the response-time bounds Ri converge. Such an
iterative loop starts with Ri = Ci for all tasks τi.

B. Analyzing the proposed LET implementation
By construction, the proposed approach guarantees that all

the application tasks execute without incurring in memory
contention, as they only access local copies of the labels
(allocated to the local scratchpad memories). However, they
incur in temporal interference caused by the GMF tasks, which

execute at the highest priority. The interference generated by
such tasks can be bounded with established analysis techniques
for GMF tasks or more general task models: please refer
to [13] for a detailed survey. Bounds on the execution times
of the frames can be derived by accounting for the cost of
accessing global and local memories, and the time necessary
to manage the multiframe behavior (mainly related to functions
do write tick() and do read tick()). Note that the time a frame
has to wait before performing the communication actions is
determined by the maximum between (i) the spinning time,
which depends on the communication actions performed in
the other cores, and (ii) the execution times of functions
do write tick() and do read tick().

This approach allows to precisely account for the contention
delay incurred by tasks, resulting in a definitively more pre-
dictable design compared with the case where the application
tasks can access the global memory at any time during their
execution, as coped by the analysis presented in the previous
section. A fine-grained analysis of the GMF tasks is out of the
scope of this paper, and is left as future work.

VII. IMPLEMENTING LET IN AUTOSAR

This section shortly addresses solutions for the implementa-
tion of the LET model in AUTOSAR.

In AUTOSAR, runnables communicate by using an API
offered by an architecture layer called RTE (Run-time environ-
ment). For data-oriented communication, the API offers simple
functions for writing to and reading from data objects. The
API functions can be explicit or implicit. In the explicit model,
the (shared) communication variable is accessed at the time it
is needed (the API function is called) within the execution of
the runnable, as it is illustrated at the top of Figure 12. In the
implicit model, when a read or write operation is invoked by
the runnable in the middle of its execution, the values are read
from and written into local copies of the variables. The actual
code implementing the read from and write into the shared
global variables is automatically generated as part of the RTE
code at the beginning and at the end of the runnable code. The
result of the read operation is sampled at the beginning of the
runnable execution and then stored in a local variable for the
duration of the runnable execution. Similarly, the write value is
locally stored in a variable and then copied by the RTE code in
the actual global variable after the runnable execution (shown
in the middle of Figure 12, the darker rectangles before and
after the runnable execution represent the RTE code).

Fig. 12. Illustration of the implementation of the LET model of execution with
explicit and implicit communication. Down- and up-arrows denote the input
and output operations, respectively.

The simplest way to implement the LET communication
paradigm in an AUTOSAR flow is to modify the RTE gener-
ation process for the implicit communication model. The RTE
generator would add the code performing the global variables
inputs and outpust to the multiframe LET tasks instead of
placing it at the runnable boundaries (bottom of Figure 12).
The RTE generator could generate the LET input and output
tasks together with the other RTE-generated code (according to
the algorithms outlined in this paper).

VIII. EXPERIMENTAL EVALUATION: A CASE-STUDY

This section reports on an experimental evaluation that
has been conducted to assess the feasibility of the proposed
approach and its impact in terms of timing performance. The
LET implementation discussed in Section V has been adopted
for a synthetic application that has been automatically generated
from a model provided by Bosch for the WATERS 2017
challenge [2], which is representative of a realistic engine
control application.

A. The WATERS 2017 challenge model
The WATERS 2017 challenge came with a model of an en-

gine control application consisting of 1250 runnables grouped
into 21 tasks/ISRs that access 10000 labels. About 5000 labels
are constant, while the others are actual communication vari-
ables. The model specifies the labels accessed by each runnable,
the type of access (read or write), and the number of accesses.
Furthermore, it provides the execution times of the runnables
net of memory access and memory contention times. The task
periods and the minimum inter-arrival times of the ISRs are also
provided. The model comprises a quad-core platform, where
tasks are statically allocated.

B. Experimental setup
The tests have been performed on an Infineon TriBoard

v2 equipped with an Aurix TC275 microcontroller running at
200MHz and connected to a Lauterbach PowerTrace to per-
form debugging and tracing. The HIGHTECH Aurix compiler
v4.6.3.1 and the ERIKA real-time operating system v2.7 are
used, with the default compiler configurations provided for
the ERIKA kernel. Data caches have been disabled and the
application code is fetched from the PMU (flash memories).

C. Assumptions and Code generator
Some additional assumptions were necessary to generate

executable code from the WATERS challenge model. First,
while the challenge model is conceived for a quad-core plat-
form, only three cores are available in the Aurix platform.
Consequently, one core and the corresponding tasks have been
discarded. Second, since our proposals focus on fully-periodic
tasks, ISRs have been considered as periodic tasks with rate
obtained by rounding their minimum inter-arrival time to the
closest multiple of one millisecond. Third, since the challenge
model does not specify the memory access patterns (i.e., no
runnable code structure is provided), two strategies have been
tested: (i) uniformly-distributed memory accesses within each
runnable with random order, (ii) grouping of all memory read
operations at the beginning of the runnable, and all write
operations at the end of the runnable. No conditional statements
within the runnable code have been considered (this information
was lacking in the challenge model).

TABLE II
NET EXECUTION TIME (WITHOUT KERNEL OVERHEAD) OF THE FIRST JOB, AND EXECUTION TIMES OF THE FIRST EIGHT JOBS OF THE GMF TASKS.

core net execution time [µs]
1 3.8
2 108.76
3 148.2

core execution times [µs]
1 4.25 1.188 1.438 1.438 1.188 1.938 1.813 1.125
2 136 7.438 7.313 7.313 6.813 8.813 7.688 6.625
3 163.8 57.19 86.13 58.06 85.38 61.12 85.56 56.81

Based on such assumptions, a code generator has been
developed. The generator inputs the XML file that encodes the
system model and generates C code for each runnable where
execution segments are realized with for loops including a nop
operation in the body. Concerning the application, the generator
also generates (i) the definition of all the labels (both the local
and the global copies), (ii) the corresponding accesses within
the runnable code, (iii) the tasks’ code (to call a sequence of
runnables), (iv) the OIL configuration for the operating system,
and (v) the code to setup the OSEK alarms to periodically
activate the tasks.

Furthermore, the generator is in charge of generating the
code of the GMF tasks as discussed in Section V starting
from the information available in the challenge model (i.e.,
communication relationships between tasks and task periods).
The periods of the GMF tasks (implementing the LET commu-
nication) have been configured to the MCD of the periods of the
tasks running in the corresponding processors, which resulted
in T LET

1 = 1 ms, T LET
2 = 1 ms, and T LET

3 = 10 ms. The inter-
core synchronization protocol has been configured with a fixed
order between the cores: first P2, then P3, and lastly P1. A
core is skipped if it does not release a frame, i.e., P1 waits for
P3 only one every 10 jobs (note that the period ratio of the
corresponding GMF tasks is actually 10). This order has been
chosen with the following rationale. As discussed in Section V,
the first core is responsible for activating all the tasks, hence it
is subject to the highest runtime overhead related to the OSEK
alarms. If the first core would be the first one in accessing the
global memory, then it would delay all the GMF tasks in the
other cores by the time it takes to manage the activation of all
the tasks (note that the kernel functionality are executed with
higher priority than the tasks). Letting the first core to be the
last one in accessing the global memory also determines the
benefit that, when managing the task activations, it can reclaim
some of the time it would have to busy-wait.

D. Experimental results

Experiments have been performed to measure the execution
time of the GMF tasks implementing the LET communication.
The results are reported in Table II. The table on the left
reports the net execution times of the first frames without the
kernel overhead. Note that the first frame is analogous to the
one executed at the tasks’ hyperperiod, where all the LET
communications are performed, and is the heaviest in terms of
execution time. Collecting the net execution times for all the
frames was beyond the capability of our tracing hardware due
to the limited trace buffer of the microprocessor. The execution
times, including the kernel overhead, for the first eight frames
are reported in the table on the right. The GMF tasks require a
relatively small processor utilization (the GMF task of the third
core runs at 10 milliseconds). However, as it can be observed
from the measurements, the interference generated by the GMF
may be harmful for latency-sensitive tasks in the second core

TABLE III
APPLICATION FOOTPRINT WITH AND WITHOUT LET (IN BYTES)

text data bss
LET 393064 4904 88328
Explicit 359872 4784 80752

(with the first frame) and in the third core. On the other hand,
it is important to recall that LET communication introduces the
benefit of controlling the accesses to the shared memory

To better evaluate the overall impact on the tasks’ timing
performance, the response times of twelve representative tasks
of the challenge model have been measured. Both the cases
with LET communication and with direct access to the global
memory (AUTOSAR explicit communication) have been tested.
The two memory access patterns discussed in Section VIII-C
have been tested, but no significant difference has been ob-
served. The longest observed response times, normalized to the
corresponding task period, for the case of read-execute-write
patterns are reported in Figure 13. As it can be observed from
the figure, the response times differ by very small amounts.
These results demonstrate that LET communication—with all
the benefits that it brings in terms of predictability of the timing
of control outputs and end-to-end latencies—can be realized
without harming the timing of the application with respect to
the case of direct accesses to the global memory, which by
definition lacks of the benefit provided by LET. We believe
that evident benefits in terms of reduced memory contention
have not been observed because the tested application is not
sufficiently memory-intensive and the limited number of runs
with variable execution times (because of the problems in
tracing the execution and the limited available time) was not
sufficient to explore cases with multiple memory contentions.

The major impact of the realization of LET has been found
in terms of memory footprint, which increased by the 7.5%
(about 40KB) with respect to the case of AUTOSAR explicit
communication. See Table III for the detailed results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ISR9 Task 1s Task
10ms

ISR4 Task
20ms

ISR3 ISR8 Task
100ms

ISR1 ISR7 Task
50ms

Task
5ms

N
o

rm
al

iz
ed

 r
es

p
o

n
se

 t
im

e

LET Explicit

Fig. 13. Longest observed normalized response times under both LET and
AUTOSAR explicit communication.

IX. RELATED WORK

The benefits of the LET paradigm for automotive applica-
tions have been outlined by Hamann et al. [14], together with
an analysis of the end-to-end latencies of communicating tasks
that make use of the LET paradigm. However, the authors
considered a different implementation model with respect to
the one adopted in the present paper, nor they took advantage
of the possibility of explicitly controlling the accesses to global
memory. Rather, they propose communication mechanisms to
guarantee the LET communication flows that are similar to
those proposed to guarantee flow preservation in synchronous
systems [15]–[17].

Several efforts have been spent in developing techniques to
improve the predictability of memory accesses in multicore
platforms, but none of them took into consideration the LET
paradigm nor adopted the inter-core synchronization scheme
proposed in this work. Most close to the present paper, Tabish
et al. [18] presented an OS-level technique to preload scratch-
pad memories (data and instruction) to enable a contention-
free non-preemptive execution of tasks. In 2011, Pellizzoni et
al. [19] proposed the PREM execution, where tasks access
memory only at the beginning at the end of their jobs. Yao
et al. [20] presented a scheduling technique to arbitrate with
time-division multiplexing the memory accesses performed by
PREM tasks.

Alternative approaches have been proposed to regulate the
access to shared DRAM memories. Yun et al. [5] proposed a
memory bandwidth reservation mechanism that exploits hard-
ware performance counters, while Yun et al. [6] and Kim
et al. [21] presented bank-aware memory allocation schemes.
Techniques have also been proposed to improve the predictabil-
ity of cache memories: please refer to the excellent survey by
Gracioli et al. [22].

Finally, other authors proposed schedulability analysis tech-
niques that explicitly take into account the memory contention.
Most relevant to us are the works of Mancuso et al. [23], which
proposed a WCET bound in the presence of a collection of
resource management techniques developed within the single-
core equivalence project at UIUC, and Davis et al. [24], which
adopted a trace-based task model and proposed to account for
contention delays at the stage of response-time analysis.

X. CONCLUSIONS AND FUTURE WORK

We presented a scheme for the practical implementation
of the LET execution model in multicores. We discussed the
benefits arising from the use of LET not only in terms of
a predictable model of computation with deterministic output
times, but also the potential for scheduling memory accesses
avoiding excessive contention. An actual implementation on
an automotive platform has been presented and its implemen-
tation issues have been discussed. Overall, it emerged that
the realization of LET communication requires facing with
several challenging design problems, which should possibly be
integrated in a holistic synthesis methodology that optimizes
the communication infrastructure for a given application. This
observation lays the foundations for very interesting future
works.

ACKNOWLEDGMENTS

The authors like to thank Giuseppe Serano, Errico Guidieri, and
Paolo Gai of Evidence S.R.L. for the valuable support provided

in setting up the experimental setup, Pasquale Buonocunto, Paolo
Pazzaglia, and Alessio Balsini from the ReTiS lab for their work on
the parser for the WATERS challenge model, and Infineon for having
provided the microcontroller platform.

REFERENCES

[1] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree, “From
control models to real-time code using giotto,” in Control Systems
Magazine, IEEE, 2003.

[2] A. Hamann, D. Dasari, S. Kramer, M. Pressler, F. Wurst, and
D. Ziegenbein. WATERS Industrial Challenge 2017. [Online]. Available:
https://waters2017.inria.fr/challenge/#Challenge17

[3] The AUTOSAR standard, version 4.3. [Online]. Available: http:
//www.autosar.org

[4] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: a time-triggered
language for embedded programming,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 84–99, Jan 2003.

[5] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms,” in 19th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013, pp. 55–64.

[6] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 19th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2014.

[7] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems, vol. 17, no. 1, pp. 5–22, Jul 1999.

[8] ERIKA Enterprise: Open-source RTOS OSEK/VDX kernel. [Online].
Available: http://erika.tuxfamily.org

[9] [Online]. Available: http://retis.sssup.it/∼a.biondi/LET/
[10] AURIX TC27x D-Step - User’s Manual, V2.2 2014-12.
[11] A. Wieder and B. Brandenburg, “On spin locks in AUTOSAR: blocking

analysis of FIFO, unordered, and priority-ordered spin locks,” in RTSS’13.
[12] A. Biondi and B. Brandenburg, “Lightweight real-time synchroniza-

tion under P-EDF on symmetric and asymmetric multiprocessors,” in
ECRTS’16.

[13] M. Stigge and W. Yi, “Graph-based models for real-time workload: a
survey,” Real-Time Systems, vol. 51, no. 5, pp. 602–636, Sep 2015.

[14] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,” in
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), vol. 76,
2017.

[15] C. Sofronis, S. Tripakis, and P. Caspi, “A memory-optimal buffering
protocol for preservation of synchronous semantics under preemptive
scheduling,” in EMSOFT Conference, Seoul, Korea, October 2225, 2006.

[16] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli, “Improving
the size of communication buffers in synchronous models with time
constraints,” in IEEE Transactions on Industrial Informatics, vol. 5 (3),
2009, pp. 229–240.

[17] H. Zeng and M. Di Natale, “Mechanisms for guaranteeing data consis-
tency and flow preservation in autosar software on multi-core platforms,”
in 6th IEEE International Symposium on Industrial Embedded Systems
(SIES), Vasteras, Sweden, June 2011.

[18] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pelliz-
zoni, and M. Caccamo, “A real-time scratchpad-centric OS for multi-core
embedded systems,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2016.

[19] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for COTS-based embedded
systems,” in 17th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, April 2011.

[20] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo, “Memory-
centric scheduling for multicore hard real-time systems,” Real-Time
Systems, vol. 48, no. 6, pp. 681–715, Nov 2012.

[21] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar,
“Bounding and reducing memory interference in COTS-based multi-core
systems,” Real-Time Systems, vol. 52, no. 3, pp. 356–395, May 2016.

[22] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pel-
lizzoni, “A survey on cache management mechanisms for real-time
embedded systems,” ACM Comput. Surv., vol. 48, no. 2, Nov. 2015.

[23] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun, “WCET(m)
estimation in multi-core systems using Single Core Equivalence,” in
ECRTS, 2015.

[24] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C. Maiza, V. Nelis, and
J. Reineke, “An extensible framework for multicore response time anal-
ysis,” Real-Time Systems, Jul 2017.

https://waters2017.inria.fr/challenge/#Challenge17
http://www.autosar.org
http://www.autosar.org
http://erika.tuxfamily.org
http://retis.sssup.it/~a.biondi/LET/

