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Abstract—Nowadays, hypervisors are the standard solution to
integrate different domains into a shared hardware platform,
while providing safety, security, and predictability. To this end,
a hypervisor virtualizes the physical platform and orchestrates
the access to each component. When the system needs to comply
with certification requirements for safety-critical systems, virtu-
alization latencies need to be analytically bounded for providing
off-line guarantees. This paper presents a detailed modeling of
three I/O virtualization techniques, providing analytical bounds
for each of them under different metrics. Experimental results
compare the bounds for a case study and quantify the contribu-
tion due to different sources of delay.

I. INTRODUCTION

In the last decade, the problem of reducing size, weight,
power, and cost in automotive components (called the SWAP-
c [1] problem) gave rise to an increasing effort for inte-
grating multiple applications in the same platform. This is
particularly relevant for embedded and cyber-physical systems,
where resources are typically scarce, and becomes crucial
in the presence of safety-critical systems such as automo-
tive and avionics. On the other hand, integrated applications
must retain high predictability, especially when certification is
mandatory. Nowadays, hypervisors are the standard solution
to virtualize a shared hardware platform, allowing to integrate
different applications (also called domains) while preserving
predictability, safety, and security thanks to many isolation
strategies developed over the years [2]–[5]. Such mechanisms
include cache coloring [4], DRAM bank partitioning [6],
memory bandwidth reservation [7], and temporal isolation
algorithms [8]. In this way, different domains can safely
run applications with different levels of criticality, potentially
under different operating systems (OSes), while sharing the
same hardware platform, thus greatly alleviating the SWAP-c.

With the current increasing interest toward embedding arti-
ficial intelligence in modern automotive systems, virtualization
is also a key means to isolate feature-rich OSes (e.g., Linux)
from real-time OSes [9]. Indeed, in modern autonomous-
driving applications, both domains have to co-exist. For in-
stance, a feature-rich OS may be essential to timely execute a
deep neural network on a hardware-accelerator by providing
drivers and software stacks that are not available for most of
the other OSes. On the other hand, a real-time kernel may
be in charge of executing safety-critical operations based on
results produced by applications running in other domains.

In this context, it is of the utmost importance for the vir-
tualized system to provide predictable mechanisms to access

input/output (I/O) devices, which can be, in turn, virtualized.
In safety-critical systems, I/O virtualization techniques must be
accompanied by a proper timing analysis that provides latency
bounds for off-line guarantees.
Contribution. This paper presents a fine-grained modeling
and analysis of different I/O virtualization techniques. For each
of them, response times and latencies due to input and output
operations are analytically bounded. This provides the basis
to drive application designers in setting different parameters
(e.g., ISRs priorities) while guaranteeing specific worst-case
I/O latency requirements. An experimental study reports on
the performance of the bounds obtained with the different
virtualization techniques for a case study based on the 2019
WATERS Industrial Challenge by Bosch [10].

II. RELATED WORK

Prior work mostly targeted empirical evaluations or
hardware-assisted I/O virtualization and management [26]–
[32]. Two of the most widespread hardware-assisted I/O
virtualization technologies are Intel VT-d [33], which allows
to assign I/O devices to VMs while providing VM routing
for device interrupts, and SR-IOV [34], which improves the
management of PCIe devices. Jiang et al. [35] implemented
in hardware different I/O management components [17, 18,
36, 37] in the context of BlueVisor [38]. Jiang and Auds-
ley [17] proposed the Virtualized Complicated Device Con-
troller (VCDC), a hardware component to perform I/O re-
quests directly from virtual machines (VMs), bypassing the
guest operating system (OS) with improved performance and
predictability. Münch et al. [19, 20, 39] studied techniques for
exploiting different hardware features to assist I/O virtualiza-
tion, e.g., the I/O memory management unit (IOMMU) [19]
and the I/O Memory Protection Unit (IOMPU) [20].

In the context of the Quest-V separation kernel, Dan-
ish et al. [11] proposed the Priority Inheritance Bandwidth-
preserving Server (PIBS), where I/O-handling virtual CPUs
inherit the priority of those that originally issued the I/O
request. No bounds for I/O latencies are provided. Li et a. [13]
proposed an approach to perform real-time communication in
Quest-V. Worst-case bounds are provided only for the round-
trip delay of the inter-domain communication mechanisms,
and without providing formal proofs. Bounds for I/O delays
are not provided. A method for migrating tasks among VM
is also proposed. The mechanisms available in Quest-V are
summarized by West et al. [14], where its support for Intel



TABLE I: Comparison of a selection of the related work.

Paper Virtualization Analytical
I/O latencies RT bounds Proofs Custom HW/SW Context

Danish et al. [11], Missimer et al. [12] SW NO YES NO PIBS Quest-V
Li et al. [13] SW NO YES NO Migration/Inter-VM comm. Quest-V

West et al. [14] HW/SW NO YES NO PIBS/Intel VT-x Quest-V
Golchin et al. [15] SW YES YES NO Tuned Pipes Boomerang
Masrur et al. [16] SW NO YES NO SEDF/PSEDF Xen

Jiang et al. [17, 18] HW NO NO NO Custom HW BlueVisor/MC
Perez et al. [8] SW NO NO NO NO Xtratum

Munch et al. [19], [20] HW NO NO NO SRIO-V/IOMMU - IOMPU Avionics
Pellizzoni and Caccamo [21]–[23] NO NO YES YES NO Analysis

Bak et al. [24], Betti et al. [25] HW NO YES YES Custom HW HW Design
Kim et al. [26] NO NO NO NO MC2 Project MC2

This Paper SW YES YES YES No custom HW Generic

VT-x hardware virtualization is described. Missimer et al. [12]
proposed a response-time analysis for sporadic servers and
PIBS servers in the context of Quest-V and adaptive mixed-
criticality scheduling, without formally proving the analysis.

Masrur et al. [16] analyzed the problem of guaranteeing
real-time constraints in the Xen hypervisor [40], also propos-
ing a new scheduler for reducing delay and jitter. Golchin et
al. [15] implemented an I/O system comprising real-time task
pipelines in the Boomerang hypervisor, extending the concept
of “tuned pipes”, previously introduced for USB devices [41],
and empirically comparing it with a standalone Linux and
the ACRN hypervisor [42]. Formulas are also provided to
guarantee QoS in end-to-end latencies, without proofs. Perez
et al. [8] empirically evaluated communication performance
in the context of ARINC-like systems based on the XTratum
hypervisor [43]. Ramsauer et al. [44] empirically measured
the interrupt latency of the Jailhouse hypervisor on an Nvidia
Jetson TK1. Beckert et al. [45] presented an approach for
reducing interrupt latencies in hypervisors using TDMA.

Pellizzoni and Caccamo [21]–[23] presented an analysis to
compute a worst-case execution time bound considering I/O
peripherals. Pellizzoni et al. [46] also presented an analysis of
the PCI bus. Bak et al. [24] proposed a framework to control
the I/O traffic on I/O peripherals in a COTS-based embedded
system, implemented in hardware on a FPGA board, and later
extended by Betti et al. [25]. Tabish et al. [47, 48] proposed a
real-time scratchpad-centric OS, with support for predictable
I/O for tasks using a three-phase execution model [49]–[52].

A selection of the related work is compared in Table I,
where each paper is classified according to: (i) virtualization
type (software, hardware or none), (ii) the presence of analyti-
cal bounds to I/O latencies and general real-time bounds (e.g.,
to ensure schedulability), (iii) the presence of proofs in support
of theoretical results, (iv) the need for custom hardware and/or
software, and (v) the context of the paper.

Why this work? Overall, most prior work considered
hardware-assisted mechanisms (which may not be available in
most systems), the presence of custom scheduling mechanism
and algorithms (e.g., PIBS servers), and empirical studies.
Among the previous research providing analytical bounds,
none of them targeted specific I/O virtualization latencies as
those presented in this paper, and most of them presented

the results without providing proofs. In contrast, this work
provides a detailed modeling and a formally-proved analysis
for three different I/O virtualization scenarios that can be
achieved with standard inter-domain communication mecha-
nisms commonly available in most hypervisors, without relying
on specific hardware features or custom scheduling algorithms
that may not be always available.

III. SYSTEM MODEL

The computing platform considered in this paper consists
of a set P = {p1, . . . , pm} of m identical (physical) cores
and a set D = {d1, . . . , dz} of I/O devices. Each device is
provided with a corresponding DMA engine that can perform
simultaneous I/O operations. A bare-metal hypervisor is in
charge of virtualizing the computational resources to different
domains, each referred to as virtual machine (VM). Overall,
the hypervisor handles a set V = {v1 . . . , vw} of w VMs. We
consider a partitioning hypervisor, i.e., each VM vi ∈ V is
statically assigned to a set of cores C(vi) in an exclusive way,
i.e., no other VM than vi uses the cores in C(vi).
Task Model. Each VM vi ∈ V is in charge of managing a set
ΓVM
i of real-time tasks. Each task τj ∈ ΓVM

i is a computational
activity statically assigned to a VM M(τj) = vi ∈ V and
characterized by a worst-case execution time (WCET) Cj , a
relative deadline Dj , and a fixed priority πj .

Each task τj releases a potentially-infinite sequence of
instances called jobs. Jobs may be activated by multiple types
of stimuli, e.g., a periodic timer implemented within the guest
operating system (OS) of a VM, or an external event (interrupt)
caused by an I/O device. In both cases, an event arrival
curve ηj(δ) is associated with each task τj to upper-bound
the maximum number of release events of τj in any interval
of length δ. For example, a periodic task τj with period Tj
is modeled with an arrival curve ηj(δ) = dδ/Tje. Each task
is characterized by an inter-job precedence constraint, i.e.,
at most one job of each task can be pending at the same
time, which can be enforced by setting a deadline Di ≤ Ti,
where Ti is the minimum time elapsed between the release
of two consecutive jobs of τi, and checking the schedulability
of τi. A task τi is said to be schedulable if all jobs complete
within Di time units from their release. Each VM can access
a set H(vi) ⊆ D of I/O devices. Similarly, the set of devices
accessed by τj is referred to as H(τj). For the sake of



conciseness in the notation, for each VM vi ∈ V , we assume
that at most one task τj ∈ ΓVM

i may access each I/O device
df ∈ H(vi). Such a task is denoted by T (vi, df ). We will
discuss in Section VIII about how to relax this assumption.
Tasks do not self-suspend and are executed by each VM
according to a partitioned fixed-priority scheduling policy, i.e.,
each task τj is statically assigned to a core C(τj) ∈ C(vi),
where vi = M(τj). The set of tasks running on core pk is
denoted as Γk. The set hepk(τj) denotes all other tasks with
a higher or equal priority than τj allocated on pk. Similarly,
set lpk(τj) denotes all tasks with a lower priority than τj .
ISR Model. The system also handles a set of interrupt-
service routines (ISRs) S. Each ISR σa ∈ S is charac-
terized by a WCET Ca, a fixed-priority πa, and releases
a potentially-infinite sequence of instances. The maximum
number of release events of σa in an interval of length δ is
upper-bounded by ηa(δ). ISRs are always assigned to higher
priorities than tasks. Each ISR σa ∈ S executes on a specific
core pk = C(σa) ∈ P . The set of ISRs running on pk is
denoted by Sk. The hypervisor reacts to all interrupts raised
by the I/O devices and is in charge of dispatching them to the
target VMs, i.e., by issuing virtual interrupts to the VMs [53].
Hence, for each interrupt, there are two ISRs serving it: one
at the hypervisor level (denoted as H-ISR) and one for the
target VM (denoted as VM-ISR). To model this behavior, each
ISR σa ∈ S is associated with a type ua ∈ {H,V }, where
H-ISR have ua = H and VM-ISRs have ua = V . Each VM-
ISR σa is triggered by a corresponding H-ISR σb denoted by
F(σa) = σb. For each core pk ∈ P , VM-ISRs are included
in the set SVM

k , whereas H-ISRs are in the set SH
k , such that

SVM
k ∪ SH

k = Sk. H-ISRs have always higher priorities than
their VM-level counterparts. Sets hepk(σa) and lpk(σa) are
defined as for the case of tasks by replacing τj with σa and Γk
with Sk. Recent interrupt controllers provide direct interrupt
routing, allowing to avoid the need for H-ISRs: they can be
handled by the methods of this paper by considering VM-ISRs
only. Tasks, ISRs, and device DMAs may experience memory
contention when accessing main memory and shared caches.
The corresponding delays are assumed to be already factored
in the WCETs and in the I/O transfer delays (introduced
later). They can be bounded using state-of-the-art methods,
e.g., by considering the individual worst-case of each memory
request [54]. The integration of other methods to account for
DRAM and cache contention, e.g., [55]–[62], requires further
details in the modeling of memory accesses, and it is left as
a future work. Also, overheads due to the guest OS and the
hypervisor are assumed to be already included in the timing
parameters. Delays to transfer I/O data are not included in the
WCETs and they are discussed later.
Non-Interruptible Sections. Tasks and ISRs may require to
enforce mutual exclusion by temporarily masking interrupts
and disabling preemptions. To model such behaviors, a system
ceiling Πk is provided with each core pk. Informally, the
system ceiling is a threshold on the priority that needs to be
overtaken to enable preemption. This paper does not consider
tasks accessing lock-protected shared resources, although it

can be easily extended to support them. Hence, we model only
three values for the ceiling: ρLOW

k = min{πj | τj ∈ Γk} (i.e.,
all tasks and ISRs can preempt), ρVM

k = max{πj | σj ∈ SVM
k }

(i.e., only H-ISRs can preempt), and ρH
k = max{πj | σj ∈ SH

k }
(i.e., preemption is disabled). The availability of three levels
for the system ceiling allows to flexibly model many use
cases commonly found in hypervisor-based systems, e.g., the
masking of VM-level ISRs only or letting ISRs or hypercalls
to disable interruptions to avoid race conditions.

Due to the priority ordering among tasks and VM-level and
hypervisor-level ISRs, it follows that ρH

k > ρVM
k > ρLOW

k .
Then, a task τj ∈ Γk or an ISR σj ∈ Sk can preempt another
task τc or ISR σc only if πj > max(Πk, πc). Hence, when
Πk = ρLOW

k , preemptions are allowed; when Πk = ρVM
k , only

H-ISRs can preempt; finally, when Πk = ρH
k , preemption

is forbidden. Tasks and ISRs may enter one or more non-
interruptible regions (NIRs) by raising the value of Πk to ρVM

k

or ρH
k . When the region completes, Πk is set to ρLOW

k . To
enforce safety and security in the system, only H-ISRs can
raise Πk to ρH

k . Furthermore, they do never raise Πk to ρVM
k ,

as ∀σh ∈ S : uh = H ⇒ πh > ρVM
k . For each task τj ∈ Γk

or ISR σj ∈ Sk, ωj bounds the length of the longest non-
interruptible region executed with Πk = ρH

k , in the case of
H-ISRs, and with Πk = ρVM

k , for VM-ISRs or tasks. These
terms are then used next in the timing analysis to bound the
priority-inversion blocking [63, 64].
Hypercalls. Hypercalls are software traps (i.e., exceptions)
caused by tasks to invoke the hypervisor and are used to
perform privileged operations that cannot be directly executed
by the VM. Hypercalls are hence similar to hypervisor-level
ISRs but, differently, they are synchronous with respect to
the execution of the task requesting it (i.e., tasks wait until
hypercalls complete). This allows modeling each hypercall as
a part of the task execution subject to priority elevation by
specifying only two parameters: the WCET of the hypercall
and the priority at which it executes. In this work, we focus on
hypercalls called for performing I/O operations and, to keep
the system model simple, we introduce the necessary notation
only when needed in the following. The duration of hypercalls
is not included in the WCET of the requesting task.
Communication Model. Each task τj performs a set Rj
of I/O requests. Any arbitrary y-th request rfj,y ∈ Rj (with
y ∈ [1, |Rj |])) involving a task τj and a device df is
characterized by a type ∆f

j,y = {I,O} and a size sz(rfj,y)

expressed in bytes. Requests assigned to type ∆f
j,y = I are

input operations, meaning that the data flows from device df
to task τj . Conversely, if ∆f

j,y = O, rfj,y is an output operation,
i.e, the data flows from τj to df . Each I/O device is provided
with two I/O buffers (stored in memory): one for input and
one for output data. Buffers are assumed to be large enough
so that they never become full. To trigger an output operation,
the corresponding data needs to be placed in the corresponding
I/O buffer: then, the DMA associated with the I/O device is
instructed to perform the copy from the I/O buffers to the
device. Input operations involve the copy from the I/O device



to its I/O buffer.
Device Events. When data is received from the external envi-
ronment, it is copied into the I/O buffers of the corresponding
device df ∈ D. Such data arrivals are modeled by associating
a set Ef of device events with df . Device events ef

j,y ∈ Ef
(originated from a device df for a task τj) are associated with
a size sz(ef

j,y). They do not have a type (data arriving from
the external environment only need to be copied into the I/O
buffers). The arrival of device events is notified to the system
with a VM-level ISR I(ef

j,y) = σv .
Table of symbols. Table II summarizes the main symbols
introduced in this paper.

TABLE II: Table of symbols

Symbol Description
pk k-th physical core
vi i-th virtual machine
dy y-th I/O device
P set of the physical cores
V set of virtual machines
D set of I/O devices
τj j-th task
σh h-th ISR
Cj j-th task WCET
πj j-th ISR/task deadline
ηj(δ) j-th task/ISR arrival curve
ωj length of the longest NIR
uh type of the h-th ISR (H or V)
Γk set of tasks allocated to pk
ΓVM
i set of tasks managed by vi
SH
k set of hypervisor-level ISRs allocated to pk
SVM
k set of VM-level ISRs allocated to pk
Sk set of ISRs allocated to pk
C(vi) set of cores exclusively assigned to vi
C(τj)/C(σh) core where τj /σh is allocated to
M(τj) virtual machine managing τj
H(τj)/H(vi) set of devices assigned to τj /vi
T (vi, df ) τj ∈ ΓVM

i accessing df
F(σa) hypervisor-level ISR associated with σa

Rj set of requests issued by τj
rfj,y y-th request involving τj and df
∆f

j,y type of rfj,y (I or O)
sz(rfj,y) number of bytes copied for rfj,y
Ef set of device events originated by df
ef
j,y y-th device event involving τj and df
I(ef

j,y) VM-level ISR associated with ef
j,y

sz(ef
j,y) number of bytes copied for ef

j,y

IV. MODELING I/O VIRTUALIZATION TECHNIQUES

Clearly, many different I/O virtualization techniques may be
devised. To keep the analysis framework as general as possible,
without relying on custom mechanisms that might not be
practically available in most hypervisors, we focus on three
I/O management solutions that we deem particularly relevant,
as they can be realized with standard inter-VM communication
mechanisms available in almost all hypervisors. Thanks to its
generality, the analysis framework can be extended for other
techniques.

I/O device driver I/O device driver

I/O Device
Computing 

platform

Hypervisor

Memory

VM #1 VM #2

Application Application

C
o

re
s

I/O Device

Pass-through Pass-through

Fig. 1: Pass-through I/O virtualization.

A. Pass-Through I/O

When using pass-through I/O (see Figure 1), each VM is
exclusively associated with one or more I/O devices. Clearly,
this scenario has the disadvantage of forbidding the device
sharing among different VMs. On the other hand, it is simple
to implement and it may allow meeting stringent latency
requirements since it avoids device contention among VMs.
Under this setting, each I/O input buffer is provided with an
integer value cf denoting the number of bytes related to new
data (e.g., produced by df but never consumed by τj ∈ ΓVM

i ).
Pass-through I/O behaves according to the following rules:
PT1. When device df receives data from the external envi-

ronment (i.e., a device event ef
j,y occurs), it instructs its

DMA engine to copy the data in the I/O buffer of df .
Upon completion, it triggers a H-ISR σa (that in turn
will trigger a VM-ISR σb : σa = F(σb)) to increment cf
and notify the termination of the data transfer.

PT2. When a task τj ∈ ΓVM
i performs an input operation

rfj,y , it tries to copy sz(rfj,y) bytes from the I/O buffer to
the task-local memory of τj . The memory buffers whose
content has been copied are released to the I/O device for
future data. If cf ≥ sz(rfj,y) the copy succeeds and cf is
decremented of sz(rfj,y) units; otherwise, it fails.

PT3. When a task τj ∈ ΓVM
i performs an output opera-

tion rfj,y , it first copies data into the I/O buffers and
then instructs the DMA engine of dy to copy sz(rfj,y)
bytes from the task-local memory of τj to the device.
Afterwards, it continues executing without blocking. An
interrupt notifies the completion of the DMA copy.

The DMA copies require λIN
DMA and λOUT

DMA time units for each
byte written and read to/from the I/O buffers, respectively. The
copies performed by the task require λCP time units per byte.

B. I/O Para-Virtualization with I/O VM

Often, it is required by multiple VMs to share one or
more I/O devices and it is not possible to merely use pass-
through I/O. To enable device sharing, we consider the case in
which the actual interaction with the devices is performed by
a dedicated VM named as I/O management virtual machine
(I/O VM, e.g., as in [8, 43]), which hosts the execution
of the device drivers — see Figure 2. We deem this case
particularly relevant as it can be realized by using the standard
inter-VM communication mechanisms commonly available in
most hypervisors, and we name it I/O para-virtualization, as it
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Fig. 2: I/O Para-Virtualization with I/O VM.

requires a hypervisor-specific API to be offered to VMs. Under
this configuration, for each pair (vi, df ) with df ∈ H(vi),
two corresponding memory buffers are maintained in the
hypervisor memory space: one for input operations and one for
output operations. We assume the memory buffers to be large
enough to guarantee that they never become full. Such buffers
are used by an inter-domain communication mechanism to
transfer I/O data between the I/O virtual machine vio and
the other VMs. The I/O VM is in charge of performing I/O
requests on behalf of the other domains, and it is statically
allocated to a single core pio ∈ P in an exclusive manner.
The I/O VM executes a single task τio, which implements
an I/O scheduler (also called I/O manager), which enqueues
requests from different VMs and dispatches them to each
device according to a scheduling policy. Task τio can access all
the devices via pass-through. Hence, determining the behavior
of this setting requires defining both (i) how each VM interacts
with the I/O VM by means of the communication mechanism
provided by the hypervisor and, (ii) how I/O requests are
managed by the I/O scheduler. We start discussing point (i).
Inter-domain communication mechanism. VMs vi ∈ V \
{vio} interact with I/O devices by means of the inter-domain
communication mechanism implemented by the hypervisor.
The interaction is regulated by the following rules:

C1. When a task τj ∈ ΓVM
i performs an input operation rfj,y ,

it invokes a hypercall that tries to copy sz(rfj,y) bytes
from the input memory buffers stored in the hypervisor
memory related to the pair (vi, df ) to the task-local
memory of τj . Each input buffer is associated with a
counter ci,f denoting the amount of bytes produced by
device df (and made available by means of vio) but not
yet consumed by vi. If ci,f ≥ sz(rfj,y) the copy succeeds
and ci,f is decremented by sz(rfj,y); otherwise, it fails.

C2. When a task τj ∈ ΓVM
i performs an output operation rfj,y ,

it invokes a hypercall to copy sz(rfj,y) bytes from the
task-local memory of τj to the hypervisor output memory
buffer related to the pair (vi, df ). Contextually, a request
rfj,y with ∆f

j,y = O is inserted in the output queue of the
pair (vi, df ) in the I/O scheduler.

Copy operations (from VM buffers to the hypervisor buffers
and vice versa) require at most λCP time units per byte.
I/O scheduler. The I/O scheduler is graphically illustrated in

To devices (via I/O drivers)

𝑣1 to 𝑑1
queue

Inter-Queue Scheduler

𝑣2 to 𝑑1
queue

𝑑1to 𝑣1
queue

𝑑1to 𝑣2
queue

FIFO 
queues

Round   Robin

To/From VMs

Fig. 3: I/O Scheduler with two VMs sharing an I/O device.

Figure 3. It interacts with two queues of requests provided
by the inter-domain communication mechanism for each pair
(vi, df ), with df ∈ H(vi): a queue QOUT

i,f for data flowing from
vi to df (output operations), and a queue QIN

i,f for data flowing
from df to vi (input operations). In each queue, requests are
managed in a first-in first-out (FIFO) order. An inter-queue
dispatcher serves the request at the top of a queue selected
with round-robin arbitration1. The I/O VM accesses devices
according to the rules presented next.
V1. When device df receives data from the external environ-

ment (i.e., a device event ef
j,y occur), it instructs its DMA

engine to copy the data into the I/O buffers of df . Upon
completion, it triggers a H-ISR σa (which in turn triggers
a VM-ISR) to increment cf and notify the termination of
the data transfer by inserting a request rfj,y with ∆f

j,y = I
in the queue of the I/O scheduler.

V2. When the I/O VM serves an input request rfj,y , it copies
sz(rfj,y) bytes from the I/O buffers of df to the buffers
related to the pair (vi, df ), withM(τj) = vi. The counter
cf is decremented by sz(rfj,y) units, incrementing ci,f
by the same amount (see rule C1). The condition cf ≥
sz(rfj,y) is guaranteed by rule V1.

V3. When the I/O VM serves an output operation rfj,y , it first
copies the data from the hypervisor memory to the I/O
buffers. Then, it instructs the DMA engine of df to copy
sz(rfj,y) bytes from the I/O buffers to the device. After-
wards, it continues executing without blocking. When the
DMA copy terminates, an interrupt notifies completion.

Note that, being memory buffers related to I/O commu-
nications in the hypervisor memory, data need to be copied
using hypercalls due to the memory-protection mechanisms
of the hypervisor to ensure isolation among VMs. Further-
more, hypercalls introduce blocking times to latency-sensitive
tasks that may not be tolerated (they cannot be preempted
by the tasks). Next, we propose a variant of the I/O Para-
Virtualization approach to overcome these issues.

C. I/O Para-Virtualization with I/O VM and Shared Buffers

This approach, illustrated in Figure 4, extends the previous
one by storing the memory buffers related to each pair (vi, df ),
with df ∈ H(vi), in a portion of memory shared between vi

1Note that FIFO and round-robin allow providing reasonable fairness
guarantees for requests associated with each queue while being predictable
policies. For example, they are largely used in locking protocols [65]–[67].
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Fig. 4: I/O Para-Virtualization with I/O VM and shared buffers.

and the I/O VM vio. Shared buffers can be implemented with
wait-free queues [68]. In this way, the copies from the VM
memory to the hypervisor memory mandated by rules C1 and
C2 are not needed. Indeed, since the shared memory buffers
are accessible by the VM that issues the I/O operations, the
tasks can directly use such buffers to produce and consume
the data while executing. Counters ci,f defined in rule C1 are
also defined in this scenario. Based on these consideration, the
following set of rules is defined to specify how an arbitrary
VM vi ∈ V \ {vio} performs I/O operations:
CS1. During its execution, a task τj ∈ ΓVM

i tries to acquire
the buffers for each input operation it is willing to
perform during execution. For each input operation rfj,y , if
ci,f ≥ sz(rfj,y) the access to the shared buffer is granted;
otherwise, it fails. Then, the task is allowed to work by
directly using such buffers. When the job completes or
it explicitly releases one or more of such buffers, they
return to the portion of shared memory to store future
data. When the buffer related to a request rfj,y is released,
ci,f is decremented by sz(rfj,y) units.

CS2. During its execution, a task τj ∈ ΓVM
i acquires the

buffers for each output operation it is willing to perform
during execution. When a specific output operation rfj,y
is completed, it releases the corresponding shared buffer.
Contextually, a request rhj,y with ∆h

j,y = O is inserted in
the queue of the I/O scheduler.

Rules V1, V2, and V3, are left unaltered with the exception
that each interaction with the hypervisor memory is replaced
with an interaction with the shared-memory buffers.

D. Timing metrics studied in this work

We conclude the section by presenting the metrics used in
the paper to evaluate the I/O virtualization scenarios.

Definition 1 (Response Time): The worst-case response time
(WCRT) of a task τj is the longest time span elapsed between
the release and the completion of one of its jobs, for each
possible schedule in which a job of τj is executed.

Definition 2 (Data Delivery Latency): The Input (resp.,
Output) Data Delivery Latency (IDDL, resp., ODDL) is the
longest time span elapsed between the time in which a device
(resp., a VM) starts sending the data, and the time in which a
target VM (resp., a device) is allowed to consume such data.

Definition 3 (Input Processing Latency): The Input Pro-
cessing Latency (IPL) is the longest time span elapsed between

the time in which a device starts sending the data, and the time
in which a given consumer task completes the execution of a
job using such data as input.

The main difference between IPL and IDDL consists in
the fact that the former depends on the response time of the
consumer task while the latter depends on I/O delays only.

V. ANALYZING PASS-THROUGH I/O

First, we start discussing the case of pass-through I/O. For
each task τj ∈ Γk, a response-time bound Rj is derived next.

Lemma 1: The response time of a task τj ∈ Γk is bounded
by the least positive solution of the following equation:
Rj = Cj +Bj +

∑
τh∈hepk(τj)

ηh(Rj)Ch +
∑

σh∈Sk

ηh(Rj)Ch,

where Cj = Cj +
∑
rfj,y∈Rj

sz(rfj,y) · λCP, and Bj =

max{ωl | τl ∈ lpk(τj)}.
Proof: The lemma follows from standard response-time

analysis provided that low-priority blocking and high-priority
interference are bounded. First note that non-interruptible
regions executed by a lower-priority task at ceiling level
Πk = ρVM

k can block τj . Regions executed at Πk = ρH
k

cannot block τj as they are due to H-ISRs, which have higher
priorities than tasks. Blocking can be experienced only once:
as soon the non-interruptible section completes, the blocking
task is preempted. For each lower-priority task τl ∈ lpk(τj), ωl
is a bound on the length of the longest non-interruptible region.
Consequently, Bj bounds the priority-inversion blocking of
τj . High-priority interference is given by (i) ISRs allocated on
the same processor of τj (set Sk) and (ii) higher-priority tasks,
both contributing with up to ηh(Rj) instances, each one with a
maximum duration of Ch and Ch, respectively. The execution
cost of each τj is bounded by its WCET Cj (due to inter-job
precedence constraints, see Section III) and the time to copy
data from/to the I/O buffers (

∑
rfj,y∈Rj

sz(rfj,y) · λCP).
If Rj ≤ Dj then task τj is schedulable and Rj is said to be

a valid response-time bound. Lemma 1 can be used under the
assumption that all the involved parameters are known. This
may not always the case for arrival curves. For example, VM-
ISRs are triggered when the corresponding H-ISRs complete.
As noted in prior works [69]–[72], when a computation is
triggered by another one, the arrival curve of the successor
needs to account for a release jitter, reflecting the activation
delay due to the completion of the predecessor.

Given a VM-ISR σv ∈ S : uv = V , its arrival curve can
be derived from the one of the corresponding H-ISR σh ∈ S :
uh = H∧F(σv) = σh as ηv(δ) = ηh(δ+Rh) [72]. It follows
that bounding the response time of a task requires knowing
the response time of the H-ISRs, needed to define the arrival
curve of the corresponding VM-ISRs. Since H-ISRs always
have a higher priority than VM-ISRs ones, this issue is solved
by computing the response-time bounds in order of priority.

Differently from tasks, ISRs do not have inter-job prece-
dence constraints. Hence, an ISR instance released at a time tr
can suffer self-interference from other instances of the same
ISR released prior to time tr, i.e., multiple instances of the
same ISR can interfere with the one under analysis. This



issue is typically solved with extended response-time analysis
techniques that holistically study such instances [73, 74]. Due
to lack of space, Lemma 2 provides a simpler but conservative
bound, leaving its refinement as future work.

Lemma 2: The response time of an ISR σa ∈ Sk is bounded
by the smallest solution of the equation:
Ra = Ba +

∑
σh∈hepk(σa)∪σa

ηh(Ra)Ch, where

Ba =

{
max{ωl | σl ∈ lpk(σa) ∨ τl ∈ Γk} if σa ∈ SVM

k ,

max{ωl | σl ∈ lpk(σa) ∩ SH
k } if σa ∈ SH

k .
(1)

Proof: Due to the priority assignment, tasks cannot inter-
fere with σa. ISRs can be blocked from lower-priority ISRs or
tasks raising the system ceiling. The blocking is bounded by
Ba. If σa is a VM-ISR, Ba includes the length of the longest
NIR of both lower-priority ISRs and tasks, which may raise
the system ceiling Πk to ρVM

k (first branch of Eq. (1)). Recall
from Sec. III that VM-ISRs and tasks cannot raise Πk to ρH

k

and, if σa is a H-ISR, πa > ρVM
k . Hence, σa can be blocked

only by other H-ISRs with a lower priority raising Πk to ρH
k

(second branch of Eq. (1)). The lemma follows by noting that
ISRs σh ∈ hepk(σa)∪ σa may interfere with at most ηh(Ra)
jobs executing for at most Ch.
Input Data Delivery Latency. By rule PT1, a H-ISR σh is
released to signal to the hypervisor the completion of the
DMA transfer. However, the target VM is actually notified
only after the completion of a corresponding VM-ISR σv ,
which is triggered by σh. This functional behavior creates a
chain of three pipelined events: (i) the DMA copy, (ii) the
execution of σh and, (iii) the execution of σv .

A simple way to bound the IDDL is to use the basic
Compositional Performance Analysis approach (CPA) [73]:

LIDD(ef
j,y) = sz(ef

j,y) · λIN
DMA +Rh +Rv, (2)

where sz(ef
j,y) · λIN

DMA bounds the time required by the DMA
to copy the data due to device event ef

j,y , while Rh and Rv are
WCRT bounds for the H-ISR σh and the VM-ISR σv . While
this approach benefits of simplicity and it is general enough
to flexibly handle the case in which σh and σv run in different
cores, it may yield pessimistic bounds as it chains response
times computed in independent worst-case scenarios [75, 76].

To improve the analysis precision, we holistically consider
a chain `x consisting of an ordered sequence of ISRs where:
(i) all the ISRs involved in the chain are allocated to the same
core pk, and (ii) there is a precedence constraint between the
i-th ISR and the (i+1)-th ISR of the chain. Before focusing on
the specific case in which `x = (σh, σv), Lemma 3 bounds
the priority-inversion blocking for an arbitrary chain.

Lemma 3: Let `y = (σa, . . . , σw) be a chain of ISRs where
all ISRs are allocated to the same core pk. Then, `y may be
blocked at most once by at most Ba time units from Eq. (1).

Proof: As in Lemma 1, the first ISR σa of the chain can
experience blocking due non-interruptible regions. After the i-
th ISR σi of the chain completes, either (i) all the ISRs of the
chain completed or (ii) the (i+1)-th ISR σi+1 becomes ready
to execute on pk. In case (i), no additional blocking is suffered

by `y . In case (ii), when σi completes, either σi+1 (which runs
on pk, as σi) or a higher-priority ISR σw ∈ hepk(σi+1) starts
executing on pk. Hence, no ISR σlp ∈ lpk(σi+1) can block
σi+1. The lemma follows by noting that no ISRs in the chain
can be blocked except the first one (σa), and its blocking is
bounded by Ba by Lemma 2.

Building on Lemma 3, Lemma 4 provides a bound that
holistically considers the delays incurred by a chain `y .

Lemma 4: Let `y = (σa, . . . , σw) be a chain of ISRs
allocated to core pk, where the i-th ISR has a priority
higher than or equal to the (i+1)-th ISR. Then, the latency
incurred by `y is bounded by the smallest positive solution of:
R(`y) = Ba +

∑
σd∈hepk(σw)∪σw

ηd(R(`y))Cd, where Ba is
defined as in Eq. (1).

Proof: By Lemma 2, the blocking time incurred by the
first ISR σa of `y is Ba. By Lemma 3, Ba also bounds
the blocking time of `y . By definition, `y = (σa, . . . , σw)
completes when its last ISR σw terminates. The lemma follows
by noting that since ISRs in `y have decreasing priorities, they
can be interfered only by ISRs with a priority higher than
or equal to the one of σw, and all its predecessors already
completed before σw starts executing as they have a higher
or equal priority (i.e., the delay due to predecessors is already
included in the bound).
As H-ISRs have higher priorities than VM-ISRs, the assump-
tions of Lemma 4 hold. Hence, the IDDL is bounded by:

LIDD(ef
j,y) = sz(ef

j,y) · λIN
DMA +R(`x), (3)

where `x = (σh, σv), with σv ∈ SVM
k and σh ∈ SH

k ∧F(σv) =
σh. Using Eq. (3), arrival bursts of interfering ISRs and
priority-inversion blocking are accounted only once in term
R(`x), instead of accounting them twice, i.e., in terms Rh and
Rv of Eq. (2). Also, priority-inversion blocking is considered
only once thanks to Lemma 3. As a drawback, Eq. (2) requires
σh and σv to be allocated in the same core, which is anyway
a typical and reasonable assumption for most systems.
Output Data Delivery Latency. Similarly to the case of input
data, by rule PT3 and Definition 2 the ODDL of an output
request rfj,y can be bounded as:

LODD(rfj,y) = sz(rfj,y) · λOUT
DMA +Rh +Rv, (4)

computing individual response-time bounds for the hypervisor-
level ISR σh and the VM-level ISR σv , or

LODD(rfj,y) = sz(rfj,y) · λOUT
DMA +R(`x), (5)

bounding `x = (σh, σv) by means of the results of Lemma 4.
Input Processing Latency. Differently from the IDDL, the
IPL also depends on the response time of the task τj consum-
ing the data. We distinguish between two different cases: (i)
τj is triggered by the I/O event (i.e., by the completion of the
corresponding VM-level ISR σv), and (ii) otherwise. In case
(i), the arrival curve of τj needs to be derived from the one of
σv as ηj(δ) = ηv(δ+Rv), where Rv is a valid response-time
bound for σv . Then, the IPL of a device event ef

j,y can be
derived by computing the individual response times as

LIPS (ef
j,y) = sz(ef

j,y) · λIN
DMA +Rh +Rv +Rj , (6)



with σv ∈ SVM
k and σh ∈ SH

k ∧ F(σv) = σh or, leveraging
Lemma 4 as done for the IDDL,

LIPS (ef
j,y) = sz(ef

j,y) · λIN
DMA +R(`q), (7)

where `q = (σh, σv, τj) is a hybrid chain composed of
ISRs and tasks, all allocated to pk. R(`q) is a holistic bound
for `q , which can be derived as: R(`q) = Bh + Cj +∑
σd∈Sk

ηd(R(`q))Cd +
∑

τd∈hepk(τj)

ηd(R(`q))Cd, where Cj is

defined as in Lemma 1 and Bh as in Eq. (1). The bound
follows similarly to Lemma 4, noting that `q fulfills the as-
sumptions of Lemma 3 and 4, and that the inter-job precedence
constraint of τj guarantees that at most one instance of τj may
contribute to R(`q) when the system is schedulable.

In case (ii), the release of τj is asynchronous with respect to
the I/O event. When adopting arbitrary arrival curves, this case
may lead to an unbounded IPL, as long as a maximum inter-
arrival time between consecutive job release is not available.
This is due to the fact that an arbitrary job of τj may complete
an input operation ε units of time (with ε > 0 arbitrary small)
after new data becomes available, thus needing to wait the
next job to sample the updated data [77]. When a maximum
inter-release time is not available, it is not possible to provide
a bound for the worst-case sampling delay.

Hence, we focus on periodic tasks to compute the IPL in
the asynchronous case. When considering periodic tasks, the
worst-case sampling delay is well defined and equal to the
period Tj . Hence, the input processing latency is bounded as:

LIPA (ef
j,y) = sz(ef

j,y) · λIN
DMA +Rh +Rv + Tj +Rj , (8)

with σv ∈ SVM
k and σh ∈ SH

k ∧F(σv) = σh, by noting that the
data delivery chain ending up with the execution of σv may
complete just after task τj samples the data, which in any case
will re-occur after Tj time units because of the periodicity of
τj . A refined IPL bound can be obtained by bounding the
response time of chain `x = (σh, σv) with Lemma 4:

LIPA (ef
j,y) = sz(ef

j,y) · λIN
DMA +R(`x) + Tj +Rj . (9)

VI. ANALYZING I/O PARA-VIRTUALIZATION

The I/O Para-Virtualization scheme described in Sec-
tion IV-B has its main focus on the concept of I/O VM.

As shown in Figure 3, there are two queues for each pair of
(vi, df ): a queue QOUT

i,f containing output operations rfj,y (with
τj ∈ ΓVM

i ,∆f
j,y = O), where the data flows from a VM vi to

a device df , and a queue QIN
i,f storing input operations rfj,y

(with ∆f
j,y = I), where the data flows from a device to a VM.

Each type of operation incurs in a different contribution to the
total delay. Note that the copies specified by rules V1 and V2
have an overall cost of λCP ·sz(rfj,y). By rule V3, the I/O VM
instructs the DMA to copy the data from the I/O buffers to the
device. In principle, this is a non-blocking operation and the
I/O manager can proceed processing other requests while the
DMA performs the copy. However, it is possible that the next
operation to be served still targets the same device, causing
a contention for the DMA. A safe solution for accounting

such a contention cost in the bounds presented next requires
including the time required by the DMA (i.e., λOUT

DMA ·sz(r
f
j,y))

in the delay contribution of output operations. In summary, the
costs for performing input and output operations is bounded by
λIN

REQ(rfj,y) = λCP ·sz(rfj,y), and, λOUT
REQ(rfj,y) = λCP ·sz(rfj,y)+

λOUT
DMA · sz(r

f
j,y), respectively.

A. Analyzing of the I/O Manager

To bound the delay incurred by a request rfj,y under analysis,
we first need to bound the number of requests enqueued in
each queue in a time interval. We start focusing on queues
QOUT
i,f of output operations. The number of requests enqueued

in QOUT
i,f in an interval of length δ is bounded by NOUT

i,f (δ) =∑
τj∈ΓVM

i
ηj(δ + Rj)|ROUT

j (df )|, where ROUT
j (df ) = {rfj,y ∈

Rj : ∆f
j,y = O, τj ∈ ΓVM

i } is the set of output requests issued
by τj to df , and Rj is a WCRT bound for τj .

Input operations are stimulated by the external environment
and their occurrence depend on the activation pattern of
data event arrivals from a device df , which are notified to
the system with a VM-level ISR. Therefore, the number of
requests enqueued in QIN

i,f in an interval of time of length
δ is bounded by N IN

i,f (δ) =
∑
ef
j,y∈Ef (vi)

ηv(δ + Rv), with
Ef (vi) = {ef

j,y ∈ Ef : τj ∈ ΓVM
i }, where ηv(δ) is the arrival

curve of the VM-ISR I(ef
j,y) = σv that inserts in QIN

i,f the
data of ef

j,y and Rv is a response-time bound for σv .
By rules C2 and V1, the I/O manager is notified of new

requests by the execution of task τj and the VM-level ISR σv:
this is considered in N IN

i,f (δ) and NOUT
i,f (δ) by adding a jitter

Rj and Rv , respectively, considering a larger time window.
Lemma 5 defines the multisets containing the delays due to

I/O requests issued in an interval of time with length δ.
Lemma 5: The service delay of I/O operations initiated
in a time window of length δ, and involving a VM vi ∈ V

and a device df ∈ H(vi) are contained into the multisets2

SDOUT
i,f (δ) =

⊎
rfj,y∈ROUT

j (df )

{λOUT
REQ(rfj,y)} ⊗ ηj(δ+Rj), (10)

and

SDIN
i,f (δ) =

⊎
ef
j,y∈Ef (vi)

{λIN
REQ(ef

j,y)} ⊗ ηv(δ +Rv), (11)

respectively, where τj = T (vi, df ), and ηv(δ) is the arrival
curve of I(ef

j,y) = σv .
Proof: For each VM vi ∈ V , at most one task τj =

T (vi, df ) can access df ∈ D. Consequently, ROUT
j (df ) is

the set of output requests issued from vi to df . Each output
operation rfj,y may delay other operations up to λOUT

REQ(rfj,y)
units of time. Since they are issued by tasks, and each task
can issue requests at any time during execution, each of them
contributes up to ηj(δ + Rj) requests. Input operations are

2The operator ] denotes the union of multisets, e.g., {1, 1} ] {1, 4} =
{1, 1, 1, 4}, and the product operator ⊗ multiplies the number of instances
of each element in the multiset, e.g., {6, 9} ⊗ 3 = {6, 6, 6, 9, 9, 9}.



triggered by devices by means of device events. The set Ef (vi)
includes all the events issued from a device df ∈ D to a
task τj ∈ ΓVM

i . Each event ef
j,y delays other operations up

to λIN
REQ(ef

j,y) time units for each of the ηv(δ + Rv) event
instances released in a time window of length δ. The lemma
follows.

We define the notation Σ(x,M) to refer to the sum of the
x largest elements in a multiset M . If x is greater than the
number of elements in M , all elements are summed.

Theorem 1: The maximum delay incurred by a request
r enqueued in a queue QTi,f , where T ∈ {IN,OUT}, vi ∈
V, df ∈ D, in a window of length δ is bounded by the smallest
positive solution DT∗

i,f of the following recursive equation:

DT
i,f (δ) =

∑
vx∈V

∑
dy∈D

(
Σ(NT

i,f (δ),SDIN
x,y(δ))+

Σ(NT
i,f (δ),SDOUT

x,y (δ))
)

+
∑

σd∈Sio

ηd(δ)Cd,
(12)

where NT
i,f (δ) is a bound on the maximum number of requests

stored in QTi,f in a window of length δ, and Sio is the set of
ISRs allocated on pio.

Proof: Due to FIFO intra-queue policy, the request r
under analysis is processed after at most NT

i,f (δ) − 1 re-
quests stored in its own queue QTi,f . Due to inter-queue RR
scheduling, each of the NT

i,f (δ) requests (including r) can
suffer interference from at most one request per other queue
QTx,y 6= QTi,f . Hence, for each request in QTi,f , at most NT

i,f (δ)

requests from each queue QTx,y 6= QTi,f can interfere with r.
By Lemma 5, in any time window of length δ, the re-

quests that can be enqueued in any queue QTx,y are in-
cluded in multiset SDTx,y(δ). The maximum inter-queue in-
terference generated by the requests in each queue QTx,y
is bounded by the duration of the longest NT

i,f (δ) ones,
that is, Σ(NT

i,f (δ),SDTx,y(δ)). Similarly, also the intra-queue
interference suffered by r (i.e., in QTi,f ) is bounded by
Σ(NT

i,f (δ),SDTi,f (δ)). Therefore, the total interference suf-
fered by r due to other requests is given by the sum of the
first two terms in the equation. Finally, the I/O manager is
implemented by a task τio ∈ Γk and hence is subject to
interference due to ISRs. This proves the theorem.

B. Analyzing I/O Para-Virtualization

When using I/O Para-Virtualization, I/O tasks can execute
two hypercalls to copy the data from the hypervisor memory to
the VM memory and viceversa (rules C1 and C2, respectively).
Both hypercalls are modeled with a WCET of λCP · sz(x),
where x is the request served by the hypercall, and they
are assigned to a priority πhc. As discussed in Section III,
hypercalls are assigned to higher priorities than tasks (they
are software ISRs). Hence, when a task τj is synchronously
executing a hypercall, it is subject to a priority elevation that
may cause priority-inversion blocking to tasks and ISRs with
a priority πx such that πj < πx < πhc.

Therefore, the WCRT bounds derived in Lemmas 1 and 2
(for tasks and ISRs, respectively) need to be updated to
consider additional blocking due to priority inversion. To

include the blocking due to hypercalls in Lemma 1, a new
bound B∗j needs to be defined as B∗j = max{BHC

j , Bj}, where

BHC
j = max

τl∈Γk

{sz(rfl,y) · λCP | rfl,y ∈ Rl ∧ πl < πj < πhc},
(13)

and Bj is defined as in Eq. (1). As in the proof of Lemma 1,
Eq. (13) holds since blocking can occur at most once for each
job of τj . In the remainder of the proof of Lemma 1, the
part leveraging rules PT2 and PT3 to bound the cost incurred
for input and output operations still holds when using rules
C1 and C2 in place of PT2 and PT3. No other changes to
Lemma 1 are required. Similarly, Lemma 2 needs to consider
additional priority-inversion blocking due to hypercalls. A new
blocking bound is defined as B∗a = max{BHC

a , Ba}, where Ba
is defined in Lemma 2 and BHC

a in Eq. (13).
I/O Para-Virtualization causes a different pipeline of events

with respect to the case of pass-through I/O, which is discussed
in the following.
Input Data Delivery Latency. Bounding the IDDL for the
case of I/O Para-Virtualization requires considering additional
delays introduced by the I/O VM. By rule V1, when new
data is received by df , it instructs the DMA to copy the data
into the I/O buffers. Upon completion, a H-ISR is triggered,
which in turn triggers a VM-ISR in the I/O VM. The latter
inserts an input request in the queue QIN

i,f of the I/O VM.
The I/O VM is then responsible for performing the request.
After the operation is dispatched by the I/O scheduler, the
corresponding data become available for other VMs in the
buffers in the hypervisor memory. In summary, the IDDL of
a request rfj,y ∈ QTi,f , with M(τj) = vi, is bounded similarly
as Eq. (3) by summing the delays in the stages of the pipeline:
LIDD(ef

j,y) = sz(rfj,y) · λIN
DMA + R(`x) + DT∗

i,f , where DT∗
i,f

is a bound on the delay caused by the I/O VM (Theorem 1),
`x = (σh, σv), with σv ∈ SVM

k and σh ∈ SH
k ∧F(σv) = σh. As

in Section V, R(`x) is bounded by Lemma 4 (after updating
the blocking bound with B∗a) , since Lemmas 3 and 4 do not
depend on the I/O mechanism.
Output Data Delivery Latency. By rule C2, when a task τj ∈
ΓVM
i performs an output operation rfj,y , it issues a hypercall to

copy data from the memory space of the task to the hypervisor,
with a cost λCP ·sz(rfj,y). Still due to rule C2, an output request
rfj,y is inserted in a queue QOUT

i,f . Consequently, rfj,y may be
subject to a delay due to the I/O manager, which is bounded
by DT∗

i,f (Theorem 1). The ODDL pipeline terminates with
the execution of the hypervisor-level ISR that is triggered by
rule V3, and the corresponding VM-level ISR σv . Overall, the
ODDL is bounded by the following composition of delays:
LODD(rfj,y) = sz(rfj,y) ·λCP +DT∗

i,f +R(`x), which extends
Eq. (5) to account for I/O Para-Virtualization. The response
time R(`x) for the ISR chain `x = (σh, σv) is bounded
by Lemma 4 (again, after updating the blocking bound as
discussed above). The H-ISR σh that notifies the completion
of the I/O operation is triggered as a consequence of both
the execution of τj , the time spent in the I/O manager,
and the completion of the DMA transfer. Consequently, the



arrival curve of σh can be obtained from the one of τj as
ηh(δ) = ηj(δ +Rj +DT∗

i,f ).
Input Processing Latency. As for pass-through I/O, we
distinguish two cases for a task τj ∈ ΓVM

i performing I/O
operations: (i) τj is triggered by an I/O event or, (ii) otherwise.
In both cases, the IPL shares the same pipeline of events of
the IDDL but with one additional stage, where the data is
consumed by τj . In case (i), τj is triggered just after the
I/O scheduler completes processing a specific input request.
Its arrival curve ηj(δ) requires then to account for a release
jitter due to the pipeline of events composed of: (a) the
notification of ef

j,y by the VM-level ISR I(ef
j,y) = σv ,

and (b) the processing delay DT∗
i,f due to the I/O manager.

Hence, the arrival curve of task τj can be derived from
the one of the ISR I(ef

j,y) = σv associated with ef
j,y as

ηj(δ) = ηv(δ + Rv + DT∗
i,f ). The same pipeline of events

is considered to bound the IPL, by composing the delays as
LIPS (ef

j,y) = sz(ef
j,y) · λIN

DMA +R(`x) +DT∗
i,f +Rj , where Rj

bounds the response time of τj , and `x = (σh, σv). When the
release of τj is asynchronous with respect to the I/O event,
as in Section V, we consider periodic tasks. Similarly to the
case of pass-through I/O (Eq. (9)), the IPL can be bounded as
LIPA (ef

j,y) = sz(ef
j,y) · λIN

DMA + R(`x) + DT∗
i,f + Tj + Rj , by

observing that a task activated asynchronously is subject to the
same pipeline of events of case (i) but it can also experience
a worst-case sampling delay of up to Tj time units.

C. I/O Para-Virtualization with Shared Buffers

The timing parameters under I/O Para-Virtualization with
shared buffers can be bounded in similar way as above.
The key difference with the previous case is that, due to
rule CS1 and CS2, VMs communicate with the I/O VM by
means of shared buffers and not by means of the hypervisor
memory. This choice provides two advantages. The first one
is a reduced priority-inversion blocking with respect to the
case without shared buffers, since there is no need for VMs
vi ∈ V \ {vio} to write and read the data buffers using
hypercalls. The second advantage is a reduced number of data
copies. Indeed, since data is stored in shared buffers, it can be
directly produced/consumed in/from such buffers.

Consequently, schedulability can be checked by comput-
ing the response times as discussed in Section V for pass-
through I/O, with the advantage of using Cj in place of
Cj . IDDL, ODDL, and IPL can be bounded as discussed in
Section VI-B for the scenario without shared buffers, as the
pipeline of events that occur in the two cases remains the
same, but saving sz(rfj,y) · λCP units of time in the ODDL,
as data is produced directly in the shared memory buffer (i.e.,
LODD(rfj,y) = DT∗

i,f +R(`x)).

VII. EXPERIMENTAL RESULTS

This section presents the results of two experimental studies
carried out to evaluate the performance of the three I/O
virtualization schemes discussed in the paper. The analysis has
been implemented in the pyCPA tool [78]. Before starting, we
introduce a baseline setup common to both the studies.
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Fig. 5: Read delays (≥ 200) on a Cortex A-53 of the Zynq
Ultrascale+.
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Fig. 6: Write delays on a Cortex A-53 of the Zynq Ultrascale+.

Baseline setup. We consider the metrics presented in
Sec. IV-D for two tasks in a case-study, an autonomous
driving application taken from the 2019 WATERS Industrial
Challenge [10] by Bosch: a Lidar task performing an input
request to a lidar (via Ethernet), and a CAN task writing data
to a CAN device. We assume the lidar task to run in a feature-
rich VM (e.g., running Linux) named F-VM and the CAN task
to run in a safety-critical VM (running a real-time OS) named
S-VM. For each task, we monitored the performance metrics
of two I/O transactions with a size equal to the maximum size
allowed by the Ethernet and CAN protocols, respectively.

For each core pk, we considered two ISRs for the timer,
one for the hypervisor and one for the VM, periodically
released every 1 ms and with a WCET randomly generated
with uniform distribution in the interval [1, 10] µs for the
hypervisor ISRs, [1, 20] µs for the timer ISR of S-VM, and
[10, 30] µs for the timer ISR of F-VM. For each core, n
interfering tasks have been synthetically generated. Tasks have
been assigned to a periodic arrival curve [71], where the period
Tj has been randomly generated in the interval [1, 100] ms.
The randfixedsum [79] algorithm has been used to derive the
individual utilizations Uj = Cj/Tj given a total utilization
U I reserved for interfering tasks on each core. WCETs have
been derived from the utilizations and the periods, i.e., as
Cj = Uj · Tj . Priorities have been assigned according to
deadline monotonic. The length of the longest NIR of each
task and ISR has been generated in two intervals: low, i.e.,
ωj ∈ [0, 0.1 · Cj ] and medium, i.e., ωj ∈ [0, 0.2 · Cj ]. The
amount of data sz(rfj,y) transfered by each I/O request rfj,y
is generated in [1, szMAX(rfj,y)] = [1, 1500] bytes. Each inter-
fering task τj performs a request to an exclusively assigned
device. For each request, a pair of hypervisor-level and VM-
level ISRs are generated. WCETs are randomly chosen in the
intervals: [1, 10] µs for hypervisor-level ISRs, [10, 40] µs for
VM-level ISRs of F-VM, and [1, 30] µs for VM-level ISRs
of S-VM. For each graph, the results are averaged over 100
iterations.
Measurements from a real platform. The parameter λCP has
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been experimentally measured on a real platform, the Zynq
UltraScale+ MPSoC by Xilinx (ZCU102 board) equipped
with a MTA8ATF512 16-bank DDR memory, on a Cortex
A-53 core running at 1.2 GHz. To this end, we measured
the time required to read and write a 64-bit word from/to a
DRAM over 400k iterations. The measurements have been
performed by placing memory barriers before and after a
read (or write) instruction, and measuring the elapsed cycles
with the Performance Monitor Unit of the core. During the
experiment, caches have been disabled, and the other cores
generated intensive memory traffic to stimulate the worst-case
scenarios that maximize the delay at the memory controller
(according to our best knowledge and reverse engineering,
given that its internal details are not available to us), also
considering domino effects caused by transactions re-ordering
(e.g., those directed to “open-rows” are privileged) and write
batching. Figures 5 and 6 show the distribution of memory
access delays for reads and writes (in clock cycles), respec-
tively, measured in the experiments. The maximum measured
delays are λRD

64 = 604.16 ns and λWR
64 = 81.67 ns, for

read and writes, respectively. Given the two individual delays
λRD

64 and λWR
64 , we set time λCP required to copy a byte to

λCP = (λRD
64 + λWR

64 )/8 = 85.74 ns for the next experiments.
For the sake of simplicity, we modeled the delay of memory
transactions performed by DMA in the same way. Hence, we
set λOUT

DMA = λRD
64 /8 = 75.52 ns and λIN

DMA = λWR
64 /8 =

10.21 ns, approximating the time required by the DMA to
copy from the device memory to the I/O buffers with the time
required to perform a write in the DDR, and the time for
copying from the I/O buffers to the device as a read.

A. Pass-through I/O

Comparing the bounds. The first experimental study targets
pass-through I/O and considers the baseline system with two
VMs. Figure 7 addresses two representative configurations.
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Fig. 9: Scenarios used in the experiment of Figure 8.

In Figure 7(a), for each task and ISR, the parameter ωj has
been generated in the interval [0, ωMAX

j · Cj ], and ωMAX
j has

been varied in [0, 0.1] with steps of 0.01, comparing the
ODDL bounds of Eqs. (4) and (5) for the I/O operation of the
CAN task. As ωMAX

j increases, the length of non-interruptible
regions increases and hence priority-inversion blocking. The
simple CPA-based bound of Eq. (4) suffers from a higher
blocking because it accounts for the individual blocking of
each ISR in the path. Since VM-level ISRs can also be blocked
by tasks, which have normally a larger WCETs and ωj , the
latency bound is consistently higher than Eq. (5). Figure 7(b)
compares the IPL for the Lidar task, in both cases in which it is
triggered synchronously (Eq. (7)) or asynchronously (Eq. (9)).
As expected, both latencies increase as U I increase, and the
asynchronous case provides a consistently higher IPL.
Exploring the sources of the delay. Figure 8 reports on a
breakdown of the IDDL (inset (a)) and ODDL (inset (b)) in
two different source of delays: data latency (e.g., sz(rfj,y)·λCP),
and virtualization latency (i.e., due to the response time of
the ISRs). Also the sum of the two is reported, denoted as
DDL (either IDDL or ODDL). Worst-case latencies obtained
by summing the response times of individual ISRs are denoted
as “simple” (e.g., Eq. (4)), while those obtained with a holistic
analysis of the ISR chain is denoted as “holistic” (e.g., Eq. (5)).
Five scenarios have been tested (PTS1,..., PTS5): they are
summarized in Figure 9.

In PTS1, there is no interfering task on each VM. Clearly, it
determines the lowest bound, and the virtualization latency is
limited to 60 µs. In the other cases PTS2, ..., PTS5, for each
core, an interfering load due to n = 4 tasks with U I = 0.2
is considered. In PTS2 and PTS3, all the ISRs handling I/O
are assigned to the same priority (one priority for VM and
hypervisor level ISRs, respectively), whereas in PTS4 and
PTS5 the ISRs handling Lidar and CAN data are assigned
to a higher priority. PTS2 and PTS4 consider interfering
tasks not causing NIRs, whereas PTS3 and PTS5 consider
this case with ωj ∈ [0, 0.1 · Cj ]. Figure 8 highlights that
higher priorities for Lidar and CAN ISRs lead to lower DDLs,
which derive from a smaller virtualization latency. Moreover,
comparing the cases with and without NIRs (PTS3 and PTS5
vs. PTS2 and PTS4) shows that the “simple” bounds are very
sensitive to NIRs, producing very high DDL. This case study
highlights the potential of the proposed analysis: the possibility
of decomposing the delays in different components, shining a
light on the sources of a high latency. This may also drive the
application designer in performing a design-space exploration
of the parameters (e.g., ISRs priorities) to guarantee given



100 300 500
1,200

1,400

1,600

1,800

szMAX(rfj,y)

PV PV-SM

ID
D

L
(µ
s

)
(a) n = 4, UI = 0.2, ωj low

IDDL IPL ODDL RT Lidar RT CAN

0

0.2

0.4

0.6

0.8

1

ratios (PV-SM/PV)

(b) n = 2, UI = 0.1, ωj medium

Fig. 10: Analytical latencies for I/O Para-Virtualization with
and without shared buffers (PV and PV-SM, respectively).

Interference
YES

NO
PTS2, PTS3, PTS4, PTS5

PTS1

I/O ISR Priority ALL SAME

LIDAR & CAN HIGH PTS4, PTS5

PTS1, PTS2, PTS3

NIRs
YES

NO
PTS3, PTS5

PTS1, PTS2, PTS4

Interference
YES

NO
PVS3, PVS4, PVS5, PVS6

PVS1, PSV2

I/O ISR Priority ALL SAME

LIDAR & CAN HIGH PVS5, PVS6

PVS1, PVS2, PVS3, PVS4

Hypercall Priority
HIGHEST PRIO PVS2, PVS4, PVS6

PVS1, PVS3, PVS5
LOWEST PRIO

(a) (b)

Fig. 11: Scenarios used in the experiment of Figures 12 and 13.

worst-case latency bounds.

B. I/O Para-Virtualization

Comparing the bounds. In this second study, we enriched
the baseline setup to include an additional VM, called R-VM,
which acts as a replica for F-VM, thus needing to share the
same I/O devices. Figure 10(a) shows the IDDL of the Lidar
task when szMAX(rfj,y) is varied, using I/O Para-Virtualization
with and without buffers in shared memory, denoted as PV-SM
and PV, respectively. In both cases, with a higher szMAX(rfj,y),
the IDDL increases, as the I/O manager incurs in higher
delays to serve interfering requests. Furthermore, PV-SM
incurs in lower delays, as it is affected by a lower blocking
and number of copies in memory. The same trend emerges
from Figure 10(b), which shows all the metrics presented in
Section IV-D for a representative configuration.
Exploring the sources of delay. Figure 12 and 13 considers a
breakdown of the DDL into data latency, virtualization latency
(due to the ISRs), and latency due to the I/O manager, for
I/O ParaVirtualization with and without shared buffers. Six
cases have been considered (summarized in Figure 11): no
interference (PVS1, PVS2) vs. interference (PVS3, ..., PVS6),
with n = 4 tasks with U I = 0.2 for each core (pio excluded),
hypercalls at lowest H-ISR priority (PVS1, PVS3, PVS5) vs.
hypercalls at highest hypervisor-ISR priority (PVS2, PVS4,
PVS6), all the ISRs due to I/O at the same priority (PVS1,
..., PVS4) vs. ISRs due to Lidar and CAN I/O at a higher
priority (PVS5, PVS6). Figure 12 and 13 shows that the I/O
manager delay plays a key role in determining the worst-case
latency, especially in the scenarios with interference (PVS3, ...,
PVS6). Furthermore, Figure 12 shows that, also in this case,
increasing the priority of I/O ISRs of Lidar and CAN reduces
the virtualization latency. Figure 13 shows a reduction of the
virtualization latency as an effect of the hypercall priority.
This effect is not shown in Figure 12 because, as discussed in
Section VI-C, the I/O para-virtualization with shared buffers
does not require hypercalls to perform copies, providing an
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Fig. 12: Delays in different scenarios for I/O Para-
Virtualization (with shared buffers). Log-scale on the y axis.
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Virtualization (no shared buffers). Log-scale on the y-axis.

advantage with respect to the case in which memory buffers
are allocated in the hypervisor memory.

VIII. LIMITATIONS, EXTENSIONS, AND CONCLUSIONS

This paper provided a general and flexible model, which al-
lowed to study the timing effects of different I/O virtualization
techniques and compare their worst-case performance. Most
importantly, this work enables a fine-grained understanding
of the sources of worst-case latency, allowing a design-space
exploration of the system parameters, and guiding the applica-
tion designer in configuring a vast amount of parameters (e.g.,
ISRs and tasks priorities) to meet timing constraints.

Future work aims at extending this paper to overcome some
of its limitations and assumptions. For instance, interesting
research can be carried out to consider other I/O scheduling
policies, e.g., fixed-priority, which may be suitable to prior-
itize the traffic of highly-critical and latency-sensitive VMs.
Different I/O management schemes may be also considered,
e.g., the case of a master VM handling I/O traffic while also
serving other loads. Techniques to bound the buffer sizes are
also worth to investigate. Overhead-aware analyses [80] may
be integrated with this work in the future. For the sake of
conciseness in the notation, we assumed only one task for
each VM to access each I/O device. This assumption can
already be relaxed in our analysis framework by providing one
buffer for each pair task/device (instead of VM/device), at the
expense of additional space in main memory. More complex
techniques can be used to improve the precision in analyzing
the I/O manager by exploiting the parallelism between CPU
and DMA copies, e.g., similarly to [81, 82]. Finally, future re-
search should also focus on implementations of the considered
techniques and hardware-assisted virtualization.
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