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Abstract—Parallel execution and hardware acceleration in-
volving specialized devices such as GPUs and FPGAs are becom-
ing increasingly relevant in the domain of embedded systems.
Communication between jobs dispatched on different cores and
hardware accelerators is most often implemented using asyn-
chronous events. Modeling the timing behavior of such systems
requires to account for the delays incurred by each task due to the
additional time spent waiting for events. This paper presents the
event-driven delay-induced (EDD) task model to explicitly deal
with complex computing workloads that incur such kinds of
delays. The EDD task model generalizes several state-of-the-art
models, such as the DAG task model and the segmented self-
suspending task model, and is particularly suited to analyze paral-
lel tasks that issue asynchronous hardware acceleration requests.
Two analysis techniques for EDD tasks executing on single core
platforms are first provided. We then extend those approaches
to analyze parallel real-time tasks under partitioned multicore
scheduling by means of a model transformation. Experimental
results are presented to compare the two analysis techniques
for EDD tasks proposed in the paper. Finally, we compare the
analysis of partitioned parallel tasks modeled with EDD tasks
against federated scheduling.

I. INTRODUCTION

Heterogeneous computing platforms, which integrate
asymmetric multicore processors together with hardware ac-
celerators, are establishing as the most appropriate solution
to implement power-efficient, yet high-performance embedded
computing systems. These systems are characterized by com-
plex software workloads that include parallel computations on
multiprocessors and hardware acceleration requests of different
forms. In such devices, it is often the case that, when dispatch-
ing computations over a set of computing resources, some task
has to wait for a set of events to occur before proceeding
with its execution, hence introducing delays in the system. In
addition, when multiple activities coexist in the system, parts
of the workload may be in execution while others are waiting,
and their completion may itself constitute an event that is being
waited for by some of the other activities.

This kind of behavior is typical whenever execution in-
volves asynchronous hardware acceleration, as in the case
of general-purpose graphical processing unit (GPGPU) com-
puting on Nvidia CUDA platforms employing the related
CUDA API. Another example consists in heterogeneous plat-
forms integrating field-programmable gate arrays (FPGAs) for
asynchronous hardware acceleration of specialized activities.
Indeed, in such contexts, a task running on a processor can
issue an asynchronous acceleration request, then execute some
subtask A on the processor, and finally wait for the accelerated
computation to be completed before proceeding by executing

another subtask B. Note that the accelerated computation may
be completed either before or after the completion of subtask
A on the processor. Hence, before executing subtask B, two
events must have occurred: (i) the completion of subtask A
and (ii) the completion of the accelerated computation.

If multiple accelerators are used or multiple acceleration
requests can be pending at the same time, more complex
execution behaviors can emerge, with several events to be
simultaneously waited for. Similar situations occur in the exe-
cution of parallel real-time tasks, in which, due to precedence
constraints, some subtask has to wait for the completion of
other subtasks, running on either the same or in a different
processor, before becoming eligible for execution.

The widespread presence of computational activities that
wait for timing events in the domain of embedded systems
calls for modeling and analysis techniques that are explicitly
conceived to deal with event-driven delays. Unfortunately,
existing models can either deal with these delays at the cost of
considerable pessimism in the real-time analysis, or can only
accommodate specific categories of workloads.

Contribution and paper organization. This paper presents
the event-driven delay-induced (EDD) task model to explicitly
deal with complex computing workloads that incur delays
due to waiting for events (Sec. II). In this model, events
can occur after a minimum and a maximum time relative
to the completion of some subtask or the release of the
task itself. A graph-based structure is used to represent the
behavior of the tasks. The EDD task model has relevant
practical applications (Sec. III) and also formally generalizes
a number of other task models proposed in previous work,
including segmented self-suspending tasks and parallel DAG
tasks. A closed-form (Sec. IV) and an optimization-based
(Sec. V) analysis technique for EDD tasks are presented.
Given the relevance of parallel workloads, the paper also
shows how to analyze parallel real-time tasks under partitioned
scheduling by means of model transformations to an equivalent
set of EDD tasks (Sec. VI). Experiments (Sec. VII) finally
compare the proposed analysis techniques for EDD tasks and
assess the schedulability performance of partitioned scheduling
for parallel tasks when analyzed by means of EDD tasks,
showing considerable improvements over the case of federated
scheduling [1] (selected for comparison for being the closest
popular alternative in terms of approach, runtime overhead,
and implied predictability).

II. SYSTEM MODEL

This work considers task sets τ = {τ1, τ2, . . . , τn} of n
event-driven delay-induced (EDD) tasks to be scheduled on



a processor of a multicore platform under preemptive fixed-
priority scheduling. Each EDD task τi releases a potentially
infinite sequence of jobs Ji,1, . . . , Ji,j , . . .. For the sake of
conciseness, in the following, we use Ji when referring to an
arbitrary job of τi. Each EDD task τi is characterized by a tuple
(Gi, Ti, Di, πi), where Gi is a directed acyclic graph (DAG)
representing the computational structure of the task, Ti is the
minimum inter-arrival time (or period) between the jobs of τi,
Di ≤ Ti is the relative deadline to be respected by all jobs of
the task, and πi is the fixed scheduling priority associated to
the jobs of τi. The DAG Gi = (Vi, Ei) is composed of a set
Vi =

{
v1i , v

2
i , . . . , v

ni
i

}
of ni nodes (or vertices) and a set Ei

of directed edges connecting any two nodes in Vi. Each node
vji ∈ Vi represents a computational unit of task τi, referred to
as subtask (or execution segment). Each subtask vji ∈ Vi is
characterized by a worst-case execution time (WCET) Cji .

Let ea,bi represent a directed edge connecting vai to vbi .
Each edge ea,bi ∈ Ei implies a precedence constraint between
subtasks vai and vbi , and is labeled with a pair (W a,b

i ,W a,b
i ). A

precedence constraint between subtasks vai and vbi is satisfied
when vai has completed its execution and an additional time du-
ration has elapsed since the completion of vai . The length of the
additional time duration can be any value within [W a,b

i ,W a,b
i ],

and models the waiting time between the completion of vai and
the notification of an event to vbi .

All subtasks of any job Ji of τi are simultaneously released
as soon as the job is released, and a subtask becomes ready
for execution as soon as all the precedence constraints corre-
sponding to the incoming edges on the subtask are satisfied.
A task τi is suspended at time t if τi released a job Ji at or
before t, the execution of Ji is not completed at time t, and Ji
does not have any ready subtasks at time t. A task τi is said to
be pending at time t if τi released a job Ji at or before t and
the execution of Ji is not completed at time t. Analogously,
within a job Ji of task τi released at or before a given time t,
subtask vai is said to be pending at time t if the instance of vai
in Ji is not completed at time t. Subtasks inherit the priority
of the corresponding task. In case two subtasks share equal
priority, the subtask that first became ready for execution has
higher priority, as in first-in-first-out (FIFO) ordering.

The response time Ri of a job Ji of task τi is defined as the
difference between its finishing time, that is, the time at which
the job completes its execution, denoted by fi, and its release
time, denoted by ai. The worst-case response time (WCRT)
of a task τi is defined as the maximum response time that any
job of τi can experience. Analogously, the response time Rbi
of a subtask vbi instanced within a job Ji of task τi is defined
as the difference between its finishing time, denoted by f bi ,
and the release time ai of the job Ji.

A. Additional terminology and assumptions

Whenever an edge exists between vai and vbi , directed
towards vbi , v

a
i is said to be a direct (or immediate) predecessor

of vbi , whereas vbi is said to be a direct (or immediate) successor
of vai . The set of direct predecessors of vai is denoted by
ipred(vai ), while the set of direct successors of vai is denoted
by isucc(vai ). A node with no incoming edge is referred to as a
source node, while a node with no outgoing edge is referred to

as a sink node. The set of sink nodes in a DAG Gi is denoted
by sink(Gi).

A path is defined as an ordered sequence of subtasks where
a directed edge exists between any two adjacent subtasks in
the sequence, each subtask in the sequence is an immediate
predecessor of the following subtask, and the sequence starts
from a source node and ends on a sink node. Given a path λ,
V (λ) represents the set of nodes belonging to the path, while
E(λ) represents the set of edges traversed by the path. The
set of all paths in a DAG Gi is denoted by path(Gi).

Figure 1. DAG G1 of example task τ1.

Figure 2. Example schedule of task τ1 with interference from task τp.

Given this definition, a subtask vai is said to be a prede-
cessor of vbi whenever there exists a path in the graph Gi that
includes both vai and vbi , with vai appearing before vbi in the
sequence. In the same situation, vbi is said to be a successor
of vai . Note that the set of successors also results from the
transitive application of the definition of immediate successors;
and similarly for the set of predecessors. In addition, two
subtasks are said to be independent if none is a predecessor
or successor of the other, either directly or transitively. The
model assumes that each task τi includes a single source node,
denoted by vsi , with Csi = 0, which corresponds to the release
of a job of τi. Hence, any edge es,ai connecting the source node
vsi to another node vai implies that vai can become ready after
a variable delay in [W s,a

i ,W s,a
i ] relative to the task release.

Note that the introduction of this assumption is without loss of
generality, as any subtask vai that must become ready as soon
as the task is released can be modeled with an edge connecting
vsi to vai labeled with the pair (0, 0).

Figure 1 depicts the structure of an example EDD task τ1.



In the figure, the value on each node corresponds to the WCET
of the corresponding subtask, while the values on the edges
represent the minimum and maximum waiting times between
the two subtasks connected by the edge. Since vsi is the only
source node in the task, the corresponding subtask has no
incoming precedence constraints and, therefore, becomes ready
for execution as soon as the job Ji is released.

B. Example schedule

An example schedule of task τ1 illustrated in Figure 1
with interference from a classical sequential higher-priority
task τp with WCET Cp = 2 is provided in Figure 2. The figure
highlights the time intervals corresponding to the values of the
response times Ra1 for all va1 ∈ V1 and the actual waiting times
wa,b1 ∈ [W a,b

1 ,W a,b
1 ] experienced in the example schedule for

each ea,b1 ∈ E1. Note that subtask vs1 is omitted from the
figure, as it corresponds to the release event of τ1 (i.e., it is
released at time 0 and immediately terminates its execution).
In the schedule, task τ1 is suspended within the time intervals
(1, 2] and (9, 10], as none of the subtasks of τ1 is ready for
execution at those intervals.

III. APPLICATIONS

The EDD task model allows explicitly modeling the delays
that result from the time spent waiting for events that occur
after a bounded time from the task release or the completion of
a subtask. This peculiarity makes this model more expressive
than other models available in the literature and suitable to
analyze a set of complex execution behaviors (discussed in
the following) with a fine level of detail.

It is important not to confuse the EDD task model with
other graph-based models proposed in previous work. For
instance, it largely differs from the digraph real-time (DRT)
task model [2] due to a number of reasons. Indeed, differently
from EDD tasks, (i) DRT tasks are described by a directed
graph G, which is typically cyclic, whose nodes denote
possible job instances for the task, and whose paths denote
possible job sequences; (ii) DRT tasks have edges in G that
model mutually-exclusive evolutions of job sequences; (iii)
they have edges in G labeled with the minimum inter-arrival
time between the corresponding jobs (i.e., they are not released
with a common period); and (iv) they specify an individual
deadline for each job instance. EDD tasks are also different
from parallel DAG tasks, whose precedence constraints are
not characterized by a variable delay with which they can be
satisfied. They are also more generic than self-suspending tasks
since self-suspending tasks are not characterized by a DAG but
only by a single sequence of execution segments.

Relevant applications of the EDD task model are discussed
next.

Modeling asynchronous hardware acceleration. A common
programming scheme when dealing with hardware accelerators
consists in asynchronously offloading a heavy computation
to an accelerator, then continuing executing on a processor,
and eventually waiting by suspending the execution on the
processor as long as the accelerated task is not completed.
To name a relevant example, this is the case of the CUDA
Runtime API, where the user can launch a number of oper-
ations (such as memory copies and kernel executions) to be

served by a set of GPUs in an asynchronous fashion, and then
wait for their completion with the synchronization functions
offered by the API, such as cudaDeviceSynchronize() and
cudaStreamSynchronize(), which implement the waiting
by suspending the calling process. A task that is running on a
processor and makes use of this API can make progress in its
execution from the time an operation is offloaded to the GPUs
to the time in which a synchronization function is called. A
minimal example code that uses asynchronous execution with
the CUDA Runtime API is reported in Listing 1.

1 TASK(example)
2 {
3 << ... >>
4
5 // Asynchronously launch the kernel on GPU
6 my_gpu_kernel <<<blockCount, threadCount>>>();
7
8 // Continue to execute on the CPU
9 my_cpu_intensive_func();

10
11 // Wait for the completion of the GPU kernel
12 cudaDeviceSynchronize();
13
14 << ... >>
15 }

Listing 1. Example task that uses asynchronous GPU acceleration.

Figure 3. EDD task to model the example task of Listing 1.

In this example, a task first executes some code on its
processor, then offloads a computation to a GPU, subsequently
executes some other code on the processor, and finally waits
for the completion of the computation offloaded to the GPU
before proceeding with the completion of its execution on
the processor. This example code can be modeled with the
EDD task illustrated in Figure 3, where W and W denote
the minimum and the maximum time the GPU can take to
execute the offloaded computation, respectively. Clearly, in the
presence of tasks that launch multiple GPU operations and/or
offload computations to multiple accelerators (such as the case
of multi-GPU systems or hybrid platforms with different kinds
of accelerators), more complex execution behaviors can occur,
highlighting the need for a DAG-based model as offered by
EDD tasks. For instance, branches in the DAG may allow
modeling the case in which a callback is executed when an
accelerated computation completes.

Note that a similar programming scheme also applies to
the case of I/O devices with direct memory access (DMA),
where the programmer can asynchronously instruct memory
copies to/from the device and later wait for their completion
after executing some other code.

Modeling partitioned parallel tasks. EDD tasks are also
particularly suited to model partitioned parallel real-time tasks.
Given the high relevance of parallel tasks, this case is formally
addressed in Section VI, while in the following it is presented
by means of an example. Consider Figure 4(a), which depicts
the structure of a sample sporadic parallel DAG task τP in



terms of its DAG GP. Task τP is executed under partitioned
fixed-priority scheduling on a two-processor platform, i.e.,
each subtask (corresponding to a node in GP ) is statically
allocated to one of the two processors. In the figure, the white
nodes represent subtasks assigned to processor P1, while the
grey nodes represent subtasks assigned to processor P2.

For the purpose of real-time analysis, the parallel task
τP can be modeled as a set of two synchronously-released
EDD tasks, one for each processor. The first EDD task, τ1, is
provided in Figure 4(b), and is related to the subtasks assigned
to processor P1, while Figure 4(c) provides the second EDD
task, τ2, related to the subtasks assigned to processor P2. In
the parallel DAG task model, each edge denotes a precedence
constraint that is satisfied when the node from which the edge
starts has completed its execution. Consequently, every two
subtasks in τP connected by an edge and allocated to the
same processor can be modeled in an EDD task by the same
subtasks connected by an edge labeled with (0, 0). Conversely,
each edge connecting two subtasks in τP that are allocated to
different processors is modeled by an edge in the EDD task
corresponding to the processor to which the destination node
is allocated. For example, the edge connecting vC1 (allocated to
P2) and vE1 (allocated to P1) in τP can be modeled by an edge
in τ1 that connects the source node of τ1 to vE1 . This edge in
τ1 can then be labeled by (0, RC1 ), where RC1 is the worst-case
response time of vC1 . This transformation is safe because the
corresponding precedence constraint in τ1 has to be satisfied
when vC1 completes, which, by definition of response time,
occurs no later than RC1 time units from the release of τ1,
because the two EDD tasks are synchronously released. In the
general case in which a subtask in τP has multiple incoming
edges of this kind, a single edge labeled with (0, R∗) can be
placed in the EDD task, where R∗ is the maximum among
the worst-case response times of the predecessors allocated to
remote processors, e.g., as it is the case for vH1 in Figure 4(c).

Generalization of other task models. It is worth observing
that the EDD task model generalizes other task models such as
sequential tasks with release jitter [3], transactional tasks [4],
and segmented self-suspending tasks [5].

A sequential task τ J with WCET C and release jitter J
behaves as a subtask in the EDD task model that can become
ready for execution with a variable delay in [0, J ], relative to
the release of τ J. Hence, it can be modeled by an EDD task
τi with the same period and deadline as τ J, and a DAG with
two nodes vSi and v1i , where vSi is the source node and v1i is
a subtask with WCET C. The source node is then connected
to v1i by an edge labeled by (0, J).

A transactional task τT comprises a set of subtasks to be
sequentially executed, where each subtask τTi,j is characterized
by a WCET CTi,j , an offset ΦTi,j , and a jitter JTi,j . The behavior
of a task τT can be modeled by means of an EDD task τi with
the same period as τT by defining, for each subtask τTi,j of
τT, (i) a node vji with WCET equal to CTi,j , and (ii) an edge
connecting vSi to vji , labeled with (ΦTi,j ,Φ

T
i,j + JTi,j).

Segmented self-suspending (SS) tasks alternate k execution
regions to k − 1 self-suspension regions. Formally, they are
defined by a sequence (C1, S1, C2, S2, . . . , Ck), where Cj

denotes the WCET of the j-th execution region and Sj denotes

the duration of the j-th self-suspension region. Such tasks can
be modeled with an EDD task τi by defining (i) for each
execution region with index j one subtask in τi with WCET
Cj ; (ii) for each pair of execution regions with index j and
j + 1, respectively, with j < k, an edge in τi labeled with
(0, Sj) connecting the two corresponding subtasks; and (iii)
one edge labeled with (0, 0) connecting the source node of
τi to the subtask corresponding to the first execution region,
as the first execution region of the SS task becomes ready as
soon as the task is released.

IV. PRELIMINARIES AND BASELINE ANALYSIS

This section presents preliminary results and a baseline
analysis for computing an upper bound on the worst-case
response time (WCRT) of each task in τ . In the following,
let τi be the EDD task under analysis, i.e., the one for which
a bound on the WCRT is to be derived.

A. Upper bounds on the worst-case response times of each
subtask

An upper bound on the WCRT of a set of EDD tasks can
be obtained by converting each EDD task into a dynamic self-
suspending (DSS) task. To make the paper self-contained, the
DSS task model and its analysis are reviewed next.

1) Dynamic self-suspending task model and analysis:
In the dynamic self-suspending task model, each task τi is
characterized by a tuple (Ci, Si, Di, Ti, πi), where Ci cor-
responds to the cumulative worst-case execution time of τi,
Si is the maximum cumulative self-suspension time for task
τi, Di represents the relative deadline of each job of τi, Ti
represents the minimum inter-arrival time of jobs of τi, and
πi is the fixed priority assigned to the task. The utilization
of a self-suspending task τi is defined as Ui = Ci/Ti. In the
following, assume that Di ≤ Ti holds for each self-suspending
task τi (constrained deadlines), and that tasks are scheduled
on a single-processor platform according to a fixed-priority
scheduling policy, where each task is assigned a unique priority
level such that task τi has a higher priority than task τj if i < j.

Under this model, assuming that Ri ≤ Di holds for each
τi such that 1 ≤ i ≤ k− 1, an upper bound on the worst-case
response time Rk of a self-suspending task τk is given by the
minimum positive value for t such that

Ck+Sk+

k−1∑
i=1

⌈
t+

∑k−1
j=i Sj · xj + (1− xi) (Ri − Ci)

Ti

⌉
· Ci ≤ t,

(1)
where xi = 1 if Ui(Ri − Ci) > Si ×

∑i
`=1 U`, and xi = 0

otherwise [6].

Note that the above bound is safe if the DSS task τk
releases a single job, or if the obtained bound on Rk is not
larger than the task deadline, and the deadline is constrained
(i.e., Dk ≤ Tk).

The time complexity of this approach is pseudo-polynomial
in the representation of the task set [6].

2) Transformation of EDD tasks into DSS tasks: To analyze
EDD tasks, we propose to reuse the analysis for DSS tasks
presented in the previous section. To achieve this, Theorem 1
below explains how we can safely transform a set of EDD



Figure 4. (a) DAG GP of example sporadic parallel DAG task τP. (b) Projection of task τP on processor P1. (c) Projection of task τP on processor P2.

tasks into a set of equivalent DSS tasks for which Equation (1)
provides an upper bound on their WCRTs.

Theorem 1. An EDD task τi = (Gi, Ti, Di, πi) can be
safely modeled by a dynamic self-suspending task τ ′i =
(C ′i, S

′
i, Di, Ti, πi), where

C ′i =
∑
vai ∈Vi

Cai , (2)

and
S′i = max

vai ∈sink(Gi)
{Sai }, (3)

where, for each subtask vai ∈ Vi,1

Sai =
0

max
vbi∈ipred(vai )

{
Sbi +W b,a

i

}
.

Proof: By definition, an EDD task τi, and thus the
equivalent dynamic self-suspending task, cannot execute for
more than

∑
vai ∈Vi

Cai time units. Hence, Equation (2) holds.
Then, consider an arbitrary job Ji of τi and let si denote the
actual cumulative amount of time Ji can be suspended for (i.e.,
pending without any ready subtask). To prove the theorem, it
remains to show that the maximum amount of time an EDD
task τi can be suspended for is bounded by Equation (3), that
is, si ≤ S′i.

For each subtask vai ∈ Vi, let rai and fai denote the time at
which vai becomes ready for execution and the time at which
it completes its execution, respectively. Also, let sai represent
the actual amount of time Ji can be suspended for between
its release time and the ready time rai of vai . Clearly, it must
be that si = maxvai ∈Vi

{sai }, as no suspensions can occur
after the latest time at which a subtask vai ∈ Vi becomes
ready. In addition, it can be seen that si = maxvai ∈Vi

{sai } =
maxvai ∈sink(Gi) {sai }. As a result, it must be proven that

si = max
vai ∈sink(Gi)

{sai } ≤ Si = max
vai ∈sink(Gi)

{Sai }.

Showing that sai ≤ Sai for each vai ∈ sink(Vi) proves that
si ≤ Si. Equivalently, showing that sai ≤ Sai for each vai ∈ Vi
proves that si ≤ Si. Hence, it is sufficient to show that the
following holds for each vai ∈ Vi:

sai ≤ Sai =
0

max
vbi∈ipred(vai )

{
Sbi +W b,a

i

}
.

The expression for Sai is a recursive function; therefore,
we proceed by structural induction on the set of immediate

1max0x∈S{f(x)} = max{0,max
x∈S
{f(x)}}, where f(·) is a function on x.

predecessors.

Base case. The base case of the recursion Sai is obtained
when vai has no immediate predecessors. The proof for the
base case consists in showing that sai ≤ Sai whenever vai has
no immediate predecessors, i.e., ipred(vai ) = ∅. The maximum
operator on the empty set has a value of 0; hence, it must be
shown that sai ≤ Sai = 0. According to the system model, a
node vai that has no immediate predecessors becomes ready for
execution as soon as Ji is released. As a result, no suspension
can occur before vai becomes ready, which implies sai = 0.

Inductive step. The inductive case of the recursion Sai is
obtained when vai has at least one immediate predecessor. The
inductive hypothesis is that sbi ≤ Sbi for each vbi in ipred(vai ),
and, given the hypothesis, the proof consists in showing that
sai ≤ Sai = maxvbi∈ipred(vai )

{
Sbi +W b,a

i

}
.

In order to prove this statement, we proceed by contradic-
tion. Assume that sai > Sai . The inductive hypothesis implies
that

Sai = max
vbi∈ipred(vai )

{
Sbi +W b,a

i

}
≥ max
vbi∈ipred(vai )

{
sbi +W b,a

i

}
.

It follows that

sai > Sai ≥ max
vbi∈ipred(vai )

{
sbi +W b,a

i

}
.

This inequality holds if and only if sai − sbi > W b,a
i for

each vbi ∈ ipred(vai ). This means that the fraction of actual
cumulative suspension time that takes place in the interval
(rbi , r

a
i ] is strictly greater than the waiting time W b,a

i for each
vbi ∈ ipred(vai ).

Let vci be the last node in ipred(vai ) whose prece-
dence constraint towards vai is satisfied; that is, let vci =

argmaxvbi∈ipred(vai )

{
f bi +W b,a

i

}
. Given this subtask vci , it

holds that sai − sci > W c,a
i .

In the following, the cumulative suspension time in the
time interval I = (rci , r

a
i ] is analyzed. The interval I can

be partitioned into two subintervals, corresponding to the
time before (I1) and after (I2) the completion of vci ; that
is, I1 = (rci , f

c
i ], and I2 = (f ci , r

a
i ]. In the interval I1, Ji

cannot be suspended as at least one subtask (vci itself) is
ready for execution for the whole duration of the time interval.
Therefore, the suspension time in the interval I = (rci , r

a
i ]

must all happen in interval I2, i.e., after the completion of vci ,
which implies that Ji must be suspended for sai −sci time units
during I2. Since vci is the last node for which the precedence
constraint towards vai is satisfied, the length of I2 cannot be



larger than W c,a
i . This implies sai − sci ≤W

c,a
i , thus yielding

a contradiction that proves the induction step.

The theorem follows since both the base case and the
induction step of the structural induction are proven.

Note that the value of S′i in Equation (3) corresponds to
the maximum worst-case cumulative delay encountered over
any path of Gi, i.e., S′i = maxλ∈path(Gi)

{∑
ea,b
i ∈E(λ)W

a,b
i

}
.

Obtaining this value is equivalent to computing the length of
the longest path in a weighted DAG. Thus, the time complexity
of converting an EDD task into a DSS task is O(|Vi|+ |Ei|)
(i.e., linear in the size of the DAG Gi).

3) Response-time upper bounds: The above theorem allows
to analyze a set of EDD tasks as a set of DSS tasks using
Equation (1).

Furthermore, a corollary can also be devised to individually
bound the response time of each subtask of an EDD task.

Corollary 1. If the EDD task τi ∈ τ is schedulable, then
the worst-case response time of a node vai ∈ Vi of τi =
(Gi, Ti, Di, πi) is bounded by the worst-case response time
Rai of a dynamic self-suspending task τ ′i = (C ′i, S

′
i, Di, Ti, πi),

where
C ′i =

∑
vbi∈Vi\succ(vai )

Cbi , (4)

and S′i = Sai , with Sai defined as in Theorem 1, when all
higher priority tasks in τ are transformed to DSS tasks using
Theorem 1.

Proof: Note that the worst-case response time of a subtask
cannot be affected by its successors: indeed, successors can
execute (and hence interfere) only after the subtask of interest
is completed. By leveraging this observation, it is possible to
bound the response time of vai by studying the EDD task,
say, τ∗i , resulting from τi after excluding from Gi all nodes in
succ(vai ). By Theorem 1, τ∗i can be safely modeled by a DSS
task with WCET given by Equation (4). Note also that vai is a
sink node of τ∗i , and the cumulative time τ∗i can be suspended
for before the completion of vai can be bounded with the same
inductive argument used in the proof of Theorem 1. Hence the
corollary.

B. Bounding high-priority interference for each subtask

In the following, we show how to derive an upper bound on
the higher-priority interference suffered by each subtask vai of
τi. This bound will provide a simple way to constrain the in-
terference variables in the optimization problem in Section V.

First, let the set of higher-priority tasks of τi be defined as
hp(τi). Then, following the results of [7], even in the presence
of suspensions, any sequential computation with WCET C,
released with a minimum inter-arrival time T , and with worst-
case response time R cannot generate more interference than
d(t + R)/T e · C in any time window of length t. Similarly
to [5], the number of jobs of high-priority tasks in hp(τi)
that can cause inter-task interference on vai (within a job
of τi) can be bounded by considering vai as an independent
task τa′i . Classical response time analysis can then be used
to bound the worst-case response time of τa′i by computing
the smallest positive fixed point of the following recurrence:

t = Cai +
∑
τp∈hp(τi)

⌈
t+Rp

Tp

⌉
·Cp. Let t̂ be the fixed point of

the recurrence. Then, an upper bound UIp,a on the maximum
interference a higher-priority task τp ∈ hp(τi) can cause on
vai can be derived as UIp,a =

⌈
(t̂+Rp)/Tp

⌉
· Cp.

V. MILP-BASED ANALYSIS

This section presents a mixed-integer linear programming
(MILP) formulation to bound the WCRT of EDD tasks.
The formulation uses the response time upper bounds from
Section IV-A to constrain the search space and improve upon
the analysis provided by Theorem 1.

A. Interference

In order to characterize the worst-case interference contri-
butions, the following definitions are introduced.

Definition 1 (Inter-task interference). The inter-task interfer-
ence Ip,a imposed by a higher-priority task τp on a subtask
vai of task τi is the maximum cumulative time during which
vai is ready but not executing because τp is executing on the
processor.

Definition 2 (Self-interference). The self-interference Lb,a
imposed by a subtask vbi of EDD task τi on another subtask
vai of the same task is the maximum cumulative time during
which vai is ready but not executing because vbi is executing
on the processor.

In the example schedule of Figure 2, task τp causes inter-
task interference on subtasks vB1 , vC1 , and vD1 within the
interval (3, 5]. In the same example, subtask vB1 causes self-
interference on subtask vC1 within the intervals (2, 3] and (5, 6],
while subtask vC1 causes self-interference on subtask vD1 within
the interval (6, 8].

Note that the definition of self-interference refers to a form
of direct self-interference, as opposed to indirect (or transitive)
self-interference, that is, it does not account for delays in the
ready time incurred by vai due to another subtask vbi that
caused self-interference on one of the predecessors of vai .
In the analysis, delays accumulated by the predecessors are
accounted for in the computation of the time at which subtask
vai becomes ready for execution.

B. Overview of the analysis approach

The problem of deriving an upper bound on the WCRT
of task τi is formulated as a MILP problem. Assuming that
upper bounds on the WCRT are available for the set of higher-
priority tasks hp(τi), the MILP formulation for task τi models
an arbitrary schedule of a single job of that task and the set of
higher-priority tasks hp(τi). That schedule is characterized by
a set of variables modeling the response times of the subtasks
of τi, the actual waiting times between subtasks, and the inter-
task and self-interference suffered by each subtask of τi.

The values of such variables for a specific schedule are
unknown a priori. The role of the MILP solver is, given a set
of constraints that bound the value of the variables, to associate
values to each variable such that the WCRT of the task under
analysis is maximized. Once an upper bound Ri on the WCRT
is so derived for each task τi ∈ τ , the system is deemed



schedulable if Ri ≤ Di holds for each τi ∈ τ . Note that
unconstrained maximization of the objective function yields
an infinite value for the response time, which would result
in a schedulability test that is indeed safe but also useless.
Constraints are thus introduced to exclude impossible schedul-
ing configurations by bounding the values of the variables. In
particular, each constraint in the MILP formulation encodes a
specific property that is necessarily satisfied by all schedules
that can be generated in the proposed system. As such, these
properties correspond to necessary conditions for determining
whether a certain configuration of the variables in the search
space constitutes a valid schedule. This reduction in the size of
the feasible region corresponds to a reduction in the range of
potential values assumed by the objective function, and each
added constraint contributes to a refinement of the upper bound
on the resulting WCRT Ri identified by the MILP formulation,
which will thus constitute a tighter bound.

This approach for the derivation of the MILP formulation
brings a number of advantages in the resulting analysis. Each
constraint encodes a specific necessary condition that can be
inferred from some individual structural or behavioral property
that governs a restricted aspect of the scheduling system, and
can be independently verified in terms of theoretical soundness.
This leads to a formulation that is overall more easily under-
standable than complex closed-form WCRT formulations, as
the various subproblems are analyzed independently, and to an
approach that is sound by construction.

C. MILP variables

The following variables are defined in the proposed MILP
formulation, with reference to an arbitrary schedule σi that
maximizes the response time of a job of τi under analysis:

• For each subtask vai of τi, the response time Rai ∈
[0, Rai ] in the schedule σi is encoded as a real variable.

• For each subtask vai of τi, and for each higher-priority
task τp ∈ hp(τi), Ip,a ∈ [0, UIp,a] is a real variable
that encodes the inter-task interference caused by jobs
of τp on vai in the schedule σi.

• For each two subtasks vai and vbi of the same task τi,
SIb,a ∈ {0, 1} is a binary integer variable. A variable
SIb,a has a value of 1 if, in the schedule σi, vbi causes
self-interference on vai and has the largest response
time among the subtasks causing self-interference on
vai ; otherwise, SIb,a = 0.

• For each edge ea,bi ∈ Ei, a real variable wa,bi ∈
[W a,b

i ,W a,b
i ] is used to encode the actual waiting time

between the completion of vai and the time at which
vbi becomes ready for execution in the schedule σi.

Note that the upper bounds Rai and UIp,a derived in the
previous section have been used to constrain the domain of
variables Rai and Ip,a (i.e., 0 ≤ Rai ≤ Rai and 0 ≤ Ip,a ≤
UIp,a), hence limiting the search space to be explored by the
MILP solver.

Example. With respect to the example schedule illustrated in
Figure 2, the values of the inter-task interference variables are
Ip,s = 0, Ip,A = 0, Ip,B = 2, Ip,C = 0, Ip,D = 0, and
Ip,E = 0. In addition, in the same example schedule, subtask

vB1 causes self-interference on subtask vC1 within the intervals
(2, 3] and (5, 6], while subtask vC1 causes self-interference on
subtask vD1 within the interval (6, 8]. Consequently, the values
of the self-interference variables SIb,a are 0 for each eb,a1 in
E1 except for SIB,C and SIC,D, which have a value of 1.

D. MILP formulation

The goal of the MILP formulation is to maximize the task’s
WCRT and thus to maximize following objective function:

Ri = max
vai ∈sink(Gi)

{Rai }.

The constraints that compose the MILP formulation are
provided next. To simplify the presentation, some of the
constraints are not directly reported in a linear form. The lin-
earization of such constraints can be performed using standard
techniques [8].

Before proceeding, for each subtask vai of τi, it is conve-
nient to introduce an auxiliary real variable rai defined as

rai = max
vbi∈ipred(vai )

{
Rbi + wb,ai

}
,

which denotes the time at which vai becomes ready for
execution. Indeed, by the definition of the EDD task model, a
subtask vai becomes ready when all its immediate predecessors
vbi ∈ ipred(vai ) are completed and the corresponding delays
wb,ai relative to the their completion are elapsed.

Constraint 1. ∀vai ∈ Vi, Rai ≥ rai .

Proof: By definition, subtasks cannot complete before
they are ready to execute.

Constraint 2. ∀vai ∈ Vi,∀vbi ∈ Vi s.t. SIb,a = 1, Rai ≥ Rbi .

Proof: By definition of self-interference, if vbi generates
self-interference to vai (SIb,a = 1), then, since the subtasks of
the same task are scheduled in FIFO order, vai cannot complete
its execution before vbi .

Constraint 3. ∀vai ∈ Vi, if ∃vbi ∈ Vi s.t. SIb,a = 1, then

Rai ≤ Rbi + Cai +
∑

τp∈hp(τi)

Ip,a.

Proof: If there exists a subtask vbi such that SIb,a = 1,
then, by definition of variables SIb,a, it means that vai suffers
self-interference and vbi is the last subtask that self-interferes
with vai . Hence, after the completion of vbi , which occurs at its
response time Rbi , v

a
i can only be interfered by higher-priority

tasks. By definition of variables Ip,a, each high-priority task
τp can interfere with vai for at most Ip,a time units. Subtask
vai itself can also execute for at most its WCET Cai . Hence, it
follows that the response time Rai of vai must be no later than
Cai +

∑
τp∈hp(τi) Ip,a time units after vbi ’s completion.

Constraint 4. ∀vai ∈ Vi, if @vbi ∈ Vi s.t. SIb,a = 1, then

Rai ≤ rai + Cai +
∑

τp∈hp(τi)

Ip,a.



Proof: If there is no subtask vbi such that SIb,a = 1, then,
by definition of variables SIb,a, it means that vai only suffers
interference from higher-priority tasks after becoming ready at
time rai . Thus, for the same reasons discussed in the proof of
Constraint 3, the response time Rai of vai must be no later than
Cai +

∑
τp∈hp(τi) Ip,a time units after it becomes ready.

Constraint 5.

∀vai ∈ Vi,∀vbi ∈ {pred(vai ) ∪ succ(vai ) ∪ {vai }} , SIb,a = 0.

Proof: The predecessors of subtask vai must be completed
when vai is ready, while the successors can only execute when
vai is already completed. Hence, none of such subtasks can
interfere with vai . Finally, vai cannot self-interfere with itself.

Constraint 6. ∀vai ∈ Vi,
∑
vbi∈Vi

SIb,a ≤ 1.

Proof: By definition of variable SIb,a, for each subtask
vai , at most one subtask vbi satisfies SIb,a = 1.

Constraint 7. ∀vai ∈ Vi,∀vbi ∈ Vi, vai 6= vbi , SIa,b ≤ 1−SIb,a.

Proof: If vbi self-interferes with vai (SIb,a = 1), then,
being the subtasks of the same task scheduled in FIFO order,
vbi is completed when vai starts executing, which means that
vai cannot self-interfere with vbi ; thus, SIa,b ≤ 1 − 1 = 0.
Otherwise (SIb,a = 0), vai may self-interfere with vbi , therefore
SIa,b ≤ 1− 0 = 1.

Constraint 8. ∀vai ∈ Vi,∀vbi ∈ Vi, s.t. rai > rbi , SIa,b = 0.

Proof: Since the subtasks of the same task are scheduled
in FIFO order, if vai becomes ready after vbi , i.e., rai > rbi , then
vai cannot self-interfere with vbi .

Constraint 9. ∀vai ∈ Vi,∀vbi ∈ Vi, s.t. Rai < rbi , SIa,b =
SIb,a = 0.

Proof: If vai completes before the time vbi becomes ready,
then the execution of vai and vbi does not overlap in time.
Hence, vai cannot self-interfere with vbi and vice versa.

Constraint 10. Let p(vai ) = {pred(vai ) ∪ {vai }}. ∀τp ∈
hp(τi),∀vai ∈ Vi,∑
vbi∈p(vai )

Ip,b +
∑

vci∈Vi|SIc,b=1

Ip,c

 ≤ ⌈Rai +Rp
Tp

⌉
· Cp.

Proof: Note that all subtasks vbi ∈ p(vai ) must complete
their execution by the time vai completes, i.e., by Rai . Also,
by definition of self-interference and the fact that the subtasks
of the same task are scheduled in FIFO order, all subtasks
vci that self-interfere with any of the subtasks vbi ∈ p(vai ) (i.e.,
SIc,b = 1) must also be completed by Rai . In any time interval
of length Rai , each task τp ∈ hp(τi) can interfere with at most
d(Rai +Rp)/Tpe jobs [6]. Hence, by definition of variables Ip,c,
the left-hand side of the above inequality is upper-bounded by
d(Rai +Rp)/Tpe · Cp.

Constraint 11. ∀τp ∈ hp(τi), ∀vai ∈ Vi,

Ip,a ≤
⌈
Rai − rai +Rp

Tp

⌉
0

· Cp,

where dxe0 = max{0, dxe}.

Proof: A subtask can suffer inter-task interference only
from the time it becomes ready, i.e., rai , to the time it com-
pletes, i.e., Rai . In any time interval of length Rai−rai , each task
τp ∈ hp(τi) can interfere with at most d(Rai − rai + Rp)/Tpe
jobs [6]. Thus, the constraint follows after recalling the defi-
nition of the Ip,a variables and observing that the number of
such jobs cannot be negative.

The number of variables and the number of constraints
involved in the resulting nonlinear problem formulation for
a task τi are both bounded by O(|Vi|2 + |Vi|n + |Ei|).
The formulation can be linearized with standard techniques,
retaining polynomial size with respect to the number of tasks n
and the size of the DAG Gi. Linearization of conditional con-
straints, maximum operators, and conditional sum operators
can be performed by means of auxiliary indicator variables,
additional constraints, and a large constant M to represent
infinity, in what is commonly referred to as the Big M method.
Similarly, the ceiling operator can be linearized by means of
an appropriately constrained auxiliary integer variable.

VI. ANALYZING PARTITIONED PARALLEL TASKS

This section presents how to analyze a set of parallel real-
time tasks, scheduled with partitioned fixed-priority schedul-
ing, using the EDD task model. Formally, under the sporadic
DAG task model, a parallel task τP

i is characterized by the
tuple (GP

i , Ti, Di, πi), where GP
i = (V P

i , E
P
i ) is a DAG that

describes the structure of the task, Ti and Di are the period
and the relative deadline of the task, respectively, and πi is
the task priority. Each node vP,j

i ∈ V P
i denotes a sequential

computation, i.e., a subtask, with WCET CP,j
i , and is allocated

to a fixed processor. The edges in EP
i denote precedence

constraints among subtasks, i.e., each edge connecting node
vP,a
i to node vP,b

i specifies that subtask vP,b
i can start executing

only after the completion of subtask vP,a
i . All subtasks are

released with the same period Ti, have the same priority πi,
and are subject to the same deadline Di.

Model transformation. A parallel task of this kind can be
modeled and analyzed by means of a set of synchronously-
released EDD tasks, as described in the following. Given a
parallel DAG task τP

i executing on a set of processors P ,
for each processor Pk ∈ P , an EDD task τki = Pk(τi) to
be executed on Pk is defined. Pk(τi) is called the projection
of task τP

i on processor Pk. The computational structure of
the EDD task τki is described by the DAG Gki = (V ki , E

k
i )

constructed as follows:

1) Add a source node vsi with Csi = 0 to V ki to model
the task release.

2) For each subtask vP,j
i ∈ V P

i allocated to Pk, create a
corresponding node vji with Cji = CP,j

i and add it to
V ki .

3) For each edge in EP
i that connects two subtasks vP,a

i

and vP,b
i allocated to Pk, create an edge in Eki labeled



with (0, 0) that connects the corresponding nodes vai
and vbi of the EDD task τki .

4) For each subtask vP,j
i ∈ V P

i assigned to processor Pk,
create an edge in Eki that connects the source node vsi
to the corresponding node vji . If vP,j

i has at least one
immediate predecessor assigned to a processor other
than Pk, then label the edge with (0, R∗), where R∗
is the maximum response time of the predecessors
of vP,j

i in V P
i allocated to processors other than Pk.

Otherwise, label the edge with (0, 0).

The resulting EDD tasks have the same period, deadline,
and priority as τP

i . An example of such a transformation is
illustrated in Figure 4 and discussed in Section III.

Analysis techniques. Given the above model transformation,
a parallel task τP

i can be deemed schedulable if all the EDD
tasks resulting from its projection on each processor Pk ∈
P are schedulable. Note that, by Corollary 1, the response
time of each node vai of an EDD task can be bounded via a
transformation to a DSS task whose suspension time depends
only on the delays on the edges connecting either vai or vai ’s
predecessors. This means that the EDD tasks corresponding to
the projections can be constructed by simply exploring τP

i in
topological order, starting from the source node.

The MILP formulation of Section V can be slightly modi-
fied to allow the simultaneous analysis of all the projections of
parallel task τP

i . The approach consists in deriving a specialized
MILP formulation for each parallel DAG task τP

i given its
set of projections on each processor. Unfortunately, due to
space limitations, it is not possible to report the detailed MILP
formulation for analyzing parallel tasks. Instead, we discuss
the small set of changes that must be made to the formulation
presented in Section V.

The variables in the modified MILP formulation are defined
as the union of the variables associated to all EDD tasks
resulting from the projection Pk(τi) on every processor Pk ∈
P . Note that, given the use of partitioned scheduling, only
higher-priority EDD tasks allocated to the same processor can
generate inter-task interference. Hence, for each each subtask
vai of a projection Pk(τi), the corresponding variables Ip,a
must be defined only for higher-priority tasks running on Pk.

The objective function corresponds to the maximum re-
sponse time of the projection of τP

i on each processor, that
is,

Ri = max
Pk∈P

max
vai ∈sink(Pk(τi))

{Rai }.

This corresponds to maximizing the response time of all the
sink nodes of the original task τP

i , which corresponds to the
response time of τP

i .

As in the MILP formulation of Section V, variables ws,ai
are constrained as W s,a

i ≤ ws,ai ≤ W s,a
i , where W s,a

i = 0.
However, in this case, W s,a

i is not a constant but a MILP real
variable that is constrained to be equal to the maximum re-
sponse time of the predecessors executing on other processors
in the original task τP

i , that is, ∀es,ai ∈ Eki :

W s,a
i = max

vP,c
i ∈ipred(X

−1
i (vai ))

{
Rbi | vbi = Xi(vP,c

i ) /∈ V ki
}
,

where Xi(vP,c
i ) and X−1i (vai ) are functions that return, respec-

tively, the node vbi of the projected EDD task that corresponds
to the node vP,c

i in the original DAG task τP
i , and the node

vP,c
i of τP

i that corresponds to the node vai in the projection.

When solving the MILP, variables W s,a
i will be adjusted

by the solver according to the constraints on the projections
in order to synthesize the scheduling configuration that yields
the maximum overall response time of the parallel DAG task.

The resulting size of the MILP for a task τi is polynomial
with respect to the number of tasks n, the number of processors
|P |, and the size of the DAG Gi.

Note that the response time of the parallel DAG task
τP
i constitutes an upper bound of the response time of the

various projections Pk(τi). Such an upper bound is needed
when propagating the resulting values to the analysis of lower-
priority tasks (see Constraints 10 and 11).

VII. EXPERIMENTAL RESULTS

This section presents the results of an experimental evalu-
ation that compares the two analysis techniques proposed for
EDD tasks (DSS-based from Section IV and MILP-based from
Section V). Furthermore, the performance of the analysis of
parallel tasks under partitioned scheduling by means of EDD
tasks presented in Section VI is evaluated against federated
scheduling.

A. Experiments on EDD tasks

Generation of EDD tasks. Synthetic workload for the ex-
periments has been generated as follows. The number n of
EDD tasks to be generated for each task set is fixed within the
experiments. For each EDD task in the task set, the topology
of the DAG is generated according to the technique proposed
by Melani et al. [9]. In this approach, a series-parallel graph
is first generated starting from two disconnected nodes by
recursively expanding non-terminal nodes to either terminal
nodes or parallel subgraphs until a maximum recursion depth
is reached. This results in a series-parallel graph with multiple
nested levels of parallel branches. In the generation procedure,
the maximum recursion depth is modeled as a generation
parameter nrec, while the probability for a non-terminal node
to expand to a parallel subgraph is another generation param-
eter ppar. The number of branches to which the non-terminal
node is expanded to is selected from the discrete uniform
distribution [2, npar]. The resulting series-parallel graph is then
transformed into a DAG by randomly adding edges between
pairs of nodes with a probability padd, provided that each
added edge does not introduce cycles in the graph.

In the following, let Ci =
∑
vji∈Vi

Cji and Ui = Ci/Ti
represent the cumulative WCET and the utilization factor of
each EDD task τi, respectively. In order to avoid biasing effects
in the workload generation, the UUniFast algorithm [10] is
used to generate the utilization factor Ui for each EDD task τi,
such that

∑
τi∈τ Ui = U , where U is the total system utiliza-

tion. Once the DAG topology is obtained, the minimum inter-
arrival time Ti of τi is selected from a discrete log-uniform
distribution in the range [Tmin, Tmax], and the deadline is set
to Di = Ti (implicit deadlines). The cumulative WCET Ci
is then set to Ci = Ti · Ui, and the WCET Cji of each node



vji ∈ Vi is generated by applying the UUniFast algorithm to
partition the available cumulative WCET Ci among the DAG
nodes, such that

∑
vji∈Vi

Cji = Ci. In particular, UUniFast is
used to uniformly select ni real values ĉji ∈ [0, 1] with the
constraint that

∑
vji∈Vi

ĉji = 1; then, the value of the WCET
Cji for each node vji ∈ Vi is set to Cji = Ci · ĉji .

The minimum waiting time W a,b
i of each edge ea,bi ∈ Ei is

set to 0. In order to generate the maximum waiting time W a,b
i

of each edge ea,bi ∈ Ei, the cumulative waiting time Wi to be
distributed among the nodes vji ∈ Vi is set to Wi = β · (Di −
Ci), where β ∈ [0, 1] is a real value that is used to control
the overall amount of suspensions incurred in the execution of
the task and is referred to as suspension factor. The maximum
waiting time W a,b

i of each edge ea,bi ∈ Ei is then generated
by applying the UUniFast algorithm to partition the overall
waiting time Wi among the edges, such that

∑
ea,b
i ∈Ei

W a,b
i =

Wi. In particular, UUniFast is used to uniformly select |Ei| real
values ŵa,bi ∈ [0, 1] with the constraint that

∑
ea,b
i ∈Ei

ŵa,bi =

1; then, the value of the maximum waiting time W a,b
i of each

edge ea,bi ∈ Ei is set to W a,b
i = Wi ·ŵa,bi . Finally, the resulting

EDD tasks are assigned priorities πi using Rate Monotonic.

Schedulability results. The experiment evaluates the schedu-
lability ratio obtained with the DSS-based analysis (Theo-
rem 1) and the MILP-based analysis. In this evaluation, the
total utilization U was varied from 0 to 1 with a step of 0.1.
Figure 5 reports the results of a representative configuration
where the generation parameters were set to n = 6, nrec = 2,
ppar = 0.8, npar = 2, padd = 0.2, Tmin = 100, Tmax = 1000,
and β = 0.8. For each value of U , 100 synthetic task sets
were tested with both analyses to derive the corresponding
schedulability ratio. The plot shows that system schedulability
decreases for both approaches with higher system utilization,
as it is to be expected, and that the MILP-based approach
retains a slight edge in schedulability performance with respect
to the DSS-based analysis. The experiments presented in the
next section show that the MILP-based analysis is instead
much more effective when analyzing parallel tasks.
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Figure 5. Schedulability ratio as a function of the system utilization U .

B. Experiments on parallel tasks

This section compares partitioned scheduling of parallel
tasks, analyzed via EDD tasks, against federated schedul-
ing [1]. Federated scheduling has been selected for comparison
purposes because it is a popular solution, and because it is the
closest to partitioned scheduling in terms of approach, runtime

overhead, and implied predictability (given that only a subset
of tasks is managed under global/clustered scheduling, while
the remainder are handled with pure partitioned scheduling).
Clearly, partitioned scheduling may have been compared to
several other solutions (e.g., global scheduling). However, the
resulting comparison would not be totally fair from a practical
perspective, considering that more convoluted scheduling solu-
tions tend to have several practical drawbacks when compared
to a simple approach like partitioned scheduling. For instance,
note that partitioned scheduling allows providing fine-grained
control of memory contention [11]–[13] and tight blocking
bounds in the presence of locking [14], as the computational
activities (i.e., the subtasks) are all statically allocated to a
single processor, and hence the contention generated by each
processor can be more precisely bounded than with global or
semi-partitioned scheduling.

Generation of parallel tasks. The task synthesis procedure
for parallel tasks is derived from the generation algorithm
employed for the synthesis of EDD tasks. For a given parallel
task τi, the procedure leverages the same approach used in
the generation of an EDD task τEDDi for what concerns the
generation of the DAG topology and of the task scheduling
parameters Ti, Di, and Cji , with a difference in how the
utilization value Ui is generated. Specifically, the experiments
on parallel tasks involve the generation of task sets with system
utilization U larger than 1. In order to avoid biases in the
generation of the utilization factors Ui for each parallel task τi,
UUniFast is used to uniformly select n real values Ûi ∈ [0, 1]
with the constraint that

∑n
i=1 Ûi = 1; then, the value of the

utilization factor Ui for each task τi is set to Ui = U · ûi.
Since in this case the utilization Ui of a parallel task τi

may be larger than 1, it is possible that the task generation
procedure for τi results in an infeasible allocation of the
WCET values Cji . To limit such occurrences, the generation
procedure for a parallel task τi is repeated (up to 100000
times) in case either (i) Cji > Ti for some node vji ∈ Vi;
or (ii)

∑
vji∈V (λ) C

j
i > Ti for some path λ ∈ path(Gi). The

value of an additional Boolean generation parameter bcond
determines whether the check on the second condition is
effectively applied (bcond = true) or not (bcond = false).

Federated scheduling. The federated scheduling algorithm
for parallel tasks by Li et al. [1] works by dividing the
task set into two disjoint sets: the set of high-utilization (or
heavy) tasks τhigh, which contains all tasks τi with Ui ≥ 1,
and the set of low-utilization (or light) tasks τlow, which
contains the remaining tasks, i.e., those with Ui < 1. Each
heavy task is assigned mi = dCi−Li

Di−Li
e dedicated processors,

where Li denotes the worst-case critical path length, which
is computed as Li = maxλ∈path(Gi)

{∑
vji∈V (λ) C

j
i

}
. Once

each heavy task is assigned its set of dedicated processors,
the remaining processors are assigned to the light tasks. Each
light task is treated as a sequential task by considering a
topologically ordered sequential execution of its nodes and
allocating them to the same processor. If a valid allocation of
processors is determined, each heavy task can be scheduled on
its assigned processors by a work-conserving global scheduler,
while light tasks are scheduled on the remaining processors by
a partitioned scheduler.

Partitioning algorithms. When testing the schedulability of



parallel tasks under partitioned scheduling, the nodes must be
partitioned in some way among the processors. This work con-
siders three partitioning algorithms. (WBF) Tasks are sorted by
decreasing utilization. Then, for each task, nodes are sorted by
decreasing utilization and assigned to a processor using a stan-
dard partitioning heuristic chosen among Worst-Fit, Best-Fit,
and First-Fit, where the fitting is determined by checking that
the processor utilization does not exceed one. Each partitioning
heuristic is tried in turn and the logic OR of their implied
schedulability performance is taken. (Pseudo-federated) As
under federated scheduling, tasks are divided into two disjoint
sets: heavy tasks and light tasks, with processor allocation
following the same rules in place for federated scheduling
of parallel tasks [1]. The difference with respect to federated
scheduling is that heavy tasks are scheduled on the assigned
processors by a partitioned scheduler, as opposed to a global
scheduler. The nodes of a heavy task τi are allocated on the mi

dedicated processors using WBF, while light tasks are allocated
as sequential tasks (i.e., all their nodes are allocated to the same
core) using WBF. (Pseudo-federated++) It works as pseudo-
federated, with the following differences. Each heavy task τi is
assigned a dedicated number of processors mi, starting from
dUie and incremented by one until a feasible allocation of
the nodes is found. As under pseudo-federated, the nodes of
a heavy task τi are allocated on the mi dedicated processors
using WBF, while light tasks are allocated as sequential tasks
using WBF. Heavy tasks are allocated first; then, if no feasible
allocation is found for a light task τi, the nodes of τi are spread
using WBF on all the available processors (including those
dedicated to heavy tasks) instead of a single processor.

Schedulability results. We tested six different schedul-
ing approaches: (EDD-WFB) the DSS-based analysis under
partitioning with WFB; (P-FED) and (P-FED-MILP) the
DSS-based and MILP-based analyses under partitioning with
pseudo-federated, respectively; (P-FED++) and (P-FED++-
MILP) the DSS-based and MILP-based analyses under par-
titioning with pseudo-federated++, respectively; and (FED-
WBF) federated scheduling [1] using WBF to partition light
tasks under Rate Monotonic scheduling. In these experiments,
m is used to denote the number of processors. Figure 6
reports the results of this experiment in terms of schedulability
analysis with respect to the system utilization U for various
system configurations. For each value of U , 500 synthetic task
sets were tested. For each configuration, the values of nrec,
npar, and padd were set to nrec = 2, npar = 2, and padd = 0.2,
respectively. The value of bcond was set to false for the con-
figurations in Figures 6(a-f), and to true for the configurations
in Figures 6(g-i). In case bcond = true, the ratio of task sets
which satisfy both feasibility conditions in the generation is
reported by the PAR-FEAS curve, which constitutes an upper
bound on the obtainable schedulability performance. The other
generation parameters (m, n, ppar, Tmin, Tmax) were varied
among the experiments and their specific value is reported
above each graph. In all the experiments, the total utilization
U was varied from 0 to m with a step of 0.5.

The results for m = 4 (i.e., Figures 6(a-c)) show that
partitioned scheduling of parallel tasks, when allocated accord-
ing to pseudo-federated++ and analyzed through EDD tasks,
outperforms federated scheduling by a significant margin. The
gap between the approaches becomes larger when increasing
the number of tasks from 6 to 8. These results are extremely

relevant given the higher predictability of partitioned schedul-
ing, especially when adopted in conjunction with techniques to
control memory contention or locking protocols. The results
also show that the performance of the pseudo-federated and
federated scheduling techniques is comparable, given their
similar approach for task allocation. The improvements pro-
vided by the MILP-based analysis are in this case larger than
those observed for single-processor EDD tasks. Similar trends
can be observed when m = 8 (i.e., Figures 6(d-f)). Finally,
Figures 6(g-i) show how the schedulability performance varies
with larger values of m and n when the additional check in
the task synthesis procedure is active (i.e., bcond = true). In
this case, the increase in the ratio of feasible task sets results
in a wider margin for improvement for the most performing
approaches (P-FED++ and P-FED++-MILP), which can then
benefit from a further increase in performance. In particular,
the advantage of P-FED++-MILP over P-FED++ becomes
very significant, reinforcing the relevance of the MILP-based
analysis.

Table I reports statistics on the runtime of each approach.
We report the minimum, maximum and average runtime for
the experiment of Figure 6(a), for a machine equipped with
an Intel Xeon E5-2640 v4 processor, with 10 multithreaded
cores running at a 2.40 GHz base operating frequency, and
24 GB DRAM. These measurements show that the analyses
proposed in this paper are suitable for offline system design
and optimization workflows.

VIII. RELATED WORK

Various task models have been proposed in previous work
to account for suspension-related delays. However, they either
do not explicitly consider suspensions originated by waiting
for events among portions of code, or are less expressive than
the model proposed in this paper.

The most relevant related work to the present paper pertains
to the literature on self-suspending tasks, which is excellently
reviewed in the survey by Chen et al. [7]. The segmented self-
suspending task model [5] is generalized by the EDD task
model, while the dynamic self-suspending task model allows to
safely analyze EDD tasks, as proven in Section IV. The hybrid
self-suspending task model [15] extends the dynamic self-
suspending task model by including a limit on the maximum
number of suspensions. This model is still not capable of deal-
ing with more complex execution and suspension behaviors
that can be captured by EDD tasks thanks to their graph-based
structure.

Previous work also studied the delays implied by hardware
acceleration with self-suspending task models (either directly
or indirectly through the analysis of locking protocols). Ex-
amples of this kind of works are those by Dong et al. [16],
Patel et al. [17], and Elliot et al. [18] for GPUs, and by
Biondi et al. [19] for FPGAs. However, such works consid-
ered synchronous acceleration requests, while the EDD task
model is particularly effective in dealing with asynchronous
acceleration, as explained in Section III.

In the context of distributed systems, the work by Gutiérrez
et al. [20] shows how to transform complex task and message
topologies (including modeling elements such as forks and
joins) into a set of linear sequences. However, the framework



Table I. ANALYSIS RUNTIMES.

EDD-WBF P-FED P-FED-MILP P-FED++ P-FED++-MILP FED-WBF

Minimum analysis runtime (ms) 1.56 0.08 0.08 0.63 0.63 0.06
Maximum analysis runtime (ms) 236.52 55.76 25025.80 124.86 70377.68 2.34
Average analysis runtime (ms) 27.18 2.41 200.67 7.30 231.79 1.06
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Figure 6. Schedulability ratio as a function of system utilization U for several system configurations. (a-f): bcond = false; (g-i): bcond = true.

does not include the possibility of explicitly modeling variable
delays on the edges, and the available analysis techniques are
considered pessimistic [20], [21]. Nonetheless, it might be pos-
sible to extend the framework to support the modeling elements
required to represent EDD tasks. The MAST modeling and
analysis toolset [22], which includes an implementation of the
framework in [20], constitutes a possible option for modeling
the behavior of EDD tasks through existing or additional
modeling facilities.

Previous work also analyzed parallel tasks under parti-
tioned scheduling by means of self-suspending tasks. Fonseca
et al. [21] considered preemptive tasks and used segmented
self-suspending tasks for analysis purposes. As EDD tasks
generalize segmented self-suspending tasks, this work also
generalizes the approach in [21]. Furthermore, the analysis
method proposed in this work is much simpler than that
of [21], which requires the execution of a complex recursive
algorithm to perform the model transformation. Casini et
al. [23] considered parallel tasks with non-preemptable nodes
and used limited-preemptive DSS tasks for analysis purposes.

IX. CONCLUSION AND FUTURE WORK

This paper presented the EDD task model. EDD tasks are
meant to explicitly model complex computing workloads that
incur delays due to waiting for events. We discussed how to use

EDD tasks to model asynchronous hardware acceleration and
the execution of parallel tasks under partitioned scheduling.
Two analysis approaches for EDD tasks have been provided,
one based on a model transformation to DSS tasks, and the
other based on a MILP formulation. Then, we showed that
parallel real-time tasks under partitioned scheduling can be
modeled via a set of EDD tasks that capture the projections
of the parallel task on each processor.

Experimental results showed that, for single-processor
scheduling of EDD tasks, the DSS-based analysis provides per-
formance close to that of the MILP-based analysis. Conversely,
the MILP-based analysis is much more effective when EDD
tasks are used to analyze parallel tasks. Partitioned scheduling
of parallel tasks has been shown to outperform federated
scheduling, with a significant gain in system utilization in all
the tested configurations.

Considering the generality and the modeling power of EDD
tasks, future work should evaluate the applicability of the
model to other kinds of workloads and address its application
under Earliest Deadline First (EDF) scheduling and in the pres-
ence of semi-partitioning of nodes on multicores. Future work
should also further explore the case of partitioned parallel tasks
analyzed by means of EDD tasks, possibly devising specialized
partitioning algorithms based on structural properties of EDD
tasks.
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[15] G. von der Brüggen, W.-H. Huang, and J.-J. Chen, “Hybrid self-
suspension models in real-time embedded systems,” in Proceedings
of the 23rd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA 2017). IEEE, 2017,
pp. 1–9.

[16] Z. Dong, C. Liu, S. Bateni, K.-H. Chen, J.-J. Chen, G. von der Brüggen,
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