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Abstract—The move to multicore systems requires methods
and tools to support the designer in the partitioning of functions
among the available cores and the definition of the task model. In
this paper we present the formulation of a functional partitioning
for real-time systems and we provide an optimization method
for an efficient implementation of the Logical Execution Time
(LET) paradigm, to enforce causality and determinism in the
development of time- and safety-critical applications. A novel
schedulability analysis for partitioned tasks executing according
to the LET paradigm is also provided. Our methods are applied
to the industry-size model of the WATERS challenge and compute
solutions that easily outperform the initial solution provided.

Index Terms—LET paradigm; Multicore partitioning; MILP

I. INTRODUCTION

Multicore platforms are replacing conventional single-core ar-
chitectures in many embedded application domains, requesting
the developers to find effective ways to partition functions on
the cores. This is true for new systems, and also when porting
an existing (single-core) application onto a new platform. The
functional allocation may require to partition the existing tasks
in a different way or to redefine them, and drives the allocation
of the memory that is required by the tasks for computation
and communication. In addition, when partitioning a single
core application on a multicore, the causal execution order
that was previously guaranteed by the priority assignment (and
the ensuing scheduling order) may not hold anymore. When
causality must be preserved, the move to multicore platforms
requires additional mechanisms to synchronize the execution of
the functions and the transfer of data. The Logical Execution
Time (LET) paradigm [1], [2] is among the solutions that are
more popular with the industry (especially automotive), since it
offers an execution model that allows for selective intervention
and minimal change to the application code.

In this work, we assume availability of an application model
consisting of runnables (functions) and tasks executing in ac-
cordance with the automotive AUTOSAR standard. Runnables
communicate data over shared memory locations, identified as
labels. The objective of this paper is then to find an optimal
mapping for both runnables and labels of the given application
on a multicore platform using the LET paradigm, where
the optimality metric is the minimization of the worst-case
response time among all the tasks (related to the robustness
and extensibility of the mapping and scheduling solution).
The final system must satisfy all the temporal constraints

(deadlines), as well as preserve the correct behavior (causality)
of the functional model of the runnables. This means that
every functional dependency of the original system must be
guaranteed in every possible execution of the multicore system.

The proposed solution leverages the LET paradigm and the
definition of (multiple) synchronization points to achieve both
determinism and flexibility in parallelizing the application. An
accurate response-time analysis of the resulting architecture is
developed and presented. We provide an optimization method
based on a formulation of the problem as a mixed-integer
linear programming (MILP) mathematical optimization, where
the functional dependencies between runnables are used as
constraints for the placement of functions and tasks, as well as
the placement of labels in memory. As a term of comparison,
we also developed an optimization solution based on the
application of a genetic algorithm.

II. STATE OF THE ART

The optimal placement of computing functions on parallel
processing nodes is among the most researched problems in
computer science. For computing functions (or tasks) with
real-time constraints (deadlines), the problem is often solved
by using heuristics, stochastic optimization techniques, or
mixed-integer linear programming, possibly in isolation or
even combined among them. For distributed systems with end-
to-end deadlines, optimal placement (including priority and
period assignments) is computed using genetic algorithms in
[3]. Heuristics are used in [4], and a SAT-based approach is
proposed in [5] for task and message placement. A schedula-
bility analysis and a partitioning algorithm for parallel tasks
without preemptions is presented in [6]

In [2] the problem is discussed when the input is an
AUTOSAR model of runnables and the causal order of
execution must be preserved. The parallelization of runnables
in concurrent platforms under several constraints for reusability
(maintaining the task structure) is discussed in [7].

In the context of automotive applications, the LET paradigm
receives an increasing interest from both industry and research
centers [8]. The LET execution model (originally proposed
in the Giotto framework [1]) is used (after minor adaptations
to consider task chains) by Hamann et al. [9] to restore a
causal order of execution when moving to multicores. The
optimization of the memory buffers that are required for the



implementation of the LET communication in the case of over-
sampling or undersampling reuses the concepts and methods
that were originally proposed to guarantee flow preservation
in synchronous systems [10], [11], [12]. In [13], the authors
propose an approach for mapping legacy code on multicores
leveraging clustering heuristics and an implementation of the
LET paradigm using the Timing Division Language. However, a
formal analysis and the details about the case study application
are missing.

Finally, the move to multicore systems requires an analysis
of the cost of the accesses to the memory shared at all levels
among the cores to provide for determinism. A survey on
the techniques that can be used to improve the predictability
when accessing cache memories is in [14]. Mancuso et al. [15],
propose methods to compute safe WCET bounds when shared
memory banks in a multicore platform are managed according
to one of several possible resource management techniques (the
work was developed within the single-core equivalence project
at UIUC). In the trace-based task model proposed in [16],
contention delays when accessing memory are included in
the formulation of the worst-case response-time. Tabish et
al. [17] presented an OS-level technique to preload scratchpad
memories (data and instruction) to enable a contention-free
non-preemptive execution of tasks. In the PREM execution
model [18], memory accesses are only allowed at the beginning
and at the end of each job, hence can still happen at variable
time instants (depending on scheduling). Conversely, under
LET, accesses to memories occur within specific time windows,
e.g., the periodic activation times of tasks. Yao et al. [19]
presented a scheduling technique to arbitrate with time-division
multiplexing the memory accesses performed by PREM tasks.

Alternative approaches to achieve predictable accesses to
shared DRAM memories include the memory bandwidth
reservation mechanism presented in [20] implemented using
hardware performance counters, and the bank-aware memory
allocation schemes in [21] and [22].

III. SYSTEM MODEL AND DEFINITIONS

This section introduces the system model, the main defini-
tions, and the notation used throughout the paper. The system
model considered here is inspired by the one described in the
WATERS 2017 challenge [23], which is representative of a
typical control software application in the automotive domain
and de facto equivalent to the AUTOSAR standard [24].

A. Task set model

We consider a real-time application composed of N periodic
tasks scheduled by fixed-priority scheduling. Each task is
denoted by Γi, where the index i = 1, . . . , N also indicates its
priority (Γi has higher priority than Γj if i < j). Tasks may be
periodic or sporadic: Ti denotes the period (or minimum inter-
arrival time if sporadic) of Γi, and Di its relative deadline. Each
execution instance of a task is a job. The response time of each
job is the time span between its activation and its completion.
We assume implicit deadline tasks, i.e. Di = Ti,∀Γi, and hard
deadline requirements for all tasks.

In agreement with the AUTOSAR standard [24], each task is
described as an ordered sequence of runnables (i.e., functions)
atomically allocated to it. R(Γi) is the set of all the runnables
in Γi. Each runnable r ∈ R(Γi) inherits the same period/inter-
arrival time and priority of its task Γi. Runnables read from
and write data in variables `, defined as labels in the original
model. Reading and writing may happen anywhere during
the runnable execution, and the same label may be accessed
multiple times. Each runnable rj is characterized by a worst-
case execution time (WCET) ej that (i) does not include the
time required to access labels in memory, and (ii) corresponds
to the case in which the runnable runs in isolation (i.e., without
contention on shared memories). For each runnable r, the sets
LR(r) and LW (r) denote the collection of labels that are read
and written by r, respectively. To ease the presentation of the
following results, we assume that all labels have the same size:
the results can easily be generalized to the case of labels with
heterogeneous sizes, by assigning a different weight to each
label, in terms of time spent to read and write it.

B. Communication between runnables

We classify the labels based on the number of runnables that
read or write them, identifying (i) read-only, (ii) write-only,
and (iii) shared labels.
• Read-only labels represent constant values and are read

by only one runnable.
• Write-only labels represent sinks of measurements (e.g.,

data shown on control panels/interfaces) and are written
by only one runnable.

• Shared labels represent variables that are both read
and written (i.e., implement communications between
functions). They can be read by multiple runnables, but
are written by one runnable only.

For shared labels, we refer to the writer runnable as producer,
and the ones that read from the label as consumers. In general, a
runnable can be both a producer and a consumer with respect to
different labels. Data exchange among runnables is formalized
in the definition of messages.

Definition 1 (Message m). A message, denoted with a triplet
m = {rp, rc, `a}, represents a communication between two
runnables rp and rc via `a, where the producer rp writes the
label `a, and the consumer rc reads from it.

Messages are classified as inter- or intra-task.
• An inter-task message mE is exchanged between a

producer rp and a consumer rc belonging to different
tasks (i.e., rp ∈ R(Γi) and rc ∈ R(Γj) with i 6= j).

• An intra-task message mI is exchanged between runnables
rp and rc belonging to the same task.

Communications are associated with causal dependencies
between runnables. Intra-task messages can be further charac-
terized by their timing properties. When the data written by the
producer rp must be read by a consumer rc executed within
the same job, the message is defined as immediate. If the data
produced by rp within the k-th job of the task is read by rc
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Fig. 1. Examples of intra-task messages between two runnables. Mes-
sage {r1, r2, `1} is immediate, {r2, r1, `2} is a delayed message, while
{r2, r2, `3} defines a loop. Writes and reads are denoted with orange (light)
and blue (dark) boxes, respectively.

at the next (i.e., (k+1)-th) job, then the message is delayed
(immediate and delayed properties can be inferred, e.g., by the
execution order of the runnables rp and rc within the task). A
typical use of delayed messages is in digital control feedback
loops, where the computed control command is fed back to the
actuator with a delay of one step. A particular case of delayed
message concerns the case where a runnable reads and writes
the same label (e.g., an integrator updating its internal state);
in this case, the output value will be its own input in the next
job and hence creates a loop message. A visual representation
of the different types of intra-task messages is in Fig. 1.

A sequence of runnables communicating through labels is a
chain. Chains represent flows of data with immediate causal
dependencies, and may be associated with time constraints. An
example is a control system composed of multiple functions,
where sensor data are filtered, merged, and provided to a
controller, which then outputs actuator commands. Safety-
critical chains may have deadlines that must be enforced to
guarantee the correct behavior of the system.

C. Multicore platform model

The target platform comprises NP (identical) cores, each
denoted as Pp ∈ P with p = 1, . . . , NP . A subset PS ⊂ P
of cores is reserved for the execution of sporadic tasks (e.g.,
interrupt service routines), while the remaining set PP ⊆ P
of cores host periodic tasks. Each processor Pi has one local
memory (scratchpad) Mi with limited size. The system also
includes an additional (and usually larger) global memory
MG. A crossbar switch enables point-to-point communication
between each core and each memory (this configuration fits the
popular AURIX Tricore platform in use in many automotive
systems), and access to memories is managed by FIFO ordering
(no memory buffers). This means that if multiple processors
access the same memory, contention may happen [25].

The deployment consists in partitioning the runnables among
the cores and allocate the labels to the available memories. Par-
titioned, preemptive, and fixed-priority scheduling is employed.
For the purpose of runnable partitioning, a container (virtual)
task Γpi is assigned to each pair (Pp,Γi), with Pp ∈ PP . After
the partitioning, this task will execute a subset of the runnables
in Γi. Each container task Γpi inherits the same period, deadline,
and priority of Γi. The activation of all the periodic tasks is
assumed to be synchronized across all the cores.

The time required for accessing a label allocated in the j-th
memory from the i-th processor is denoted as λi,j . For the case
of a local access (i = j), this parameter is simply denoted as

λi. The cost λi is assumed to be lower than the one to access
remote memories (e.g., as in the case for AURIX platforms):
λi ≤ λi,j .

D. The LET paradigm

A typical issue when moving an application from single
core to multicore is the loss of causality and the introduction
of non-determinism because of the higher parallelism and the
possibility of new execution traces. The logical execution time
(LET) paradigm, originally introduced as a component of the
Giotto framework [1], has gained attention in recent years
as a viable candidate for enforcing determinism in multicore
applications [2].

According to LET, all communications between tasks are
performed only at specific points in time. All inputs to a task
(from shared variables) are read at the beginning of a time
interval (usually the task period itself), while all outputs are
made available to the other tasks only at the end of it, regardless
of when they are actually produced. LET communication can be
seen as a sample and hold mechanism, where all modifications
done to shared values are delayed at the end of the task period:
the response time jitter is thus traded for a fixed latency of
one period between input and output. This design is used to
abstract from the actual response time of each job, providing
time determinism and a predictable execution model.

The LET paradigm can be leveraged to schedule memory
accesses at well-defined points in time, avoiding the possibility
of contention [26]. The implementation of LET requires
creating local copies for all the labels involved in LET
communication. In this way, runnables only access the memory
local to their core. In our framework, the LET copy between
shared labels and corresponding local copies is delegated
to a dedicated LET communication task Γp

L, provided in
each core Pp. The LET task Γp

L has the sole purpose of
copying LET communication variables used by tasks in core
Pp, and it is executed with highest priority. As such, the LET
communication executed on behalf of a low-priority task can
generate interference on the execution of a high-priority task.

The definition of the parameters of Γp
L needs to take into

account if the core executes sporadic or periodic tasks. In the
former case, the LET communication task is designed as a
periodic task with period less than or equal to the shortest
inter-arrival time of any task in execution on the core to avoid
any possible data loss. At every periodic activation, Γp

L copies
all the variables that have been updated by the sporadic tasks
since their last activation.

In cores executing only periodic tasks (set PP ), an instance
of the LET communication task is executed at specific points
in time. Differently from the original formulation of the LET
paradigm in [1], we consider the execution of the LET tasks to
be synchronized across all cores. This is because, in contrast
with [1], we also require the capability of enforcing causality
in computation chains. The corresponding time instants when
the LET communication task is released are then called
synchronization points.



Fig. 2. Definition of synchronization points and LET intervals for the container
tasks.

Definition 2 (Synchronization point). A synchronization point
is a time instant, common to a subset of all cores, when the
LET communication tasks in execution on those cores are
synchronously released to update a given subset of shared
labels.

In this work, we allow for multiple synchronization points
during the execution of a periodic task. The number of
synchronization points of periodic task Γi is denoted by
NS
i ≥ 1. Hereafter, we refer to the synchronization points

of Γi using the symbol si,k, where the subscript k ∈ [1, NS
i ]

is the index of the synchronization point, indicating also their
ordering. We consider that the last synchronization point of
each task occurs at the deadline, i.e., si,NS

i
= Ti. It follows that,

for each job of Γi, its activation instant is a synchronization
point too, since it coincides with si,NS

i
of the previous job. On

each processor Pp, the instants si,k defined for the container
tasks Γp

i occur synchronously, i.e., all container tasks execute
within the same synchronization points on all cores.

As a consequence, the execution of each container task Γp
i

is now partitioned into NS
i LET intervals, each spanning two

synchronization points (one at the beginning and one at the end).
An arbitrary k-th LET interval of Γp

i corresponds then to the
interval [si,k−1, si,k), where si,0 refers to the activation instant
of the job. In each LET interval, a subset of the runnables
mapped in the container task is executed. Figure 2 shows an
example in which a task Γi in the original system model with
its runnables (with their internal causal dependencies shown as
arrows) is partitioned for execution in three cores, each with a
synchronized container task and a set of synchronization points
delimiting three LET intervals in the task execution period. The
introduction of multiple synchronization points helps reducing
the end-to-end latency in chains and improves parallelism in
multicores while enforcing intra-task dependencies between
runnables [2].

The synchronization points delimiting the LET interval
define time barriers or deadlines bounding the execution of
the runnables mapped in the interval. A runnable r mapped to
the k-th interval of the container tasks Γpi must complete its
execution no later than si,k+1 time units after the task release.

E. Problem definition

Our objective is to partition the runnables among the cores
and allocate the labels on the available memories. The definition
of the LET intervals allows to enforce the synchronization
of shared data within chains of runnables spanning across
several cores, hence enforcing causality, predictable data flows,
and deterministic end-to-end delays along the chains. To this
end, in our design we assume that all inter-task messages are
implemented with LET communication. Furthermore, intra-task
messages are implemented using LET only if the runnables in
the message are mapped to different cores. Intra-task messages
exchanged within the same core are implemented using simple
shared variables for the labels. The design problem faced in
this work can be summarized as follows:
• For each periodic task Γi: (i) the corresponding container

tasks Γpi , provided in all cores Pp ∈ PP , are split into
NS
i LET intervals; and (ii) each of the corresponding

runnables r ∈ R(Γi) must be allocated to one (and only
one) LET interval of one (and only one) container task
Γpi .

• Sporadic tasks are mapped as a whole (i.e., all their
runnables on the same core) in one of the cores of PS .

• Following the LET implementation of [25], the labels
associated with the messages handled using LET are
allocated in global memory, while the others are mapped
in the local memory of the (unique) core that accesses
them. The allocation of the local copies of the labels using
the LET communication is discussed in Section IV-E.

In order to guarantee the preservation of the data flows,
the causal dependencies in all chains must be enforced and
preserved once the system is deployed on a multicore platform.
Furthermore, the resulting mapping must guarantee the timing
constraints (i.e., deadlines) of all jobs. These constraints are
formalized and addressed in the following section, where the
proposed design strategy is also presented.

IV. MULTICORE LET DESIGN

A. Characterizing LET communication tasks

The LET communication tasks ΓpL are in charge of copying
data from local copies of the labels to the actual (shared) labels
allocated in global memory, and vice-versa. In order to respect
causality and to be compliant with the original LET semantic
proposed in [1], each instance of this task must always (i)
first update the shared labels with the content of their local
copies (write phase), and then (ii) copy new data from shared
labels to their local copies (read phase). This order must be
preserved across all cores; that is, when multiple cores perform
LET communications at the same synchronization point, they
need to wait for all cores to finish writing their data via LET
communication before starting the read phase.

The LET tasks may incur in contention when simultaneously
accessing the global memory. To address this issue, we adopt
the synchronization scheme proposed in [26] where the global
memory is accessed via a baton-passing protocol with busy
waiting. Experiments on the Aurix-Tricore TC277 platform
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Fig. 3. Simple schedule with two cores and LET communication managed
by high-priority LET tasks. The LET tasks are synchronized with the baton-
passing protocol proposed in [26]. Up-arrows denote the task releases, while
the circle markers denote the synchronization points of LET communication.
The timelines of the tasks on the second core are omitted to ease the figure.

showed that the proposed strategy has a very limited overhead
(in the order of a few microseconds) [26].

This synchronization scheme requires the definition of a
priority ordering among the processors Pi. In this work, we
assume that the core indexes reflect this ordering, i.e., Pi
reads/writes before Pj if i < j. Figure 3 shows a simple
example of a schedule involving LET communication between
two cores using the synchronization scheme of [26]. For sake
of clarity, and to make this paper self-consistent, the behavior
of LET tasks based on the synchronization scheme of [26] is
summarized:

1) At each synchronization point t, for each processor
Pp ∈ PP , an instance of Γp

L is released. If multiple syn-
chronization points for different tasks occur synchronously,
a single instance of Γp

L executes, performing all the copies.
2) The instance of Γ1

L corresponding to the first processor
P1 starts writing the data from local copies to shared
copies, following the causality order of the tasks in P1

that require a LET write in t (if any), while the other
processors busy-wait. When Γ1

L finishes, the LET writes
of the next processor are performed, and so on until all
LET tasks Γp

L in all processors finish writing.
3) Next, starting again from P1, Γ1

L reads the shared LET
data needed by the local tasks (if any), following the
causal order. The next processor starts the reading phase
of its LET task once the previous one finishes. A processor
that completes its LET reads may then start (re-)executing
the application tasks.

B. Skipping unnecessary LET communications

To reduce the communication burden managed by Γp
L,

label reads and writes are only performed when strictly
required to realize the LET paradigm. When the producer
and consumer runnables have different periods, if consumers
are undersampled or executing with a rate lower than the
producer, the producer may skip some updates of the shared
labels whenever the data will be overwritten before being used

by any reader. In a dual manner, if a consumer is oversampled
with respect to the the producer, it may skip some updates of
the local copies of labels if they have not been updated since
their last access. The reads/writes that can be skipped are not
periodic (see [26]) and it is difficult to formulate the access
patterns analytically for the purpose of optimization. Hence,
an approximate (and pessimistic) evaluation is used.

For each pair of runnables and shared label `, an oversam-
pling factor σ represents the minimum number of jobs that
separate two consecutive LET communications on ` that cannot
be skipped to preserve the LET semantics. The oversampling
factor is different for the consumer and producer runnables.
Consumers. Considering an arbitrary (both intra- or inter-task)
message m = {rp, rc, `a}, the oversampling factor σR(rc, `a)
of the consumer runnable rc reading `a is given by

σR(rc, `a) = max
{
bTp/Tcc, 1

}
, (1)

where Tp is the period of the producer rp and Tc is the period
of the consumer rc. Here, if Tc < Tp the consumer is faster
than the producer. The minimum number of jobs between two
necessary LET reads is equal to the maximum number of
complete periods of the consumer runnable in one period of
the producer, which is computed as bTp/Tcc. On the other
hand, if Tc ≥ Tp, then the producer is faster (or with same
rate) than the consumer; for this reason the reads are always
mandatory and the oversampling factor is set to 1.
Producers. The oversampling factor of a producer runnable
rp writing label `a, denoted by σW (rp, `a), has to cope with
all the possible consumers of `a. Defining ρ(rp, `a) as the set
of messages for which rp is the producer runnable and `a the
shared label, σW (rp, `a) is given by

σW (rp, `a) = max

{(
min

m∈ρ(rp,`a)

{
bTc/Tpc

})
, 1

}
, (2)

where Tc and Tp are the periods of the consumer and producer
runnables involved in message m, respectively. In this case, if a
consumer is slower than the producer (i.e. Tc > Tp), the value
bTc/Tpc represents the number of instances of the producer
runnable completely contained in one period of the consumer.
The minimum number of jobs between two required LET writes
is equal to the minimum number of complete periods among
all its consumers. If at least one consumer has period less than
or equal to the producer, writing is always required and the
oversampling factor is set to 1.

C. Precedence constraints among runnables

The partitioning of runnables among the cores must be
defined in accordance with the partial order of execution of the
runnables defined by the set of intra- and inter-task messages.
Overall, the precedence constraints among the runnables of
each task can be effectively described by a directed acyclic
graph (DAG). The precedence constraints among runnables
can be computed with the following rules (as in [2]), which
directly follows from the definitions of immediate and delayed
messages introduced in Section III-B.



Definition 3 (Precedence rules). Given an intra-task message
m = {rp, rc, `a}:

1) If m is an immediate message, then each job of rp must
complete writing data on `a before rc reads it. This
precedence relation is denoted as rp ≺ rc.

2) If m is a delayed message, with rp 6= rc, then rc must
read `a before rp overwrites it in the same job. This
precedence relation is denoted as rc ≺+ rp.

Trivially, loop messages (i.e., delayed messages with rp =
rc) do not introduce any precedence constraint.

D. Runnable mapping rules

In our framework, each container task Γp
i is split into an

ordered sequence of NS
i LET intervals. Note that the ordering

between the intervals implies that all the runnables allocated
to the k-th interval will be executed before the ones allocated
to the (k + 1)-th one. As a consequence, the allocation of
runnables to the intervals must take into account the precedence
constraints discussed in the previous sub-section. To this end,
a set of assignment rules must be defined to allocate each
runnable to an interval.

Rule R1. Consider a pair of runnables (rp, rc) such that rp ≺
rc. If both runnables are hosted on the same core (i.e., they are
assigned to the same container task), their execution can be
serialized by guaranteeing that rp is executed before rc in the
same interval, or rp executes in an interval with lower index
than the interval of rc.

Rule R2. Consider a pair (rp, rc) such that rp ≺ rc. If rp and
rc are mapped to different cores, then their communication is
realized with LET (see Sec. III-E). Hence, the execution of the
two runnables must be separated by a synchronization point.
Consequently, if rp is mapped in the k-th LET interval, then
rc must be mapped in an interval with index k′ > k.

Rule R3. Consider a pair (rp, rc) such that rc ≺+ rp. If both
runnables are hosted on the same processor, then rc executes
before rp in the same interval, or in an interval with lower
index than the interval of rp.

Rule R4. Consider a pair (rp, rc) such that rc ≺+ rp. If
the two runnables are mapped in different cores, then the
communication is realized with LET. The consumed data is
updated at the start of the LET interval in which the runnable
executes, and the produced data is updated at its end. Hence,
if rc is mapped in the k-th LET interval, rp must be mapped
in an interval with index k′ ≥ k.

E. Assigning labels to memories

Besides the allocation of runnables, the deployment of an
application to a multicore platform must also map the labels to
the available memories. The labels to be allocated are the ones
originally defined for the application plus the local copies that
are required by our LET implementation. The following rules
define the allocation of the labels to the available memories as
a function of the allocation of the runnables that access them.

Rule L1. As read-only labels are accessed by a single runnable
r (see Sec. III-B), they are mapped in the local memory of the
core in which r is allocated to.

Rule L2. The same of Rule L1 holds for write-only labels,
which are also accessed by a single runnable (see Sec. III-B).

Rule L3. The labels corresponding to loop messages, i.e., data
written and read by the same runnable r, are mapped in the
local memory of the core to which r is allocated.

Rule L4. Consider a shared label ` involved in intra-task
messages only.

1) If and only if all runnables that access ` are mapped to
the same core Pk, then ` is mapped in local memory Mk

(no LET communication is used).
2) Otherwise, LET communication is used, and ` is mapped

in global memory. As each label has at most one producer,
` is accessed by only runnables of the same task Γi. A
local copy `k of ` is created for each core Pk that hosts
at least one runnable r ∈ R(Γi) accessing `. The local
copy `k is mapped to memory Mk.

Rule L5. Consider a shared label ` involved in at least one
inter-task message. ` is always mapped in global memory as
it requires to be managed with LET communication. Then,
for each pair of core Pk and task Γi, a local copy `k,i of
` is created if there exists at least one runnable r ∈ R(Γi)
accessing ` and allocated to core Pk. The local copy `k,i is
mapped to memory Mk.

By construction, the allocation of labels following rules
L1-L5 as above guarantees the following properties:

1) each runnable mapped in Pk accesses only labels mapped
in the corresponding local memory Mk;

2) each local copy mapped in Mk, corresponding to a shared
label involved in LET communication, is exclusively
accessed by runnables of a single container task Γki ; and

3) the LET communication task ΓkL of core Pk accesses only
labels in memory Mk and in global memory MG.

Rules L1-L5 imply a set of constraints on the memory space
requirement [27] of each memory, i.e., the memories must be
large enough to host all the labels allocated to them. Some
of the above rules may be relaxed whenever these constraints
cannot be matched at the stage of optimization (e.g., in the
presence of small local memories). This option is not addressed
in this work and is left as future work.

V. RESPONSE-TIME ANALYSIS

According to the LET design presented in the previous
section, each synchronization point si,k is treated as a passive
barrier at which an instance of the LET communication task
may be invoked. In order to achieve data consistency, the exe-
cution of all runnables mapped to the LET interval immediately
preceding si,k must complete before the synchronization point.
A timing analysis is required to verify this condition.

In the following, a response-time analysis is derived for
each LET interval. The analysis leverages the observation that
the proposed task design can be modeled as a special case of



the transactional task model proposed in [28], which consists
of an ordered sequence of sub-tasks (called children tasks)
activated with the same period, but released with different
offsets. Indeed, each container task Γp

i of our model can be
mapped to a transaction task where each LET interval of Γp

i

is assigned to a child task of the transaction. The offsets of
the transaction tasks correspond to the synchronization points
of Γp

i . This observation is formalized as follows.

Definition 4 (Child task τ ). A child task of Γp
i , denoted as

τ p
i,k with k ∈ [1, Ns

i ], is a periodic task with the same priority
of Γp

i , period Ti, deadline Di,k = (si,k − si,k−1), and offset
φi,k, such that φi,1 = 0 and φi,k = si,k−1 for k > 1.

The relative deadline of each child task τ p
i,k coincides with

the synchronization point si,k, and corresponds to the activation
time of the following child task.

The body of each child task τ p
i,k is composed by the subset

of runnables mapped in the corresponding k-th LET interval
of Γp

i . By extending the notation introduced in Sec. III-A to
improve readability, the set of runnables executed by a child
task τ p

i,k is denoted as R(τ p
i,k) ⊆ R(Γi). The actual WCET

of τ p
i,k can then be computed as the sum of the WCETs of

the runnables r ∈ R(τ p
i,k), plus the cost of all the memory

accesses for the labels in local memory used by the runnables.

Cp
i,k =

∑
rj∈R(τ p

i,k)

(
ej +

∑
`a∈L(rj)

Aj,a · λp
)
, (3)

where L(r) = LW (r) ∪ LR(r), and Aj,a is the maximum
number of accesses by runnable rj to label `a, in one job.
Trivially, if the corresponding LET interval does not contain
any runnable, Cp

i,k = 0.
This model transformation is used in the following for the

purpose of response-time analysis.

A. Seeking the worst-case condition
In the general case, during an arbitrary time interval [0, t],

the execution of a child task τpi,k running in processor Pp may
be interfered by
• the execution of runnables mapped to high-priority con-

tainer tasks of the same core Pp;
• the LET communication related to the synchronization

points in [0, t] of all other container tasks (both with higher
and lower priority) running in Pp — this is because the
LET task ΓpL implementing the communication runs with
highest priority; and

• the LET communication of tasks running on the other
processors 6= Pp whenever the LET task of Pp is busy-
waiting for their completion — this is required to arbitrate
the accesses to the global memory and to preserve the
LET semantics (see Sec. IV-A).

By building upon Theorem 2 in [28], it is possible to identify
a release pattern that allows bounding the worst-case response
time of a child task.

Theorem 1. The worst-case interference produced in an
arbitrary interval [0, t] by all the container tasks Γqj , with

q = 1, . . . , NP , to a child task τpi,k, with j 6= i, cannot be
larger than the one generated when the following conditions
occur in [0, t]:

1) τpi,k is synchronously released at time 0 together with one
of the synchronization points of Γqj ;

2) the LET communications related to the first NS
j synchro-

nization points in [0, t] of all container tasks Γqj , for
q = 1, . . . , NP , are not skipped.

Proof. At each synchronization point related to Γqj , (i) a child
task of Γqj is released and (ii) a job of the LET communication
task ΓqL corresponding to that synchronization point is released
in all processors. Consider first the interference generated by
the children tasks of Γqj . Following Definition 4, a child task
can be treated as a task with a given offset and no release
jitter. Note that this corresponds to a particular instance of the
transactional task model in [28]. As a consequence, condition
(1) of theorem directly follows from Theorem 2 in [28].

Now, consider the interference generated by LET commu-
nications. Following following Secs. III-D and IV-A, note
that the activations of the LET tasks ΓqL, and the work they
perform in favor of Γqj , within a time interval [0, t] is directly
implied by the release pattern of the child tasks of Γqj in
[0, t], and no other pattern exists. Furthermore, due to the
inter-core synchronization discussed in Sec. IV-A, the release
of all LET tasks ΓqL is synchronized. The workload of the
LET task ΓqL on behalf of each child task of Γqj consists
in a set of communications to be periodically performed
(see Section IV-B). This is true also for the children tasks
of the other cores Pp 6= Pq. Since these communications
happen periodically, there exists a job of Γqj for which
all communications required by all children tasks must be
updated. Therefore, the interference contribution due to LET
communications can be studied as the one generated by a
classical periodic task, whose worst case corresponds to the
case of synchronous release at time 0. This implies that the first
LET communication at the beginning of the analysis interval is
not skipped, which corresponds to condition (2) of the theorem.
Hence the theorem follows.

B. Worst-case response time for children tasks

An upper bound on the worst-case response time of each
child task τpi,k can be computed by leveraging Theorem 1.
Indeed, the theorem allows bounding the interference generated
by a group of container tasks to a child task under analysis:
hence, by summing up the interference contribution of each
group of container tasks, it is possible to obtain a bound on
the overall interference suffered by τpi,k. Since the LET tasks
run at highest priority, also the LET communication related to
lower-priority container tasks may generate interference to τpi,k.
Hence, the interference bound implied by Theorem 1 must
consider all the container tasks (except the one to which τpi,k
belongs) independently of their priorities.

First of all, following the scheduling scenario of Theorem 1,
a child task τpj,s of Γpj is synchronously released with τpi,k, as
in the example of Figure 4. We define Φj,q,s as the offset of an
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Fig. 4. Worst-case interference conditions produced by Γp
j on a child-task τpi,k .

The interference contributes due to LET communication of both Γp
j (yellow)

and τpi,k (orange) are shown too.

arbitrary child task τpj,q of Γpj with respect to the critical instant
in which τpj,s is released. Formally, Φj,q,s can be computed as
follows:

Φj,q,s = (φj,q − φj,s + Tj) modTj . (4)

To address the analysis problem we distinguish between
execution interference and LET interference: the former is
generated by the execution of a high-priority container task
when it preempts a lower-priority task, while the latter is
generated by the LET task (running at the highest priority).
Note that high-priority tasks contribute with both the types of
interference.

1) Execution interference: A function Ipj,s(t) is introduced
to denote the worst-case execution interference generated by Γpj
in [0, t] when τpj,s is the child task released at the critical instant
(time 0), as indicated by Theorem 1. Ipj,s(t) is meaningful only
when Γpj has higher priority than the child-task under analysis
τpi,k and is mapped to the same processor Pp. The execution
interference can be computed as in [28], i.e.,

Ipj,s(t) =

NS
j∑

q=1

⌈
∆j,q,s(t)

Tj

⌉
Cj,q, (5)

where

∆j,q,s(t) =

{
t− Φj,q,s if t− Φj,q,s > 0,

0 otherwise.
(6)

2) LET interference: The analysis of the LET interference
is an original contribution, since it has not been addressed
in any previous work. In the scheduling scenario defined by
Theorem 1, consider the time interval [0, t], and a child task
τpj,s released on core Pp at time 0. The LET interference Lpj,s(t)
generated by the container tasks Γqj (q = 1, . . . , NP ) when
τpj,s is the child task of Γqj released at time 0, consists of the
following terms:
• the LET interference Lrpj,s(t) generated by all the label

reads performed by the LET task ΓpL on behalf of the
runnables in Γpj , within the interval [0, t];

• the LET interference Lwpj,s(t) generated by all the label
writes performed by ΓpL on behalf of the runnables in Γpj ,
within the interval [0, t]; and

• the LET interference generated by the busy-waiting of
ΓpL, which depends on the interference generated by the
LET tasks in execution on the remote cores Pq (q 6= p).

To simplify the presentation, we introduce the subsets
LWL (r) ⊆ LW (r) and LRL(r) ⊆ LR(r) of labels that are written
and read by an arbitrary runnable r using LET communication.
Note that each pair (r, `), with r ∈ R(τpj,q) and ` ∈ LRL(r),
generates a contribution to the LET interference, which can be
analyzed as the one generated by a sporadic task with minimum
inter-arrival time σR(r, `) · Tj (according to the analysis of
Section IV-B). The WCET of the equivalent sporadic task can
be computed by considering the set of memory operations
that are required for a LET label read: (i) one access to the
global memory (to read the shared copy); and (ii) one access
to a local memory (to write the local copy that is read by the
runnable). According to the platform model of Section III-C,
the WCET of this copy (both for reading and writing) issued
by processor Pp is cpL = λp,G + λp. This latter term can be
used to bound the LET interference in the scheduling scenario
of Theorem 1.

Lemma 1. Consider the scheduling scenario in [0, t] of
Theorem 1 and let τpj,s be the child task of Γpj that is released at
the critical instant t = 0. The total LET interference generated
by the reads performed by the LET task on core Pp on behalf
of Γpj is given by

Lrpj,s(t) =

NS
j∑

q=1

∑
r∈R(τp

j,q)

∑
`∈LR

L(r)

⌈
∆j,q,s(t)

σR(r, `) · Tj

⌉
cpL. (7)

Proof. Consider a child task τpj,q and let τpj,s be the child task
of Γpj released at time 0. Each pair (r, `), with r ∈ R(τpj,q)

and ` ∈ LRL(r), requires one LET read with cost cpL for
each activation of τpj,q in [0, t]. Leveraging the formulation
of Equation (5) and the oversampling factor for (r, `) (Sec-
tion IV-B), the number of activations in the interval is bounded
by d∆j,q,s(t)/(σ

R(r, `) · Tj)e. The total contribution of Γpj
can be computed using the same formulation for each τpj,q
with q = 1, . . . , NS

j , and iterating through all the label reads
(r, `) performed using LET of each τpi,q. Thus, the lemma
follows.

A similar reasoning applies to the case of producer runnables.
Indeed, the contribution of each pair (r, `), with r ∈ R(τpj,q)

and ` ∈ LWL (r), to the LET interference is equivalent to
the one a sporadic task with minimum inter-arrival time
σW (r, `) · Tj . The only difference with respect to Lemma 1
is that each synchronization point in the window of interest
[0, t] corresponds to the writes of labels produced by the
runnables allocated in the LET interval that precedes the syn-
chronization point. For this reason, R(pr(τpj,q)) is introduced
to denote the set of runnables of the child task immediately
preceding τpj,q, i.e., R(pr(τpj,q)) = R(τ p

j,q−1) for q > 1 and



R(pr(τpj,q)) = R(τ p
j,NS

j

) for q = 1. The total LET interference
generated by the writes performed by the LET task on core
Pp on behalf of Γpj is then given by

Lwpj,s(t) =

NS
j∑

q=1

∑
r∈R(pr(τp

j,q))

∑
`∈LW

L (r)

⌈
∆j,q,s(t)

σW (r, `) · Tj

⌉
cpL. (8)

We now account for interference related to the busy-waiting
originated by other container tasks Γhj mapped in remote cores
Ph (h 6= p). Due to the baton-passing protocol described
in Section IV-A, the busy-waiting is composed of (i) the
writing phases of all remote cores plus (ii) the reading
phases of remote cores Ph executed before the reads in
Pp (h < p). Note that the resulting interference can be
computed by Equations (7) and (8) applied to processor Pq , i.e.,∑NP

h=1, h 6=p Lw
h
j,s(t) +

∑p−1
h=1 Lr

h
j,s(t). By adding to the last

equation the LET interference generated on the core Pp under
analysis, it is finally possible to get the total LET interference:

Lpj,s(t) =

NP∑
h=1

Lwhj,s(t) +

p∑
h=1

Lrhj,s(t). (9)

3) Total interference (execution and LET) on children tasks:
The worst-case interference experienced by τpi,k in an interval
[0, t], from both higher- and lower-priority tasks is denoted as
IW p

i (t) and computed as follows.

Lemma 2. The interference incurred by a child task τpi,k on
core Pp due to high- and low-priority tasks in an interval [0, t]
is bounded by

IW p
i (t)=

∑
j<i

max
s

(
Ipj,s(t)+L

p
j,s(t)

)
+
∑
j>i

max
s
Lpj,s(t). (10)

Proof. The container tasks Γpj with higher priority than τpi,k
(j < i) can generate both execution and LET interference.
The term Ipj,s(t) + Lpj,s(t) bounds the execution and LET
interference generated by Γpj when the child task τpj,s is
synchronously released with τpi,k. Since only one child task
τpj,s can be synchronously activated with τpi,k, maximizing over
all the possible children tasks τpj,s yields a safe bound on the
maximum interference generated by Γpj . The same holds for
container tasks Γpj with lower priority than τpi,k (j > i), which
can only generate LET interference (the second term only
includes Lpj,s(t)). Hence, the lemma follows.

As the very final step, the interference ILpi,k generated by
the LET communication of the child task τpi,k itself, follows
in a similar way as in Equations (7) and (8):

ILpi,k =

NP∑
q=1

∑
r∈R(pr(τq

i,k))

∑
`∈LW

L (r)

cqL +

p∑
q=1

∑
r∈R(τq

i,k)

∑
`∈LR

L(r)

cqL

(11)
The worst-case response time for the child task τpi,k, denoted
as Rpi,k, can then be computed with a standard fixed-point
equation as:

Rpi,k = min
t>0

{
t > 0 | t = Cpi,k + ILpi,k + IW p

i (t)
}
. (12)

A multicore deployment solution is feasible if Rpi,k ≤ Di,k for
each child task τpi,k in the system.

VI. MILP FORMULATION OF THE OPTIMIZATION PROBLEM

In this section, we present a mixed-integer linear program-
ming (MILP) formulation of the design problem faced in this
work. The proposed formulation leverages the constraints and
the analysis defined in the previous sections, with the objective
of computing a mapping that minimizes the response time
of each child task. The MILP formulation requires that the
response-time analysis is converted in a set of linear constraints,
with an objective function to be minimized. In the following,
the main assumptions and (conservative) approximations are
presented. The resulting formulation has a sufficiently low
computational complexity to allow application to quite large
systems, while being slightly more pessimistic than the one
proposed in the previous section. An application to a realistic
case study is then presented in Section VII.

A. Linearizing the response-time analysis

The response time-analysis in Equation (12) requires the
knowledge of the subset of runnables, labels, and communica-
tions associated to each LET interval. Moreover, it includes
some non-linearities, like the ceiling terms used to compute
the number of activations of each child-task in the interval
under analysis. An approximate linearized analysis must be
derived in order to implement it as MILP.

1) Equally-spaced synchronization points: As a first assump-
tion, in our MILP formulation the number of synchronization
points NS

i for each container task Γi is a known constant
parameter. These points are chosen such that each container task
of Γi in every processor is divided in NS

i LET intervals of equal
size Ti/NS

i . With this choice, each child task τpi,k belonging to
Γpi has the same deadline, computed as Di,k = Di = Ti/N

S
i ,

while its offset can be formulated as φi,k = (k − 1)Ti/N
S
i .

2) Limiting the schedulability test to a small number of
checkpoints: Encoding the response-time analysis in Eq. (12)
as a recursive equation in a MILP is extremely inefficient, due
to the need of multiple integer variables to model the ceiling
terms. This is especially true for large-scale applications. An
alternative approach, which is sufficient-only, yet extremely
accurate, is proposed here, building upon the results of [29].
Starting from a formulation of the problem as a schedulability
test for τpi,k, defined as:

∃t ∈ Ti |Rpi,k = Cpi,k + ILpi,k + IW p
i (t) ≤ t, (13)

we find a small set Ti of checkpoints, which allows to obtain
a sufficient-only test with accuracy extremely close to the
exact one. For each pair (Γi,Γj), with j < i, we compute
a time point in Ti as ti,j = bDi/DjcDj (a time instant that
is a candidate for the computation of the response time and
the feasibility test). ti,j corresponds to the activation of the
last interfering child-task belonging to an arbitrary higher
priority Γpj , before the deadline Di,k of τpi,k, when considering
the critical instant activations of Theorem 1 for the worst-
case interference conditions. The set of checkpoints used for



the schedulability test of τpi,k (including also Di,k = Di) is
computed as Ti =

⋃
j<i {ti,j} ∪ {Di}. Please refer to [29] for

further details on this analysis approximation.
Note that, since all synchronization points are equally spaced,

the checkpoints ti,j ∈ Ti are independent of the child task under
analysis, and the child task τpj,s released synchronously with
τpi,k: therefore, they do not depend on indexes s and k.

3) Objective function: The optimization problem requires
finding the mapping that minimizes the maximum response
time of any child task Rpi,k, relative to its deadline Di,k, which
is referred to as R/D ratio. Consider the formulation in Eq. (12).
The interference term IW p

i (t) is independent of the index k
of the child task τpi,k under analysis. Thus, since Di,k = Di

∀k, the child task with the largest value for (Cpi,k + ILpi,k)
will have the greatest R/D ratio among all those in Γpi . The
response-time analysis can then be formulated as follows:

Rpi,k ≤ R̂
p
i = max

k

{
Cpi,k + ILpi,k

}
+ IW p

i (t∗) (14)

t∗ = min
ti,j∈Ti

{
max
k

{
Cpi,k + ILpi,k

}
+ IW p

i (ti,j) ≤ ti,j
}
.

If the response time of the child task of Γpi with the largest
value of (Cpi,k + ILpi,k) is lower than its deadline, then all the
other children tasks of Γpi will complete before their deadlines.
The objective function is then expressed as:

minimize max
Γp
i

{
R̂pi /Di

}
. (15)

4) Assigning runnables and labels to the children tasks (on
their core) and the corresponding LET intervals: A possible
formulation of the subsets R(τpi,k) ⊆ R(Γi), LWL (r) ⊆ LW (r)

and LRL(r) ⊆ LR(r) can be encoded by using a set of boolean
variables that define the assignment of runnables to cores
and LET intervals, and the corresponding definition of the
LET labels. Different assignments of boolean values to these
variables generate different mapping solutions. Introducing the
set B = {0, 1}, the main boolean variables required for our
formulation are defined as follows:
• Runnable in core: RCj,p ∈ B is set to one if runnable rj

is mapped in core Pp; it is zero otherwise. Since each
runnable must be mapped to one and only one core, the
constraint

∑
p RCj,p = 1 holds ∀rj .

• Runnable in LET interval: RIj,p,k ∈ B is set to one
if runnable rj is mapped in core Pp, in the k-th LET
interval; it is zero otherwise. By definition, it must hold
that ∀rj ,∀Pp,

∑NS
i

k=1 RIj,p,k = RCi,p.
• Label requiring LET communication: LETCa ∈ B is set

to one if label `a requires LET communication; it is zero
otherwise.

• LET communication of label in interval: LIj,p,k,a ∈ B is
set to one only if runnable rj mapped in the k-th LET
interval of core Pp requires LET communication via label
`a, i.e., LIj,p,k,a = (RIj,p,k ∧ LETCa).

B. Main MILP constraints
In the following, the main constraints of the proposed MILP

formulation are presented.

1) Labels involved in LET communication: The variable
LETCa introduced above to define if `a requires LET commu-
nication is easily determined in the case of inter-task messages,
i.e., LETCa = 1. Conversely, if `a is involved in an intra-task
message, it requires LET communication only if its producer
and consumer runnables are mapped on different cores.

Constraint 1. ∀mI = {ri, rj , `a}, LETCa ≥ |RCi,p − RCj,p|.

Proof. If ri and rj are on the same core, they do not need LET
communication and RCi,p = RCj,p, ∀Pp, thus their difference
will be always equal to zero; otherwise, the difference RCi,p−
RCj,p is equal to 1 for the core on which ri is executed and
-1 for the core on which rj is mapped, thus LETCa = 1.

2) Runnable mapping rules: An integer variable RBinj ≥ 0
is introduced ∀ rj , representing the index of the LET interval
where rj is mapped (regardless of the core). This variable is
related to the boolean RIj,p,k with the following constraint:

Constraint 2. ∀rj ,
∑
p

∑Ns
i

k=1(RIj,p,k · k) = RBinj

Proof. RIj,p,k is equal to 1 only for the k-th LET interval of
the core Pp where rj is mapped. For this reason, if RIj,p,k = 1
then RIj,p,k · k = k and all other addends are null.

The rules of Section IV-C are then simply expressed in our
MILP formulation as follows:

Constraint 3. (Rules R1, R2:) ∀mI = {rp, rc, `a} with rp ≺
rc, RBinp ≤ RBinc − LETCa

Constraint 4. (Rules R3, R4:) ∀mI = {rp, rc, `a} with rc ≺+

rp, RBinc ≤ RBinp

3) Assigning labels to memories: We define LMa,p ∈ B
and LGa ∈ B to represent the mapping of label `a in memory
Mp or in MG, respectively. Each label is assigned to one and
only one memory, thus trivially ∀`a,

∑
p LMa,p + LGa = 1.

The mapping rules for labels are here expressed as MILP
constraints.

Constraint 5. (Rules L1, L2, L3:) ∀rj and ∀`a ∈ L(rj) where
`a is read-only, write-only, or involved a loop message,
∀Pp, LMa,p = RCj,p.

Constraint 6. (Rules L4, L5:) ∀`a involved in a message,
LGa = LETCa.

4) Response time computation: The response-time analysis
presented in the previous section is transformed using inequal-
ities as lower bounds for WCETs, interference, and response
time, instead of equalities. This is particularly effective for
reducing the number of constraints in the MILP formulation
(where equalities need both ≤ and ≥): indeed, since we are
minimizing the response time, the solver will naturally move
towards the minimum values that satisfy the lower bounds.

The WCET of child task τpi,k, presented in Equation (3), is
lower-bounded as follows:



Constraint 7. From Equation (3), ∀Γi,∀Pp,∀k:

Cpi,k ≥
∑

rj∈R(Γi)

RIj,p,k
(
cj +

∑
`a∈L(rj)

Aj,a λp
)
. (16)

Following the same rationale, all the LET interference
functions can be formulated accordingly. As a representative
example, the constraint used to compute ILpi,k is presented.

Constraint 8. From Equation (11), ∀Γi,∀Pp,∀k:

ILpi,k ≥
NP∑
q=1

∑
rj∈R(Γi)

∑
`a∈LW (rj)

LIj,q,k−1,a · cqL+ (17)

p∑
q=1

∑
rj∈R(Γi)

∑
`a∈LR(rj)

LIj,q,k,a · cqL

Finally, from Equation (14), the response time R̂pi is
chosen from the set of response time candidates computed
as RTCi,j,p ≥ maxk{Cpi,k + ILpi,k} + IW p

i (ti,j), using the
following constraints:

Constraint 9. ∀Γpi not empty,
•
∑
j ai,j,p ≥ 1

• R̂pi ≥ RTCi,j,p − (1− ai,j,p) · bigM
• R̂pi ≤ ti,j + (1− ai,j,p) · bigM

where bigM is a sufficiently-large positive constant value to
represent infinity, and ai,j,p ∈ B is an auxiliary variable.

Proof. An auxiliary variable ai,j,p is associated to each check-
point ti,j such that ai,j,p = 1 if the schedulability condition of
Eq. (13) holds for ti,j . In order to guarantee the schedulability
of all the children tasks in Γpi , the inequality of Eq. (13)
must be verified for at least one checkpoint ti,j . This is
enforced by the first inequality in the constraint. If ai,j,p = 1,
the second and third inequalities of the constraint become
equivalent to RTCi,j,p ≤ R̂pi ≤ ti,j , hence correctly enforcing
the schedulability condition of Eq. (13). In all other cases
where ai,j,p = 0, the last two inequalities of the constraint
become equivalent to −∞ ≤ R̂pi ≤ ∞, and hence have no
effect.

C. Design parameters and possible limitations of the approach

A more accurate selection of the number and position of the
synchronization points requires solving a design problem with
trade-offs. For instance, with equally-spaced synchronization
points, the higher the number of synchronization points,
the more the freedom in parallelizing the code; however,
the corresponding LET intervals become shorter and the
deadlines become tighter, hence possibly penalizing the system
schedulability. From a computational point of view, the number
of synchronization points also influences the complexity of the
optimization problem by increasing the number of variables
involved, thus directly affecting its runtime.

Furthermore, the communication overhead due to the copy
process of LET labels may become significant. In case
of systems with a high communication load (e.g., image-
based recognition using camera sensors), if the number of

Task Ti (µs) # Runnab. # Accessed ` WCET Core
Γ1 1000 42 293 764 µs # 2
Γ2 6660 147 2055 3805 µs # 2
Γ3 2000 28 133 404 µs # 3
Γ4 5000 23 122 931 µs # 3
Γ5 10000 304 4869 11712 µs # 4
Γ6 20000 307 2894 10468 µs # 3
Γ7 50000 46 571 3084 µs # 3
Γ8 105 247 3001 9418 µs # 3
Γ9 2 · 105 15 418 138 µs # 3
Γ10 106 44 631 137 µs # 3

TABLE I
MAIN PARAMETERS OF THE PERIODIC TASKS BELONGING TO THE TASK SET

PROVIDED IN [23], WITH INITIAL MAPPING.

synchronization points is reduced to limit the overhead, then
the solver may be unable to find a feasible solution. In these
cases, mixed approaches might be used to parallelize (some of
the) memory transfers, e.g., using DMA controllers [30], [31].

Overall, the selection of the size and number of LET interval
is similar to other common design decisions faced in automotive
software, such as the granularity of runnables or the definition
of the system tick size. We aim at exploring such aspects in
future work.

VII. CASE STUDY

In this section, the MILP formulation is evaluated by apply-
ing it to a model of a realistic (and large-scale) engine control
application, provided in the WATERS 2017 challenge [23].

A. System model of the WATERS challenge

The target task set provided in [23] is composed of 10
periodic tasks and 11 interrupt service requests (ISRs), with
given priorities and periods (or minimum inter-arrival times,
respectively), mapped on a multicore platform with 4 identical
cores. Globally, the application is composed of a total number
of 1250 runnables. The model specifies the WCET of runnables,
the set of labels accessed (both read and write) by each runnable,
and the number of those accesses. The system includes 10000
labels, half of which are shared. Globally, the system requires
2325 inter-task messages and 2947 intra-task messages. Table
I summarizes the main parameters of the periodic tasks of the
application.

In the original allocation provided with the application, tasks
are mapped to the cores as a whole (no splitting). To match
the requirements of our analysis, when using this initial setting,
all ISRs are considered as mapped in core P1.

B. Testing the MILP formulation

The MILP-based formulation presented in Sec. VI has
been coded in C++ using the IBM CPLEX API, and was
tested on the target task set of the WATERS challenge. Due
to the high number of runnables and labels involved in the
system, the optimization problem is particularly complex. One
of the parameters that drastically impacts the complexity of
the problem is the number of synchronization points NS

i .
Considering as an example a selection of values for NS

i as
the one presented in Table II, the resulting MILP formulation
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Fig. 5. Max R/D ratio comparing different approaches and different scaling
factors.

requires more than 105 variables and nearly 2 · 105 constraints.
All tests have been performed on a machine with 128GB of
memory, 2x Intel Xeon(R) CPU E5-2640 v4 @ 2.40GHz,
with 40 cores. The MILP solver is automatically executed in
parallel by CPLEX (which often uses all the available cores).
In our tests, using the selection of Ns

i of Table II, the first
solution satisfying all the constraints is found on average in
approximately 10 minutes from the start of the execution. After
that, the solver continues exploring the search tree, looking for
better solutions. A timeout of 24 hours was set, after which the
mapping related to the best R/D ratio is provided as solution.

The mapping produced by the MILP optimization is com-
pared with a plain genetic algorithm that implements the
analysis of Sec. V as fitness function. Each chromosome
represents a possible mapping of runnables and labels, and
is randomly initialized such that it satisfies all the given
mapping rules. All new generations created through crossover
and mutation functions must also respect all the mapping rules.
A starting population of 200 chromosomes is used. Additionally,
the results of the MILP optimization are also compared against
the original task set mapping of Table I (provided with the
challenge), by adding a LET communication task to each core
and using the LET design of [25].

The model provided in the WATERS challenge is overloaded,
i.e., the worst-case response times do not satisfy all the deadline
constraints with the original mapping. For this reason, we
will use a scaling factor γ applied to the WCET of all the
runnables. Here, we chose γ in the set {0.65, 0.7, 0.75, 0.8}.
Figure 5 shows a comparison of the results, obtained with
a selection of values for NS

i for the 10 periodic tasks, as
{NS

i } = {2, 3, 2, 2, 2, 2, 2, 4, 4, 4, 4}. This configuration has
been empirically selected such that a schedulable solution is
guaranteed for all the tested scaling factors γ. The maximum
R/D obtained by the MILP optimization is always lower
than the one obtained using the original formulation, thus
guaranteeing schedulability for higher values of γ. The results
are also always better than the ones of the genetic algorithm.

In order to test the accuracy of our optimizer, we used
the response-time analysis of Section V, without the approx-
imations presented in Section VI-A, to check the mapping
obtained with the MILP formulation and compute the resulting
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Fig. 6. Max R/D ratio of an optimal mapping found with our MILP formulation,
and same mapping analyzed with the response time analysis of Sec. V, for
different scaling factors.

Task Ti Ns
i Core #2 Core #3 Core #4

Γ1 1000 2 0.167 0.477 0.517
Γ2 6660 3 0.040 0.109 0.735
Γ3 2000 2 0.115 0.368 X
Γ4 5000 2 X 0.341 0.661
Γ5 10000 2 0.831 X 0.794
Γ6 20000 2 0.427 0.749 0.822
Γ7 50000 2 X 0.389 0.338
Γ8 105 4 0.376 0.786 X
Γ9 2 · 105 4 X 0.393 X
Γ10 106 4 X 0.078 X

TABLE II
MAXIMUM R/D VALUES USING THE MAPPING OBTAINED WITH THE MILP

FORMULATION (γ = 0.75). “X” IDENTIFIES EMPTY CONTAINER TASKS.

(refined) R/D value. The results are presented in Figure 6. The
small difference between the two values, computed for each γ,
denotes that our approximate linear formulation used for the
MILP has an accuracy extremely close to the original one.

Finally, some detail of the mapping produced by the
MILP-based optimization with γ = 0.75 is presented as a
representative example in Table II. The table shows the values
of maximum R/D for each container task Γpi among the cores.
Interestingly, the selected mapping requires that some container
tasks are void (marked with an “X” in the table), especially
for the tasks with a small number of runnables in the original
deployment.

VIII. CONCLUSION

This paper presented a functional partitioning of a real-time
application, described accordingly to the AUTOSAR standard,
to a multicore platform. The proposed design leverages the
LET paradigm and multiple synchronization points to enforce
causality and determinism in the final system. This design is
able to handle also constraints coming from causal relations
between runnables that communicate over shared labels. A
matching response-time analysis was presented, considering
both interference due to execution of tasks in the same core,
and interference due to LET communication coming from
parallel executions of all the cores. A MILP formulation of the
proposed design was also presented, adapting the response-time
analysis with few conservative approximations. The resulting
MILP-based optimizer was finally applied to a realistic case
study of industry size showing very good performance.
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