
Partitioning and Interface Synthesis in Hierarchical
Multiprocessor Real-Time Systems

Alessandro Biondi
Scuola Superiore Sant’Anna

Pisa, Italy
alessandro.biondi@sssup.it

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Pisa, Italy
giorgio.buttazzo@sssup.it

Marko Bertogna
University of Modena and Reggio

Emilia
Modena, Italy

marko.bertogna@unimore.it

ABSTRACT
Hierarchical scheduling is an effective approach developed
to support the integration of independently developed ap-
plications on the same computing platform. In particular,
the M-BROE framework has been recently proposed and an-
alyzed to efficiently support component-based development
on multiprocessor platforms through the virtual multipro-
cessor abstraction implemented by reservation servers, in
the presence of shared resources. However, the problems of
partitioning applications to virtual processors and defining
reservation parameters were not addressed.

This paper fills this gap by proposing a design methodology
as an optimization problem for partitioning applications to
virtual processors, performing a synthesis of the component
interface and allocating virtual processors to physical pro-
cessors. Experimental results are also presented to evaluate
the proposed methodology.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION
BASED SYSTEMS]: Real-time and embedded systems;
D.4.7 [Organization and Design]: Real-time systems and
embedded systems

1. INTRODUCTION
In several applications domains, the exponential growth of
software functions imposed by the market is pushing soft-
ware developers towards a hierarchial design approach, where
multiple independently developed applications are executed
on the same hardware platform. For example, in automo-
tive systems such a hierarchical approach has already begun
with the objective of containing the total number of elec-
tronic control units (ECUs) installed in a car, which implies
a significant reduction of used space, weight, energy, and
cost [24].

On the other hand, the concurrent execution of multiple
applications on the same hardware generates new problems
that must be solved in order to make the hierarchical ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RTNS ’16 October 19-21, 2016, Brest, France
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4787-7/16/10 ...$15.00.
http://dx.doi.org/10.1145/2997465.2997489

proach effectively usable by the industry. One of the most
serious problems occurring when multiple components share
the same resources is caused by the reciprocal interference
among them, which may introduce unbounded delays and
cause unpredictable performance degradation [25].

An efficient kernel method for reducing the interference among
concurrent applications is the resource reservation mecha-
nism [1,23], according to which each application is executed
within a dedicated processor partition, implemented by a
reservation server. A reservation server Sk is a time provi-
sioning mechanism that allocates a budget Qk for the appli-
cation every period Pk. In this case, the bandwidth reserved
to an application results to be αk = Qk/Pk. The reserva-
tion mechanism must guarantee that the served application
receives a given fraction of the processor bandwidth, but at
the same time it cannot consume more than the allocated
amount, thus protecting the other applications from possible
overruns (temporal isolation).

When application tasks make use of mutually exclusive re-
sources shared between reservations (such as I/O devices or
global memory buffers) the isolation property could be bro-
ken when the server budged expires within a critical section.
In this case, in fact, an extra delay would be added to the
tasks blocked on the same resource to wait not only for the
release of the lock, but also for the next budget replenish-
ment.

To solve this problem, various approaches have been pro-
posed in the literature [8,9,11,18]. Among them, thanks to
an improved schedulability analysis [15], the BROE proto-
col [11] proposed by Bertogna, Fisher and Baruah has been
found to perform best.

The BROE protocol, originally developed for uniprocessor
systems, has been recently extended by Biondi et al. [14] into
M-BROE to support the development of component-based
hierarchial systems on multiprocessor platforms in the pres-
ence of shared resources. In the M-BROE framework (re-
viewed in Section 2), the tasks of a software component are
statically allocated to virtual processors (implemented via
reservation servers), which are in turn allocated to the physi-
cal processors at component-integration time. The resulting
infrastructure relies on partitioned hierarchical scheduling
and non-preemptive FIFO spin locks to regulate the access
to shared resources.

Although the authors fully characterized the M-BROE pro-
tocol and provided the schedulability analysis of components
on given reservation servers, the problems of partitioning

applications on virtual processors and defining reservation
parameters were not addressed.

Other authors solved task partitioning in multicore systems
using Integer Linear Program (ILP) formulations [5, 7], but
without considering reservations, nor resource sharing. Bini
et al. [12] addressed the problem of partitioning parallel ap-
plications upon reservation servers for platform virtualiza-
tion and Khalilzad et al. [21] studied the problem allocat-
ing component interfaces in multiprocessor systems under
partitioned EDF scheduling, but in both the works no re-
source sharing has been considered. Wieder and Branden-
burg [27] presented an optimal ILP-based partitioning strat-
egy for fixed priority scheduling with shared resources and
Al-Bayati et al. [2] addressed the same problem using heuris-
tic approaches.

However, none of these works addressed partitioning method-
ologies under reservation servers taking resource sharing into
account. Resource sharing further complicates task parti-
tioning problems (an example will be shown in Section 4),
determining the need for ad-hoc approaches that explicitly
take into account blocking times.

This paper fills this gap by proposing the following contri-
butions.

Contributions.

• A methodology based on a Mixed-Integer Linear Pro-
gram (MILP) formulation is proposed for partition-
ing applications on virtual processors taking shared
resources into account. Once an allocation is found,
the synthesis of component interfaces is performed to
find the optimal reservation parameters that guarantee
the schedulability of the task set.
• An MILP formulation is presented for allocating vir-

tual processors to physical processors depending on the
component interfaces.

Paper structure. The rest of the paper is organized as fol-
lows: Section 2 presents the system model and the M-BROE
framework; Section 3 summarizes the schedulability results
derived for the M-BROE framework; Section 4 describes the
methodology to address task partitioning and virtual pro-
cessors design; Section 5 reports an MILP formulation for
integrating the virtual processors of all components upon
the physical platform; Section 6 presents some experimental
results for evaluating the proposed methodology; Section 7
concludes the paper.

2. FRAMEWORK AND MODELING
2.1 System model
We consider a system composed of N software components
Γ1,Γ2, . . . ,ΓN , also referred to as applications. Each soft-
ware component Γk consists of a set T (Γk) of nk real-time
periodic or sporadic tasks. Each task τi ∈ T (Γk) is charac-
terized by a worst-case execution time (WCET) Ci, a period
(or minimum interarrival time) Ti, and a relative deadline
Di.

The system runs on a multiprocessor platform consisting
of M identical processors, each denoted as Pm, with m =
1, . . . ,M . Each component Γk is statically partitioned over
M virtual processors Skj , j = 1, . . . ,M, each implemented

by a reservation server characterized by a budget Qkj and

a period P kj . The ratio αkj = Qkj /P
k
j is referred to as the

reservation bandwidth. The virtual processor at which a
task τi ∈ T (Γk) is assigned is denoted as S(τi).

Each component Γk is abstracted through a component in-
terface consisting of M pairs (Qkj , P

k
j), with j = 1, . . . ,M,

representing budget and period of the reservation server as-
sociated with Skj . Note that, to keep the interface simple,
no information related to tasks and resources is exported.

A component integrator is responsible for admitting or re-
jecting applications and statically assigning each reservation
server to a specific physical processor. The processor on
which server Skj is assigned is denoted as P(Skj). For the
sake of simplicity, this paper assumes that M = M . The
framework described above is illustrated in Figure 1 for a
platform of 4 processors.

Component resources Component resources

System

Component1 Componentm

Allocator

System resources

Virtual platform

Physical platform

Integrator

Figure 1: Proposed hierarchical framework.

Tasks can share resources through mutually exclusive criti-
cal sections. At a component level, we distinguish between
component resources, accessed only by tasks belonging to the
same component and system resources, accessed by tasks be-
longing to different components.

For each resource R`, δi,` denotes the length of the longest
critical section of task τi related to R`, while ηi,` denotes
the number of critical sections used by τi on R`. We assume
to have ηi,` = 0 if a task τi does not access resource R`.

For a resource R` accessed by a task τi, the Resource
Holding Time Hi,` is defined as the maximum budget con-
sumed from the lock of R` until its unlock in the τi’s code.
Note that if a resource is accessed non preemptively, its re-
source holding time is equal to the critical section length
(i.e., Hi,` = δi,`), otherwise it must include all possible pre-
emption delays occurring within the critical section [10]. A
component Γk can only be admitted in the system if all its
tasks have a resource holding time bounded by H, that is, if

∀τi ∈ T (Γk), ∀R`, Hi,` ≤ H, (1)

For component resources Rq accessed by tasks allocated to

different virtual processors, the sum of the maximum re-
source holding times of Rq from each virtual processor must
be bounded by MH. Formally, we require that

∀Γk, ∀Rq ∈ Rk,
M∑
j=1

max{Hi,q | S(τi) = Skj } ≤MH, (2)

where Rk denotes the set of component resources accessed
by tasks executing on different virtual processors, formally
defined as

Rk = {Rq | ∃τ1, τ2 using Rq ∧ S(τ1) 6= S(τ2)} . (3)

2.2 Scheduling infrastructure
Tasks allocated to a virtual processor are handled by a local
scheduler, which can be any fixed-priority (FP) algorithm
or Earliest Deadline First (EDF) [22]. Tasks may include
non-preemptive regions in which preemption is disabled for
the local scheduler. Each virtual processor is implemented
by an M-BROE server [14] and the various M-BROE servers
are scheduled under partitioned EDF scheduling on the M
processors.

Once reservation servers are mapped to physical processors,
three types of shared resources can be distinguished: Lo-
cal resources, shared only by tasks handled by the same
server; Processor-local resources, shared only by tasks exe-
cuting on the same processor, but on different servers; Global
resources, shared by tasks executing on different processors.

Local resources are accessed through the SRP [3] proto-
col, while processor-local resources are accessed by the H-
SRP [18] protocol in conjunction with M-BROE, in a local
non-preemptive manner. Finally, global resources are ac-
cessed by the MSRP [20] protocol in conjunction with M-
BROE.

3. SUMMARY OF SCHEDULABILITY RE-
SULTS

To make this work self consistent, this section summarizes
the schedulability results derived for the M-BROE frame-
work. In particular, after recalling how to derive blocking
factors, we summarize the schedulability tests used for local
(tasks guarantee upon virtual processors) and global (virtual
processors guarantee upon the physical platform) analysis.
Please refer to [14] for further details.

3.1 Resource sharing
Under the M-BROE framework, global resources are pro-
tected by non-preemptive FIFO spinlocks. If a task τi wants
to use a global resource locked from a task on another proces-
sor, τi starts spinning non-preemptively until the resource
is granted. Critical sections on global resources are also
executed non-preemptively and simultaneous requests from
different processors are served in FIFO order.

To analyze blocking times related to spinlocks we rely on the
MSRP [20] analysis: please note that although an improved
analysis for spinlocks has been proposed in [26], it cannot be
directly used for the M-BROE framework for several reasons
as explained in [14] (page 4). According to the MSRP anal-
ysis, a bound on the maximum spinning time (denoted as
remote blocking) is computed for each global resource R` ac-
cessed from a given processor and used to inflate the WCET
of the tasks using R`. Also, non-preemptive spinning and

non-preemptive access to global resources introduce a non-
preemptive blocking factor that must be accounted for each
task. The access to local and processor local resources is reg-
ulated by the SRP [3] and the H-SRP [16] protocols, gener-
ating local blocking and additional non-preemptive blocking,
respectively.

In the following, we first provide an upper-bound for the
spinning time and then report the expressions for computing
remote blocking, non-preemptive blocking and local blocking.

Upper-bound for the spinning time. According to
Lemma 1 in [14], a safe upper bound on the spinning time
ξ`,j related to system resources R` can be computed as
ξ`,j ≤ (M − 1)H.

For component resources, critical section lengths are known,
since they belong to tasks of the same component. How-
ever, when tasks are assigned to different virtual processors,
it is not possible to infer the physical processor on which
they will be executed. For this reason, a safe bound on the
spinning time can be computed by assuming that all vir-
tual processors of a component will be assigned to different
physical processors. In this case, an upper bound on the
spinning time ξ`,j for a component resource R` in Γk can be
computed as

ξ`,j ≤
∑

Sk
j 6=S

k
m

max{δi,` | S(τi) = Skm}. (4)

This fact imposes also that processor-local resources have
to be always accounted as global resources to capture the
worst-case in the local analysis.

Remote blocking. An upper-bound ξi on the remote block-
ing for task τi is computed by accounting for the maximum
spinning time on each critical section of τi, with P(S(τi)) =
Pj , that is:

ξi =
∑
R`

{ηi,` · ξ`,j | R` used by τi}. (5)

Non-preemptive blocking. Such a blocking is bounded
by the longest non-preemptive section causing arrival block-
ing. Under local EDF scheduling, assuming that tasks τk
and τi execute on processor Pj , it can be computed as

BNP
i = max

k,R`

{ξ`,j + δk,` | R` used by τk ∧Dk > Di}, (6)

Local blocking. The SRP blocking factor for task τi due
to local resources is denoted by BLi and is given by criti-
cal sections of resources that are locked by tasks τL with
deadlines greater than Di and shared with tasks τH with
deadlines less than or equal to Di. Formally,

BLi = max {δL,` | DH ≤ Di < DL ∧ τL,τH use R`} . (7)

Since non-preemptive blocking and local blocking occur at the
task’s release, the resulting blocking is called arrival blocking
and can be computed as

Bi = max{BNP
i , BLi }. (8)

3.2 Local analysis
Using the processor demand criterion extended to include
resource sharing [4], a task set T is schedulable by EDF
under the M-BROE server if:

∀t > 0 B(t) + dbf(t) ≤ sbf(t) (9)

where

dbf(t) =
∑
τi∈T

(⌊
t−Di
Ti

⌋
+ 1

)
0

(Ci + ξi), (10)

B(t) = max{Bi | Di ≤ t}, (11)

and sbf(t) is the supply bound function for the M-BROE
server reported in [14] and (x)0 denotes max(0, x). Note
that the dbf(t) in Equation (10) takes into account the com-
putation time inflation ξi due to remote blocking.

3.3 Component integration analysis
The component integrator has to ensure the schedulabil-
ity of the reservation servers assigned to each processor.
Each component provides a set of reservation servers to the
component integrator according to the specified interface;
such reservation servers will be scheduled under partitioned
scheduling on the M physical processors.

The schedulability test for guaranteeing the execution of vir-
tual processors upon physical processors is reported in the
following equation:

∀Skj : P(Skj) = Pm,
∑

r,l:P l
r≤P

k
j

∧
P(Sl

r)=Pm

Qlr
P lr

+
Bkj
P kj
≤ 1. (12)

Since the simple interface (Q,P) is used for each component,
no information is available about shared resources, hence,
by Equations (2) and (3), the upper bound Bkj = MH can
be used. Note that a more accurate upper bound can be
computed by adopting a more complex component interface,
as the one proposed in [14].

4. PARTITIONING AND SERVER DESIGN
This section addresses the problem of partitioning applica-
tion tasks on a set of virtual processors implemented by
M-BROE reservation servers, and determining their config-
uration parameters in terms of budgets and periods.

A partitioning methodology for the M-BROE framework
must take into account three aspects simultaneously: (i) the
computational demand of the application; (ii) the parame-
ters (budget and period) of the reservation servers; and (iii)
the blocking times related to resource sharing (also includ-
ing the effect of spinlocks). In particular, the dependency of
partitioning on resource sharing is better illustrated by the
following example.

Example. Consider a component composed of 3 tasks with
periods T1 = 10, T2 = 20 and T3 = 50 ms and implicit dead-
lines, to be executed on a platform composed of two pro-
cessors. Tasks τ1 and τ3 share a component resource R. If
tasks τ1 and τ3 are assigned to different processors, then the
access to R will be regulated by a spinlock. This solution
penalizes the schedulability by generating non-preemptive
blocking and increasing the execution times of τ1 and τ3 due
to spinning time. Conversely, if the two tasks are allocated
on the same processor, the blocking factor related to R is
smaller (due to only uniprocessor SRP blocking). While it

seems convenient allocating tasks on the same processor, it is
easy to see that allocating τ2 together with the other tasks
may not be appropriate, due to the local blocking experi-
enced by τ2 (because D1 < D2 < D3, from Equation (7)). If
τ2 is allocated to the other processor, it will experience no
blocking. Note however, that τ2 can experience a different
blocking if it has a different period (e.g., T2 = 5 ms).

The simple example presented above shows that resource
sharing further complicates partitioning (which is intrinsi-
cally NP-HARD, being similar to a bin-packing problem),
and must be taken into account to identify a “good” task
allocation.

In this paper, task partitioning is formulated as an opti-
mization problem. Unfortunately, however, given any per-
formance objective (e.g., minimizing the overall bandwidth
for the reservation servers), searching for an optimal solution
is practically intractable for the following reasons:

• The exact EDF schedulability test requires the specifi-
cation of a pseudo-polynomial number of check points [6]
that depends on the parameters of the server upon
which tasks execute (as explained in [11, 17]). Being
the server parameters part of the output of the opti-
mization problem (hence, unknown), upper bounds on
them must be used, thus obtaining a potentially large
set of constraints and variables.
• As shown in [17], it is possible to formulate an opti-

mization problem to compute optimal BROE server
parameters, minimizing the server bandwidth still en-
suring the task schedulability. However, the exact
problem formulation involves non-linear constraints,
because the supply bound function of the server is non-
linear.
• In the M-BROE framework, the access to global re-

sources is protected by FIFO non-preemptive spinlocks,
but an exact analysis for spinlocks is still missing, thus
preventing the search for an optimal partitioning.

Given such limitations, this paper proposes a sub-optimal
methodology for task partitioning and virtual processors
design by splitting the problem in two phases: First, an
MILP optimization is performed for partitioning tasks to
virtual processors; then the optimal server parameters are
computed through the approach presented in [17].

To overcome the problems highlighted above, the following
approximations are proposed to express partitioning as an
MILP optimization problem:

• The EDF schedulability is carried out by the Fully
Polynomial Time Approximation Scheme (FPTAS), pro-
posed by Fisher, Baker, and Baruah [19]. According
to this approach, the workload of a task is described
by the exact demand bound function for the first λ
steps, and by a linear upper-bound for the remaining
steps. Formal details about this approximation will be
reported in Section 4.1.3.
• The reservation servers are approximated as ideal (fluid)

virtual processors, running at a given speed α, which
represents the server bandwidth. Note that using a
classical bounded-delay (α-∆) approximation, the op-
timization problem results non-linear.
• As done by Wieder and Brandenburg [27], blocking

times in the presence of FIFO non-preemptive spin-
locks are computed by the original MSRP (sufficient)

analysis proposed by Gai et al. [20].

Please, note that approaching the problem through an MILP
formulation guarantees that the achieved partitioning is op-
timal with regard to the assumed approximations.

4.1 Optimization problem formulation
This section presents an MILP formulation to solve the prob-
lem of task partitioning upon virtual processors. The formu-
lation is inspired by the one proposed by Wieder and Bran-
denburg [27] in the context of classical partitioned fixed-
priority scheduling without reservation mechanisms.

As stated in Section 3, the worst-case blocking related to
component resources is computed assuming that all the vir-
tual processors of a component are assigned to different
physical processors: without loss of generality, the index
k = 1, . . . ,M will be used for both physical processors and
virtual processors. In the following we refer to a single com-
ponent, hence the component index is removed from all the
terms used below. All the real variables used in the opti-
mization problem are implicitly constrained as greater than
or equal to zero. For such variables, lower-bounds expressing
the minimum (safe) value will be used to ensure schedula-
bility.

4.1.1 Decision variables for task allocation
The following decision (binary) variables are defined to de-
cide on the task’s allocation.

• Ai,k: binary variable that is set to 1 if and only if task
τi is assigned to server Sk.

Since each task is assigned to exactly one server, the follow-
ing constraint can be derived:
Constraint 1. ∀τi,

∑M
k=1 Ai,k = 1.

• Vi,j : binary variable that is set to 1 if and only if both
tasks τi and τj are assigned to the same server Sk (i.e.,
Ai,k = Aj,k, for the same Sk).

This variable can be derived from variables Ai,k by using
the following constraint:

Constraint 2. ∀τi, ∀τi 6= τj ,∀k = 1, . . . ,M

Vi,j ≥ 1− (2−Ai,k −Aj,k).

Proof. If tasks τi and τj are assigned to the same server Sk,
then Ai,k = Aj,k = 1, so obtaining Vi,j ≥ 1. If τi and τj
are assigned to different servers, we have Ai,k 6= Aj,k, ∀k =
1, . . . ,M , leading to (2−Ai,k −Aj,k) ≥ 1, ∀k = 1, . . . ,M so
degenerating the constraint to Vi,j ≥ 0.

4.1.2 Resource sharing - variables and constraints
Blocking times related to resource sharing are crucial to ex-
press the task schedulability as a constraint of the optimiza-
tion problem.

First of all, decision variables are provided to identify which
resource can cause arrival blocking on tasks.

• Zi,`: binary variable that is set to 1 if and only if
resource R` can cause arrival blocking on task τi.

To define these variables it is necessary to distinguish be-
tween component and system resources. If R` is a compo-
nent resource, it can results in a local or a global resource
depending on the allocation of tasks using R`. If a com-
ponent resource R` results in a local resource, the arrival

blocking is equal to the classical case of uniprocessor SRP,
leading to

Constraint 3. ∀τi, ∀R`, ∀τL | DL > Di ∧ ηL,` > 0,

∀τH | DH ≤ Di ∧ ηH,` > 0

Zi,` ≥ 1− (2− Vi,L − Vi,H).

Proof. This constraint derives directly from the expression
of local blocking for SRP reported in Equation (7). Being
a blocking related to local resources, tasks τi, τL and τH
are involved only if they are allocated on the same virtual
processor: hence, the term (2 − Vi,L − Vi,H) is designed to
be zero if and only if all the three tasks are allocated on the
same virtual processor (as done in Constraint 2); otherwise
it results in a positive value, thus degenerating the constraint
to Zi,` ≥ 0.

If a component resource R` results in a global resource, it will
be protected by a FIFO non-preemptive spinlock generating
non-preemptive blocking on tasks. Such a kind of blocking
is accounted through the following constraint:

Constraint 4. ∀τi, ∀R`, ∀τL | DL > Di ∧ ηL,` > 0,

∀τH | ηH,` > 0

Zi,` ≥ 1− (1− Vi,L)− Vi,H .

Proof. A task τi can incur in arrival blocking if a task τL
with deadline greater than τi (DL > Di) is accessing a global
resource R`: this is because τL will use non-preemptive spin-
ning and a non-preemptive critical section for R`. First of
all, this is possible only if τi and τL are allocated to the same
virtual processor: to this purpose, the term −(1− Vi,L) will
cause a degeneration of the constraint to Zi,` ≥ 0 if this is
not true. At the same time, there must exist a task τH ac-
cessing R` that is not allocated on the virtual processor of
τi and τL, otherwise R` would not be a global resource: to
this purpose, the term −Vi,H is provided to not have arrival
blocking if such a task τH does not exist.

Consider now system resources. These resources are ac-
cessed from all the components; hence, a safe bound for their
blocking is computed by assuming that they will always re-
sult in global resources, independently of the task allocation
on the other processors. Overall, a system resource R` leads
to definition of the following constraint:

Constraint 5. ∀τi, ∀R`, ∀τL | DL > Di ∧ ηL,` > 0,

Zi,` ≥ 1− (1− Vi,L).

Proof. As discussed in Section 3, since system resources are
accessed by all the components, we have to assume that they
will always result in global resources (thus involving non-
preemptive spinning and non-preemptive critical sections).
Hence, to have arrival blocking on a task τi, it is sufficient to
have a task τL executing on the same virtual processor of τi,
having DL > Di and accessing a system resource R`. The
term −(1−Vi,L) is provided to degenerate the constraint to
Zi,` ≥ 0 if such a task τL does not exist; otherwise Zi,` ≥ 1,
thus expressing the presence of arrival blocking.

We now provide constraints to quantify the arrival blocking
on tasks, expressed through the following variables for the
optimization problem:

• Bi,`: real variable expressing a lower-bound on the
arrival blocking imposed on τi by critical sections on
resource R`.

• Bi,`,k: real variable expressing a lower-bound on the
arrival blocking imposed on τi by critical sections on
resource R`, executed by tasks running on processor
Pk.

The blocking Bi,` can be computed as

Constraint 6. ∀τi, ∀R`, Bi,` =
∑M
k=1 Bi,`,k.

The key part consists in providing constraints for the con-
tributions of arrival blocking Bi,`,k coming from each pro-
cessor. Also in this case, we have to distinguish between
component and system resources. Considering component
resources R`, the blocking contribution Bi,`,k coming from
the same virtual processor on which task τi is allocated can
be expressed as follows:

Constraint 7. ∀τi, ∀R`, ∀Pk, ∀τL | DL > Di ∧ ηL,` > 0,

Bi,`,k ≥ δL,` − δL,` · (1− Zi,`)− δL,` · (1−AL,k)

−δL,` · (1−Ai,k).

Proof. This constraint expresses the blocking contribution
for τi coming from the virtual processor at which such a
task is allocated. Concerning arrival blocking, a task τi can
be blocked by critical sections of tasks τL (i.e., δL,`), either
in the case R` is a local resource (imposing SRP blocking)
or a global resource (imposing non-preemptive blocking).

Each term preceded by a minus is provided to impose zero
blocking depending on decision variables, thus degenerating
the constraint to Bi,`,k ≥ 0. First of all, the blocking has to
be zero if R` cannot impose arrival blocking on τi: this is
enforced by the term −δL,` ·(1−Zi,`) which becomes equal to
−δL,` if Zi,` = 0. Without loss of generality we assume that
τi is allocated on Sk. Then, the arrival blocking from such
a server exists only if τi and τL are allocated on Sk: to this
purpose, the terms −δL,` · (1− AL,k) and −δL,` · (1− Ai,k)
are provided to degenerate the constraint to Bi,`,k ≥ 0 if
this is not true.

If a component resource R` results in a global resource, there
is a blocking contribution coming from other virtual pro-
cessors (i.e., the ones at which τi is not allocated). These
blocking contributions are reflected as non-preemptive spin-
ning that prevents τi from executing. A lower-bound on
such a blocking Bi,`,k can be formulated as follows:

Constraint 8. ∀τi,∀R`, ∀Pk, ∀τx | ηx,` > 0,

Bi,`,k ≥ δx,` − δx,` · (1− Zi,`)− δx,` · (1−Ax,k)

−δx,` ·Ai,k.

Proof. Each term preceded by a minus is provided to impose
zero blocking depending on decision variables, thus degen-
erating the constraint to Bi,`,k ≥ 0. Like Constraint 7, the
blocking has to be zero if R` cannot impose arrival blocking
on τi: this is enforced by the term −δL,` · (1 − Zi,`). If a
component resource R` results in a global resource, there
exists a remote task τx accessing R` that is allocated on
a virtual processor different from the one of τi. Without
loss of generality, assume that Sk is the virtual processor
at which τi is allocated. The remote task τx has to be al-
located on a virtual processor different from Sk, hence the
term −δx,` · (1 − Ax,k) is provided to have zero blocking if
this is not true. Similarly, the term −δx,` ·Ai,k enforces zero
blocking from the same virtual processor Sk at which τi is
allocated.

When blocking on a system resource R` is considered, we as-
sume that a critical section of maximum length H is present
on each virtual processor (please refer to Section 3), so ob-
taining the following constraint:

Constraint 9. ∀τi, ∀R`, ∀Pk,

Bi,`,k ≥ H−H · (1− Zi,`)−H ·Ai,k.

Proof. Each term preceded by a minus is provided to impose
zero blocking depending on decision variables, thus degen-
erating the constraint to Bi,`,k ≥ 0. First of all, the term
−H · (1 − Zi,`) is provided to have zero blocking if task τi
cannot incur in arrival blocking related to R`. Then, we
have a blocking contribution equal to the maximum criti-
cal section length H on each remote processor, that is, all
processors except the one at which τi is allocated, which is
excluded through the term −H ·Ai,k.

As stated in Section 3, the use of non-preemptive FIFO spin-
locks is accounted by inflating tasks WCETs with the spin-
ning time ξi generated by remote blocking. We decompose
the spinning time ξi of a task τi by using the following vari-
ables:

• ξi,k: real variable expressing a lower-bound on the
spinning time for task τi originated from processor Pk.
• ξi,k,`: real variable expressing the contribution of the

spinning time ξi in accessing the resource R`, origi-
nated from processor Pk.

The per-processor spinning time ξi,k can be expressed as

Constraint 10. ∀τi, ∀Pk, ξi,k =
∑
R`
ξi,k,`.

Similarly, the overall spinning time ξi of a task τi is formu-
lated as

Constraint 11. ∀τi, ξi =
∑M
k=1 ξi,k.

Then, the key part consists in identifying a lower-bound on
the spinning time ξi,k,`. Again, it necessary to distinguish
between component and system resources. For a component
resource R`, the following constraint is used:

Constraint 12. ∀τi, ∀Pk,∀R`, ∀τx | τi 6= τx,

ξi,k,` ≥ δx,` · ηi,` ·Ax,k − B ·Ai,k.

Proof. This constraint derives directly from the computa-
tion of the spinning time for component resources, as defined
in Equations (4) and (5). The constraint collects the maxi-
mum critical section on R` of tasks τx allocated on virtual
processor Sk. To account for the overall spinning time, the
critical section length is multiplied for the number of criti-
cal sections on R` for τi (see Equation (5)). Thanks to the
decision variable Ax,k, the first term becomes zero if task τx
is not allocated on server Sk. The remaining term −B ·Ai,k
is provided to have zero spinning time contribution from the
same processor at which τi is allocated (critical sections ex-
ecuted on the same processor of τi do not cause spinning).
In this case, B represents a numerically large constant that
dominates all possible values for the term δx,` · ηi,`, and can
be formally defined as B = maxx,`{δx,`} ·maxi,`{ηi,`}.

When a system resource R` is considered, the spinning time
can be expressed as follows:

Constraint 13. ∀τi, ∀Pk,∀R`, ∀τx | τi 6= τx,

ξi,k,` ≥ H · ηi,` ·Ax,k − B ·Ai,k.

Proof. The proof follows from the one of Constraint 12, as-
suming critical sections of length H.

4.1.3 Schedulability - variables and constraints
This section presents the constraints for the optimization
problem expressing the schedulability of a task set upon a
reservation server. As stated in Section 3, the local schedu-
lability upon an M-BROE server can be checked by Equa-
tion (9); however, as expressed at the beginning of Section 4,
the exact test is not easily tractable in an optimization prob-
lem. To solve this problem, the workload of a task set is
approximated using the FPTAS [19] approach. According
to the FPTAS, the demand bound function dbfi(t) of a task
τi is exact for the first λ steps and then approximated with
a linear upper-bound. Depending on the chosen value of
λ, function dbfi(t) can be approximated with any desired
degree of accuracy. Formally, the FPTAS for the demand
bound function is expressed as

dbf
(λ)
i (t) =

{
dbfi(t), if t ≤ (λ− 1)Ti +Di

Ci + ξi + (t−Di)Ui, otherwise,

(13)
where Ui = (Ci + ξi)/Ti, to account for the WCET inflation
related to the use of spinlocks.

Using this approximation, the EDF schedulability has to be
considered in λ + 1 time points for each task. The result-
ing sufficient EDF schedulability test for a set of tasks T is
expressed as follows:

∀p = 0, 1, . . . , λ, ∀t ∈ tSet(p),

B(t, p) +
∑
τi∈T

dbf
(λ)
i (t) ≤ sbf(t), (14)

where tSet(p) is the set of schedulability check-points [19]
defined as

tSet(p) =
⋃
τi∈T

{pTi +Di}, (15)

and B(t, p) is defined to approximate the blocking term of
Equation (11) as

B(t, p) =

{
B(t), if 0 ≤ p < λ

maxi{Bi}, p = λ.
(16)

As stated by Baruah in [4], the blocking term B(t) is zero for
values of t larger than the maximum relative deadline of the
tasks under analysis. As a consequence, the exact blocking
function B(t) can be used (i.e., B(t, p) = B(t), ∀p ≥ 0)
in the MILP formulation if a sufficiently large number λ of
check-points is used for the FPTAS.

We now define a set of variables and constraints to express
the EDF schedulability according to the FPTAS approach.
All the variables contain the processor index k, since the
schedulability has to be checked for each processor address-
ing a partitioned scheduling scheme. First of all, we in-
troduce the following variables to account for the WCET
inflation related to spinlocks:

• Ji,k: real variable expressing the inflated WCET of a
task τi executing on virtual processor Sk.

Such a variable can be defined by using the following con-
straint:

Constraint 14. ∀τi, ∀Pk, Ji,k = Ci + ξi − B · (1−Ai,k).
Proof. This constraint simply adds Ci to the overall spinning
time ξi. Term −B · (1 − Ai,k) is provided to have a null
inflated WCET if τi is not allocated to server Sk (i.e., when
Ai,k = 0). B represents a numerically large constant that
dominates all possible values of the term Ci + ξi, and can
be defined as B = maxi{Ci} · (M − 1)H ·maxi,`{ηi,`}.

Now note that Equations (14) involves the blocking time
B(t), defined in Equation (16). Having to express the schedu-
lability in a limited number of time points, we introduce
variables to quantify the blocking time at the pth time point
of a task:

• PBk,p,j : real variable expressing the blocking time on
virtual processor Sk at schedulability check-point pTj+
Dj of task τj , with p = 0, 1, . . . , λ.

Such a blocking time is expressed by the following con-
straint, making use of the blocking time Bi,` expressed in
Constraint 6:

Constraint 15. ∀Sk,∀p = 0, 1, . . . , λ, ∀τj , ∀R`
∀τi | Di ≤ pTj +Dj ∧ p < λ

PBk,p,j ≥ Bi,` − B · (1−Ai,k).

Proof. According Equations (11) and (16), the blocking
at the schedulability check-point t involves blocking times
of tasks having deadlines less than or equal to t for p =
0, 1, . . . , λ. The pth check-point originated from τj is pTj +
Dj (see Equation (15)): this constraint considers all tasks
τi having Di ≤ pTj +Dj (thus contributing to blocking) ex-
cluding the ones that are not allocated on virtual processor
Sk. Such tasks are excluded through the term −B·(1−Ai,k),
where B is a numerically large constant that dominates all
possible values for the term Bi,` and can be formally defined
as B = MH. Similarly, all tasks τi allocated to Sk are con-
sidered for p = λ, accounting for the maximum blocking on
Sk.

The computational supply provided by each virtual proces-
sor Sk is approximated by assuming ideal (fluid) virtual pro-
cessors with bandwidth αk. The following variables are in-
troduced to support this choice:

• αk: real variable representing the bandwidth of virtual
processor Sk, with 0 ≤ αk ≤ 1.

At this point we have all the variables and the constraints
to express the EDF schedulability on each virtual processor
Sk:

Constraint 16. ∀Sk, ∀p = 0, . . . , λ, ∀τj

PBk,p,j +
∑
τi∈Γ

dbf
(λ)
i,k (pTj +Dj) ≤ αk · (pTj +Dj),

where

dbf
(λ)
i,k (t) =

(⌊

t−Di
Ti

⌋
+ 1
)

0
Ji,k, if t ≤ (λ− 1)Ti +Di

Ji,k + (t−Di)
(
Ji,k
Ti

)
, otherwise.

Proof. This constraint derives directly from the FPTAS schedu-
lability test in Equation (14), for each virtual processor Sk.
Thanks to the definition of variables Ji,k, the contribution
in terms of demand bound function of tasks τi is null if τi is
not assigned to virtual processor Sk.

4.1.4 Objectives
We now propose two alternative allocation strategies for the
optimization problem, aiming at different objectives. The
first one, denoted as (A), aims at allocating the tasks of a
component on a small set of virtual processors having high
bandwidth; the second one, denoted as (B), aims at dis-
tributing tasks among a larger set of virtual processors with
lower bandwidth. Clearly, each allocation strategy leads to
a different instance of the component interface. We now
formalize the objectives for both strategies.

• Strategy (A): minimize the overall bandwidth required
by a software component, that is the sum of the band-
widths required by its virtual processors:

minimize

M∑
k=1

αk. (17)

• Strategy (B): minimize the maximum bandwidth re-
quired by the virtual processor of a component:

minimize max{αk} = minimize Λ, (18)

where Λ is an additional real variable of the optimiza-
tion problem defined by the following constraint:

Constraint 17. ∀k = 1, . . . ,M Λ ≥ αk.

4.2 Interface synthesis
Given the allocation of the component tasks to the virtual
platform, produced by the MILP solution, the design of the
reservation server parameters is performed using the ap-
proach presented in [17]. Such an approach computes the
optimal budget and period (under the assumed scheduling
infrastructure) that guarantee the application schedulability
while minimizing the bandwidth for each virtual processor,
taking server context switch overhead into account. The
resulting server parameters for each virtual processor con-
stitute the component interface exported to the component
integrator.

5. VIRTUAL PROCESSOR ALLOCATION
The goal of this section is to propose a methodology to par-
tition the virtual processors of all the components to the M
physical processors, that is the task performed by the com-
ponent integrator. This is done by an MILP optimization
problem formulation that is able to find an exact solution
for the allocation problem, based on the interfaces exported
by the components.

As done for the task allocation problem presented in Sec-
tion 4, we introduce a set of (binary) decision variables to
decide on the virtual processors allocation:

• Alj,k: binary variable that is set to 1 if and only if the

reservation Slj of component Γj is assigned to physical
processor Pk.

Since a reservation must be assigned to only one processor,
the following constraint can be derived:

Integration Constraint 1. ∀Slj ,
∑M
k=1 A

l
j,k = 1.

To express the schedulability at the integration level in the
optimization problem formulation, we have to derive con-
straints from the test reported in Equation (12). The idea is
to provide variables and constraints representing the contri-
bution of bandwidth on each physical processor; such vari-

ables will be defined to be equal to zero if a virtual processor
is not allocated to a processor:

• Qlj,k: real variable representing the budget of server Slj
executing on processor Pk. Such a budget will be zero
if P(Slj) 6= Pk.

• Blj,k: real variable representing the blocking imposed

on server Slj , executing on processor Pk. Such a block-

ing will be zero if P(Slj) 6= Pk.

The following constraints formulate the value for these vari-
ables.

Integration Constraint 2.

∀k = 1, . . . ,M, ∀Slj , Qlj,k ≥ Qlj − B · (1−Alj,k).

Proof. The term −B · (1 − Alj,k) is provided to degenerate

the constraint to Qlj,k ≥ 0 if virtual processor Slj is not
allocated to physical processor Pk, where B is a numerically
large constant formally defined as B = maxl,j{Qlj}.

Integration Constraint 3.

∀k = 1, . . . ,M, ∀Slj , Blj,k ≥ Blj − B · (1−Alj,k).

Proof. It follows from the proof of Integration Constraint 2,
with B = MH.

Now it is possible to present the main constraint expressing
the schedulability of the reservation servers.

Integration Constraint 4.

∀k = 1, . . . ,M, ∀Slj ,
∑

r,v:Pv
r ≤P l

j

Qvr,k
P vr

+
Bkj,k
P lj
≤ 1.

Proof. It follows directly from Equation (12) and Integration
Constraints 2 and 6. If a reservation server is not assigned
to processor Pk, its contribution to the sum will be zero.

As stated in Section 3, the blocking factor Blj can be con-

sidered constant and equal to Blj = MH. If a more complex
component interface is used (e.g., the one proposed in Sec-
tion VI of [14]), it is possible to setup additional variables
and constraints to compute allocation-dependent blocking
times, as done in Section 4 through Constraints 3-9. This
extension is not addressed in this paper for space limitations.

6. EXPERIMENTAL RESULTS
This section presents some experimental results aimed at
evaluating the proposed methodology. Experiments have
been conducted to (i) evaluate the performance in terms
of schedulability ratio for the whole methodology, and (ii)
measure the run time of the procedure for partitioning an
application upon a virtual processor. The proposed MILP
formulations have been implemented with the IBM CPLEX
solver running on an 8-core Intel Xeon at 2.8 GHz.

6.1 Workload generation
Given an overall system utilization U , the utilizations Uk
of the N components have been generated using the UUni-
fast [13] algorithm, limiting their values in the range [0.15,
1.5]. All random variables were generated with uniform dis-
tribution in a given range. The task set Tk in each com-
ponent Γk was generated by fixing a random number of

tasks nk ∈ [4, 8], each with utilization ui ≤ 0.8 gener-
ated by UUnifast. Tasks periods Ti were randomly chosen
in the set {5, 10, 20, 30, 50, 80, 100, 150, 200} ms, and tasks
computation times were computed as Ci = uiTi. We as-
sumed the presence of NRS system resources and NRC

component resources. For each resource R`, a random num-
ber of tasks in the range [1, rsf · nk] was selected to access
R`. The rsf parameter (resource sharing factor) indicates
how many tasks use a resource. For each task τi access-
ing R`, we generated ηi,` ∈ [1, ηMAX] critical sections of
length δi,` ∈ (0,H]. To have realistic task sets, we enforced
Ci ≥

∑
R`

(ηi,` · δi,`), ∀τi ∈ Tk.

6.2 Experiment 1
This experiment was carried out to evaluate the perfor-
mance of the proposed approach comparing the two allo-
cation strategies described in Section 4 (here denoted as
MILP-A and MILP-B), and a mixed strategy, denoted as A
∨ B, which selects the best of the two interfaces (resulting
from strategy A and B), in terms of component integration
schedulability. Simulations consider systems composed of
N = 5 components to be executed on a physical platform
including M = 4 processors. The performance of the pro-
posed methodology was evaluated by measuring the schedu-
lability ratio (i.e., the ratio of schedulable systems and the
total number of generated systems) as a function of the sys-
tem utilization U , varied from 0.75 to M with step 0.25. For
each value of U , the schedulability ratio was computed over
250 systems, hence testing 1250 components and generating
a number of tasks between 5000 and 10000.

Figure 2 reports the results of this experiment obtained with
the following parameters: NRS = 2, NRC = 2, λ = 30,
rsf= 0.3, ηMAX = 2, H = 100µs.

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

U

S
ch

ed
u
la

b
il
it

y
ra

ti
o

MILP-A

MILP-B

A ∨ B

Figure 2: Schedulability ratio as a function of the
system utilization U .

Note that, for this particular setting of parameters, MILP-A
is slightly more effective than MILP-B for all system utiliza-
tions, and both of them are able to guarantee more than 80
percent of the generated systems for overall utilizations up
to 3. As expected, the mixed strategy (A ∨ B) outperforms
the others, being able to admit more than 40 percent of the
generated systems for utilizations up to 3.5.

To evaluate the impact of resource sharing on the schedu-
lability ratio, we performed another test with an increased
number of resources (NRS = 3, NRC = 3). The result of
this test is reported in Figure 3. As can be noted from the
graphs, the performance of both MILP-A and MILP-B is
slightly degraded, while the mixed strategy (A ∨ B) does
not show a significant degradation.

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

U

S
ch

ed
u
la

b
il
it

y
ra

ti
o

MILP-A

MILP-B

A ∨ B

Figure 3: Schedulability ratio as a function of the
system utilization U .

6.3 Experiment 2
In this experiment we measured the run time needed to solve
the MILP formulation for task partitioning as a function of
the number of tasks (n) in a component. For each value of n,
the average and the maximum run time was measured over
500 randomly generated components. Figure 4 reports run
time taken by strategies (A) and (B). The results are col-
lected under the same parameter configuration used in Fig-
ure 2. The maximum run time shows an exponential trend
as the number of tasks increases. This result is expected
since the number of the variables on the MILP formulation
increases with the number of tasks.

3 4 5 6 7 8 9
0

20

40

60

80

100

n

R
u
n

ti
m

e
(s

ec
o
n
d
s)

Strategy (A)

MAX

AVG

3 4 5 6 7 8 9
0

50

100

n

R
u
n

ti
m

e
(s

ec
o
n
d
s)

Strategy (B)

MAX

AVG

Figure 4: Average and maximum run time for solv-
ing the MILP formulation for task partitioning with
strategies (A) and (B).

7. CONCLUSIONS AND FUTURE WORK
This paper presented a component-based design methodol-
ogy for supporting the integration of independently devel-
oped real-time applications upon multiprocessor platforms
in the presence of shared resources. Applications consists of
a set of periodic and sporadic real-time tasks that can use
both component and system-level resources. The physical
platform is abstracted through a number of virtual plat-
forms, one for each component, each consisting of a set of
virtual processors implemented by reservation servers.

The proposed methodology uses an MILP formulation to
partition each application upon the virtual multiprocessor

platform taking shared resources into account. Once an al-
location is found for each component, the synthesis of the
virtual processors is performed to find the optimal reserva-
tion parameters that can guarantee the schedulability of the
applications. Then, a component integrator uses an MILP
formulation for allocating all virtual processors to the phys-
ical processors to preserve the schedulability of the system.

Simulation experiments on synthetic applications have been
carried out to validate the effectiveness of the approach. The
achieved results showed that the proposed design methodol-
ogy (in particular the mix of the proposed allocation strate-
gies) is able to admit 90 percent of the generated systems
having utilization up to 3 on a quad-processor platform, in
the presence of shared resources and reservations.

As a future work we plan to investigate non-linear optimiza-
tion problem formulations for the task partitioning, as well
as resource sharing driven heuristics, hence proposing a com-
parison study through extensive simulation experiments.

Acknowledgements
This work has been partially supported by the RETINA Eurostars
Project E10171 and received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement 688860. The authors like to thank Enrico Bini for the
fruitful discussions that helped this work.

8. REFERENCES
[1] L. Abeni and G. Buttazzo. Resource reservations in

dynamic real-time systems. Real-Time Systems,
27(2):123–165, 2004.

[2] Z. Al-bayati, Y. Sun, H. Zeng, M. D. Natale, Q. Zhu, and
B. Meyer. Task placement and selection of data consistency
mechanisms for real-time multicore applications. In Proc. of
the 21st IEEE Real-Time and Embedded Technology and
Application Symposium (RTAS 2015), Seattle, WA, USA,
2015.

[3] T. P. Baker. Stack-based scheduling for realtime processes.
Real-Time Systems, 3(1):67–99, April 1991.

[4] S. Baruah. Resource sharing in EDF-scheduled systems: a
closer look. In Proceedings of the 27th IEEE Real-Time
Systems Symposium (RTSS’06), Rio de Janeiro, Brazil,
December 5-8, 2006.

[5] S. Baruah and E. Bini. Partitioned scheduling of sporadic
task systems: an ILP-based approach. In Proc. of the
Conference on Design and Architectures for Signal and
Image Processing, Bruxelles, Belgium, November 24-26,
2008.

[6] S. Baruah, L. Rosier, and R. Howell. Algorithms and
complexity concerning the preemptive scheduling of
periodic, real-time tasks on one processor. Journal of
Real-Time Systems, 2, 1990.

[7] S. K. Baruah. Partitioning real-time tasks among
heterogeneous multiprocessors. In Proceedings of the
International Conference on Parallel Processing (ICPP
2004), Montreal, Quebec, Canada, August 15-18, 2004.

[8] M. Behnam, T. Nolte, M. Sjödin, and I. Shin. Overrun
methods and resource holding times for hierarchical
scheduling of semi-independent real-time systems. IEEE
Transactions on Industrial Informatics, 6(1):93–104,
February 2010.

[9] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: a
synchronization protocol for hierarchical resource sharing in
real-time open systems. In Proc. of the 7th ACM & IEEE
International Conference on Embedded Software
(EMSOFT 2007), Salzburg, Austria, October 1-3, 2007.

[10] M. Bertogna, N. Fisher, and S. Baruah. Resource holding
times: Computation and optimization. Real-Time Systems,
41(2):87–117, February 2009.

[11] M. Bertogna, N. Fisher, and S. Baruah. Resource-sharing
servers for open environments. IEEE Transactions on

Industrial Informatics, 5(3):202–219, August 2009.
[12] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra,

G. Fohler, K.-E. Arzen, V. R. Segovia, and C. Scordino.
Resource management on multicore systems: The ACTORS
approach. IEEE Micro, 31(3):72–81, May-June 2011.

[13] E. Bini and G. C. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154,
2005.

[14] A. Biondi, G. Buttazzo, and M. Bertogna. Supporting
component-based development in partitioned
multiprocessor real-time systems. In Proceedings of the 27th
Euromicro Conference on Real-Time Systems (ECRTS
2015), Lund, Sweden, July 8-10, 2015.

[15] A. Biondi, G. C. Buttazzo, and M. Bertogna.
Schedulability analysis of hierarchical real-time systems
under shared resources. IEEE Transactions on Computers,
65(5):1593 – 1605.

[16] A. Biondi, A. Melani, and M. Bertogna. Hard constant
bandwidth server: Comprehensive formulation and critical
scenarios. In Proceedings of the 9th IEEE International
Symposium on Industrial Embedded Systems (SIES 2014),
Pisa, Italy, June 18-20, 2014.

[17] A. Biondi, A. Melani, M. Bertogna, and G. Buttazzo.
Optimal design for reservation servers under shared
resources. In Proceedings of the 26th Euromicro Conference
on Real-Time Systems (ECRTS 2014), Madrid, Spain, July
9-11, 2014.

[18] R. I. Davis and A. Burns. Resource sharing in hierarchical
fixed priority pre-emptive systems. In Proc. of the IEEE
Real-time Systems Symposium (RTSS 2006), pages
257–268, Rio de Janeiro, Brazil, Dec. 5-8, 2006.

[19] N. Fisher, T. Baker, and S. Baruah. Algorithms for
determining the demand-based load of a sporadic task
system. In Proceedings of the International Conference on
Real-time Computing Systems and Applications (RTCSA),
Sydney, Australia, August 2006.

[20] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory
utilization of real-time task sets in single and
multi-processor systems-on-a-chip. In Proceedings of IEEE
Real-Time Systems Symposium, 2001.

[21] N. Khalilzad, M. Behnam, and T. Nolte. On
component-based software development for multiprocessor
real-time systems. In Proc. 21st IEEE International
Conference on Embedded and Real-Time Computing
Systems and Applications, August 2015.

[22] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the Association for Computing Machinery,
20(1):46–61, January 1973.

[23] C. W. Mercer, S. Savage, and H. Tokuda. Processor
capacity reserves for multimedia operating systems. In
Proceedings of IEEE international conference on
Multimedia Computing and System, May 1994.

[24] M. D. Natale and A. S. Vincentelli. Moving from federated
to integrated architectures in automotive: The role of
standards, methods and tools. Proc. of the IEEE,
98(4):603–620, April 2010.

[25] L. Thiele. Model-based design of real-time systems. In
Keynote speeach given at the 26th Euromicro Conference
on Real-Time Systems (ECRTS 2014), Madrid, Spain,
July 10th, 2014.

[26] A. Wieder and B. Brandenburg. On spin locks in
AUTOSAR: Blocking analysis of FIFO, unordered, and
priority-ordered spin locks. In Proceedings of the 34th IEEE
Real-Time Systems Symposium (RTSS’2013), pages 45–56,
December 2013.

[27] A. Wieder and B. Brandenburg. Efficient partitioning of
sporadic real-time tasks with shared resources and spin
locks. In Proc. of the 8th IEEE International Symposium
on Industrial Embedded Systems (SIES 2013), June 2013.

