
RT-Mimalloc: A New Look at Dynamic Memory
Allocation for Real-Time Systems

Raffaele Giannessi*†, Alessandro Biondi*, and Alessandro Biasci†
*Scuola Superiore Sant’Anna, Pisa, Italy

†Evidence S.R.L., Pisa, Italy

Abstract—Dynamic memory allocation is a pivotal feature of
modern software systems but has mostly been scarcely used in
real-time systems due to the limited time-predictability offered
by dynamic memory allocators (DynMAs). While many general-
purpose DynMAs have been proposed during the last decades,
only a few efforts were devoted to the design of real-time DynMAs
capable of providing bounded allocation times. Furthermore, the
most notable of them dates back to almost 20 years ago.

Motivated by this observation and the significant developments
made in the field of general-purpose DynMAs in recent years,
this work takes a new look at dynamic memory allocation
for real-time systems. After analyzing and comparing modern
DynMAs, we discuss how to modify the Mimalloc general-
purpose DynMA into RT-Mimalloc, so that more predictable
allocation times can be obtained. All the studies and evaluations
performed in this work were based on both modern state-of-the-
art benchmarks for memory allocation and synthetic workload to
assess specific capabilities of the tested DynMAs. The evaluation
showed that RT-Mimalloc is capable to improve the longest-
observed allocation times of real-time DynMAs proposed in
previous work while retaining most of the benefits of modern
general-purpose DynMAs in terms of average-case performance.

Index Terms—Dynamic memory allocation, Embedded sys-
tems, Real-time systems, Predictability

I. INTRODUCTION

Dynamic memory allocators (DynMAs) are used by the
large majority of general-purpose software to allocate and
release memory on demand. In this context, the main focus
of DynMAs is on performance, which can be expressed in
terms of the average time to satisfy allocation and de-allocation
requests. The main players that determine this metric are
typically referred to as the short path and the long path. The
short path should be the one followed by the DynMA for most
of the requests and it is designed to be as fast as possible. On
the other side, more complex but less frequent operations are
managed by the long path. In this way, the system can execute
a request within a very small amount of time in most cases,
while on the other hand, a limited number of calls will end
up in being served in a very long time.

While such a two-path design proved to be particularly
effective for general-purpose applications, it implies a high
variability in the allocation times that is unacceptable for real-
time (RT) applications [1]. In particular, in the RT context, the
response time of each memory allocation request should have a
bounded and sufficiently tight service time. This is generally
not satisfied by general-purpose DynMAs since the longest

path might have a very high or unbounded execution time.
To avoid the unpredictability caused by these allocators, RT
system designers typically encourage the use of static memory
or they try to convert dynamic memory allocations into static
memory pre-allocations [2]. While this solution solves the
problem at the very root, it requires costly code restructuring
efforts, which may not even be possible in some cases, and
limits flexibility and code portability in general.

Memory pools [3]–[5] are typically used as predictable
allocators to enable dynamic memory allocations for RT tasks.
Such DynMAs typically allocate in advance the memory
needed by the application for its entire lifetime. This solution
guarantees bounded allocation times but requires complex
tuning to avoid memory waste and fragmentation.

Apart from memory pools, various RT DynMAs were also
proposed in previous work to enable RT applications to use
dynamic memory allocations, retaining the same interface of
general-purpose DynMAs. Their main objective is to ensure
bounded and tight allocation times while keeping memory
waste and fragmentation as low as possible. Their goals are
typically achieved by implementing O(1) algorithms, which
guarantee almost constant allocation times. However, these
RT DynMAs (see Section II) introduce considerable penalties
in terms of average-case performance and they are generally
much slower than general-purpose DynMAs. As, for instance,
highlighted by Rosén et al. [6], average-case performance is
relevant also to real-time systems. In fact, with contained
average-case execution times, applications might save time
to either perform other operations or save energy. For this
reason, in this work we focus both on long-tail and average-
case allocation times.

Contribution. Motivated by the limitations of RT DynMAs
proposed in previous work and the significant developments
made in the field of general-purpose DynMAs in recent years,
this work takes a new look at dynamic memory allocation
for real-time systems. We first analyze seven general-purpose
DynMAs, including some of the best-performing ones pro-
posed in the very last few years, and then identify in Mimal-
loc [7] the one to be modified to turn it into RT-Mimalloc, a
new DynMA capable of providing more predictable allocation
times but also competitive average-case performance. The
modifications introduced in RT-Mimalloc are based on an in-
depth analysis of Mimalloc, to identify the major sources



of unpredictability, and the extraction of memory allocation
profiles from target applications. Two variants of RT-Mimalloc
are proposed and evaluated with both modern state-of-the-art
benchmarks and a feature-specific synthetic workload.

Paper structure. The remainder of the paper is organized as
follows. Section II discusses the related work, coping with both
RT DynMAs and general-purpose ones. Section III describes
the approach followed in this work. Section IV reports a
comparative analysis of state-of-the-art DynMAs. The selected
general-purpose DynMA (Mimalloc) is then analyzed in depth
in Section V. Section VI discusses the changes applied to
Mimalloc to turn into RT-Mimalloc as well as the concept of
profile-driven pre-initialization of data structures. Section VII
reports the conclusive experimental results that allow com-
paring RT-Mimalloc with Mimalloc and RT DynMAs from
previous work. Finally, Section VIII concludes the paper.

II. RELATED WORK

Many DynMAs have been proposed in the last decades, but
only few of them are suitable for real-time systems.

Real-Time DynMAs. In general, RT DynMAs aim at provid-
ing predictable response times for allocation and de-allocation
requests, while also minimizing memory fragmentation [8].
To the best of our records, a quite limited amount of work
in the field of RT DynMAs is available compared to general-
purpose DynMAs. The first effort of this kind was due to
Ogasawara [9], which used the Half-Fit algorithm to build
an RT DynMA. Later, Masmano et al. [10] proposed two
level segregated fit (TLSF), an O(1) algorithm for memory
allocation. TLSF was conceived for simple computing sys-
tems without memory management units (MMU) and without
considering explicit support for memory re-allocations. This
allocator has been adopted in popular systems such as Linux
PREEMPT RT [11] and Unikraft [12].

Craciunas et al. [13] proposed an allocator that aims at
minimizing memory fragmentation. They compared their work
with other RT DynMAs such as TLSF and Half-fit, and they
almost solved the memory fragmentation problem. However,
their maximum allocation times are much larger than those of
TLSF due to the extra work performed by their compression
algorithm to contain fragmentation. Ramakrishna et al. [14]
proposed a predictable allocator that is competitive with state-
of-the-art allocators in terms of response times but it is more
memory efficient. The idea of this work is to exploit the
liveliness information about blocks to separate short-lived from
long-lived objects. A preliminary performance evaluation we
conducted revealed that the allocator from [14] is slower than
TLSF but provides less fragmentation by exploiting predic-
tions about the lifetime of memory objects. Herter et al. [15]
designed and developed CAMA, a new memory allocator
based on the idea of multi-layered segregated fit. Its imple-
mentation adopted techniques used for TLSF together with
some information on the system cache to reduce allocation
times. Their evaluation points out that CAMA is faster than
TLSF; however, CAMA requires to be tuned according to a

preliminary study made on the cache memories available in the
target platform. This makes CAMA harder to use in practice.
Su et al. [16] attempted to formally prove the correctness of
TLSF through formal models, principled proofs, and refine-
ments. Lastly, efforts were also devoted to the computation of
static memory allocations to replace DynMAs [17] or to study
the system schedulability in the presence of DynMAs [18].

Other relevant works were concerned with the comparison
of DynMAs from different perspectives. Puaut [19] compared
the worst-case behavior of different DynMA when used by
some benchmark applications. The worst-case allocation/de-
allocation times were computed and then compared against
those that were measured during the execution of the target
applications. Masmano et al. [20] compared TLSF against
other allocators in terms of execution time, and memory frag-
mentation. The authors used both benchmarks and synthetic
workloads for their experiments. From this analysis, TLSF
resulted to be the best choice for supporting DynMA in real-
time systems. Masmano et al. [21] built synthetic workloads
to analyze DynMAs. Their analysis concluded that TLSF
and Half-Fit are both suitable choices for real-time systems
since the number of processor instructions for serving memory
allocation requests was bounded in all the tested scenarios.
In 2016, Awais [22] performed another comparison of RT
DynMAs still finding in TLSF the best choice.

General-purpose DynMAs. On the side of general-purpose
DynMAs, several developments were made in the last decade
to improve the average-case response times of memory allo-
cation requests by means of new software designs, algorithms,
and data structures. Most relevant to us are the Mimalloc [7],
Tcmalloc [23], and Snmalloc [24], and Rpmalloc [25] Dyn-
MAs. Mimalloc [7], developed by Microsoft, is one of the
latest-proposed DynMA and is based on a technique named
Free List Sharding. Mimalloc showed extremely good average-
case performance and is particularly capable of exploiting
the locality of memory allocations. Tcmalloc [23] is another
performant allocator implemented by Google. Its design is
composed of three configurable modules that can be tuned to
improve performance when used in specific contexts. Snmalloc
[24] is also a recent and efficient DynMA based on message
message-passing scheme. Another general-purpose DynMA is
Rpmalloc [25], which has a wide set of configuration options
and supports several platforms.

These works improve upon classical DynMAs, such as the
one used by Glibc, which is a version of Ptmalloc [26] and is
widely used in many systems programmed in C, or Jemalloc
[27], which is used in the FreeBSD project. Historically, the
first scalable DynMA is attributed to Hoard [28].

Langr and Kočička [29] analyzed popular memory alloca-
tors in terms of performance. They then modify those allo-
cators according to some optimization techniques to increase
performance and reduce the maximum resident set size (RSS).
Some of those techniques tried to reduce the number of
DynMA requests based on a small buffer optimization (SBO)
or through memory pooling.

2



Summary of related work. Previous work on RT DynMAs
found TLSF to be the most suitable choice for handling
dynamic memory allocation in real-time systems. TLSF is,
in fact, also used by popular systems such as Linux PRE-
EMPT RT. Nevertheless, TSLF dates back to about 20 years
ago, when multiprocessing was not yet widespread in real-time
systems, while, more recently, significant developments were
made in the field of general-purpose DynMAs. It is hence
relevant to take a new look at dynamic memory allocation
for real-time systems by leveraging the results of modern
DynMAs, to retain as much as possible their improvements
in terms of average-case allocation times while still offering
bounded worst-case performance.

III. APPROACH

This section reports an overview of the approach followed
in this work.

Fig. 1: Overview of the approach followed in this work.

The first phase consists of a preliminary timing analysis of
modern general-purpose DynMAs, taking into account both
average-case performance and predictability. From this phase,
we select a candidate DynMA to be analyzed in depth in the
next phase, which is concerned with the detection of the major
causes of any non-RT behavior. In the third phase, a series of
principled modifications are applied to the selected DynMA to
improve its predictability to achieve bounded allocation times.
Finally, in the last phase, the modified DynMA is analyzed
again to evaluate its performance and drawbacks.

Preliminary and in-depth analyses are addressed in the next
two sections, respectively. The modifications to the selected
DynMA are discussed in Section VI, while the conclusive
evaluation is discussed in Section VII.

IV. PRELIMINARY ANALYSIS

An experimental campaign was conducted to study the
performance and predictability of modern general-purpose
DynMAs. The experiments were performed on Linux v5.15.0-
84-generic running on a Dell OptiPlex-7070 machine. To
achieve reproducible results, some configurations have been
applied to the execution environment. First of all, the turbo-
boost feature was been disabled [30]. Second, CPU frequency
scaling was disabled by locking each CPU at a fixed frequency
(3GHz). Third, the cores used to run the tests were isolated
from the rest of the processes running on the machine through
cset shield [31].

A. Performance results

We used Mimalloc-bench [32], a collection of the most
popular benchmarks used for DynMAs, to evaluate the per-
formance of modern general-purpose DynMAs. The collection
includes both real-world applications and stress tests.

Tables I and II report the results of this experimental
campaign in terms of average seconds elapsed from the start
to the end of the benchmarks (columns of the tables). In the
tables, the symbol X denotes that the test did not complete
correctly. The tests evidence that there is no single allocator
that is faster than all the other ones in all benchmarks. In
general, Mimalloc, Snmalloc, Tcmalloc, and Jemalloc are
comparable in most of the cases, while the other ones show
slightly worse performance. Also the TLSF RT DynMA was
included in the tests and, as expected, it resulted in the slowest
one in all cases. Furthermore, TLSF even failed to work with
some benchmarks, probably due to memory exhaustion.

B. Predictability

The predictability of DynMAs was analyzed by following
an approach similar to the one presented by Masmano et
al. [21]. DynMAs were stimulated by means of periodic
memory allocation and de-allocation requests with sizes that
spanned from 8 to 20480 bytes. Both the time and the number
of processor instructions required by each DynMA to satisfy
each allocation request were measured. As done in [21], we
used the Linux ptrace utility (configured in single step
and running in user space) to obtain the number of instructions.

To obtain consistent results the execution environment con-
figured was as discussed in Section IV-A. The RDTSC [33]
instruction was used to measure time.

Figure 2 reports the allocation times of the analyzed Dyn-
MAs. Glibc, Rpmalloc, and Hoard have been discarded since
the first two ones perform worse than the other allocators
with most of the real-world benchmarks, while the last one
fails with rocksdb. The differences between general-purpose
DynMAs and TLSF are clearly evident from the plots. Indeed,
note that the allocation times of TLSF have a very modicum
variability, and the corresponding longest observed allocation
time (LOAT) is below 600 ns for this test. Conversely, the
general-purpose DynMAs have a much more variable (and
less predictable) timing behavior, as evidenced by the sparse
points in the plots. Nevertheless, it is important to observe
that, on average, TLSF takes considerably more time than the
other DynMAs to complete the allocation requests (note the
logarithmic scale of Figure 2). The results with ptrace are
not reported here since they are similar to the ones in Figure 2.

C. Selection of the candidate DynMA

Overall, this experimental evaluation revealed that Jemal-
loc, Mimalloc, Snmalloc, and Tcmalloc have all comparable
performance. Note, however, that Mimalloc wins in the large
majority of the stress tests (see Table II). Other aspects were
also considered to reach a decision. Table III reports, for each
of the considered DynMAs, the year of the first release, the
year of the latest update, and the number of lines of code

3



TABLE I: Real-world applications in Mimalloc-bench: results in terms of seconds elapsed from start to end of the test.

Allocator cfrac espresso redis larsonN-
sized larsonN gs lua

TLSF 16.77 11.03 X 877.63 872.02 1.38 6.72
Glibc 8.28 6.90 5.62 16.98 16.81 1.36 6.17
Hoard 8.00 6.20 6.56 13.09 12.87 1.38 6.16

Jemalloc 7.81 6.23 6.12 12.24 12.49 1.41 6.21
Mimalloc 7.74 6.11 5.24 12.53 12.14 1.36 6.05
Rpmalloc 8.57 6.90 5.64 17.57 17.41 1.36 6.18
Snmalloc 7.68 5.98 4.84 12.65 12.21 1.39 6.05
Tcmalloc 7.69 6.04 5.10 12.42 12.65 1.37 6.30

TABLE II: Stress tests in Mimalloc-bench: results in terms of seconds elapsed from start to end of the test.

Allocator alloc-
test1

alloc-
testN

glibc-
simple

glibc-
thread sh6benchN sh8benchN xmalloc-

testN
cache-
scratch

cache-
scratchN rocksdb

TLSF 9.57 220.94 16.29 X 169.29 371.02 81.29 2.00 1.43 X
Glibc 5.90 5.56 5.37 4.60 1.46 4.94 3.98 2.00 5.32 5.67
Hoard 4.93 4.67 2.35 3.72 0.46 2.80 14.78 2.00 7.92 X

Jemalloc 4.86 4.61 2.85 3.58 0.62 1.90 0.78 2.00 0.40 5.75
Mimalloc 4.66 4.41 2.04 3.22 0.32 1.09 0.84 2.00 0.40 5.77
Rpmalloc 5.89 5.55 4.54 4.59 1.46 4.91 4.01 2.00 5.96 5.69
Snmalloc 4.87 4.57 2.11 3.31 0.55 1.58 0.58 2.00 0.40 5.72
Tcmalloc 4.72 4.50 2.10 3.57 0.34 10.26 20.77 2.00 10.28 5.70

Fig. 2: Each graph reports the time needed for each allocation request. The program executed is the synthetic workload and
each graph shows the behavior of different DynMA under analysis (based on the RDTSC instruction).

TABLE III: Comparison of DynMAs based on the year of the
first release, the year of the latest update, and number of lines
of code (LoC)

Allocator First release
Year

Latest stable
update Year

Lines of
code (LoC)

Jemalloc 2006 2017 56K
Mimalloc 2019 2023 13K
Snmalloc 2019 2023 17K
Tcmalloc 2014 2023 24K

(LoC). The most recent ones are Mimalloc and Snmalloc,
integrating the latest results in the field of DynMAs.

Note also that Mimalloc has the lowest number of LoC: this
metric is particularly important to build an RT DynMA as it
allows containing the efforts to study in depth the internals
of the allocator with the end of making it more predictable.
For these reasons, Mimalloc was hence selected. The version

chosen for this work is v1.7.9, being the latest stable version
available when the work started.

V. ANALYZING MIMALLOC

This section starts by describing the internal data struc-
tures and behavior of Mimalloc. The allocator uses free list
sharding, a technique to keep objects with the same size
close in memory to increase locality. Lock-less algorithms and
corresponding data structures are used to avoid contention in
multi-threaded applications. Finally, a deferred-free approach
is used to speed up the average allocation time. The idea is to
postpone expensive work as late as possible.

Data structures. With Mimalloc, each thread can allocate
memory from its own heap while it can free memory owned
by different threads. Internally, the heap contains segments,
and each segment contains pages of the same size. Each page

4



within a segment owns a set of lists of blocks of the same
size. The page size is determined by the block size:

• for allocations of size lower than 8KB (small allocations)
the page size is 64KB and the segment is 4MB;

• for allocations of size from 8KB to 512KB (medium
allocations) the page size is 4MB (entire segment); and

• for allocations of size higher than 512KB (huge alloca-
tions) the page size coincides with the block size.

All the possible blocks sizes are included in the set

B =
{
b | b = 2n + 2n

4 · j, 0 ≤ j < 4, n ∈ N ∧ b = 8⌊ b
8⌋
}

(1)

The maximum internal memory fragmentation of Mimalloc
amounts to 12.5% [7].

Fig. 3: Page structure in Mimalloc. On the left: the meta-
data of each page. On the right: example of blocks (white
rectangles) linked to each other.

As illustrated in Figure 3, each page manages three lists of
free blocks, pointed by the three pointers at the beginning of
the page meta-data, respectively. The first one is called free
list and it is the main list used for allocations via calls to
malloc. The second list, thread free list, is used to allow
threads to de-allocate blocks in the heap of other threads, in
a lock-less way. Finally, the third one is called local free list
and it is used to de-allocate blocks in the heap owned by the
same thread calling free.

To save time in the initialization of free list whenever a page
is created, this list is only partially initialized with a subset of
the blocks in the page only. It is later extended whenever, to
serve an allocation request, there is no free block left in free
list but the page still contains some free space to host new
blocks.

Figure 4 illustrates an example of the extension process for
the free list. Initially, the three lists are empty and all the blocks
up to the page capacity are allocated. The page however still
contains some free space to allocate new blocks (rectangle
filled with a dashed pattern in the figure). When receiving
a new allocation request directed to the page of interest,
Mimalloc extends the free list starting from page capacity,
which coincides with the end of the last block allocated in the
page.

Each heap contains some meta-data and two arrays, namely
pages_direct and pages_queue. Each entry of these
arrays points to a list of pages containing blocks of a certain

Fig. 4: Extension of the free list during an allocation request.
On the left: the starting situation with all blocks allocated. On
the right: the result after the extension of the free list. The
free list is reinitialized with some blocks and the capacity is
updated.

Fig. 5: Each entry of pages_direct and pages_queue
points to a list of pages. The array pages_direct is used
to speed-up small allocations.

size (see Figure 5). In general, each entry of pages_queue
points to a list of pages with blocks of the same size. Whenever
an allocation request is issued, Mimalloc calculates which
entry of the pages_queue array points to pages with the
corresponding block size. The calculus to obtain the right entry
is not straightforward and might take non-negligible time. For
this reason, Mimalloc adopts the pages_direct auxiliary
array, to speed up allocations from one to 1024 bytes, which
can be addressed in constant time and allow direct retrieving
of pages.

Mimalloc behavior. The allocator behaves differently depend-
ing on the size of memory allocation requests. The shortest
path coincides with an allocation request with a size lower
than 1024 bytes. In this case the allocator searches for a page
with free blocks directly in pages_direct array. If the page
has free blocks, the allocator updates the page meta-data and
returns the pointer of the block to the user. In contrast, if the
page has no free blocks, Mimalloc follows a much slower path
called generic allocation.

Mimalloc gives the possibility to defer de-allocation re-
quests by postponing some operations from the execution of
a free to subsequent malloc executions. For this reason,
generic allocation is responsible for releasing blocks and pages
freed by other threads while trying to retrieve a block to serve
the allocation request. Whenever a free block is found, the

5



search ends, and a pointer to it is returned to the caller.
If no free block is found, Mimalloc swaps local free list with

free list. With this operation, the blocks that were previously
allocated and later de-allocated, ending up in local free list,
will become available again to serve new allocation requests.
If, after this operation, the new free list is still empty, Mimalloc
tries to extend it as explained above (see Figure 4). If the
extension is not possible (i.e., there is no more free space
in the page) Mimalloc allocates a new page. If the segment
with free space is found, the page is immediately allocated
and initialized, and its first block is returned to the caller.
Conversely, whenever there is no segment capable of satisfying
the request, a new segment is allocated.

Whenever a page has no free blocks and its capacity cannot
be anymore extended, it is moved to the full list. A page is
removed from this list and reinserted into the corresponding
page_queue entry whenever one of its blocks is freed.

The release of a block starts by checking if the calling thread
owns the block. If yes, the block is inserted at the head of the
local free list and the corresponding page is also released if it
becomes completely empty. If not, the block is inserted at the
head of the thread free list.

A. In-depth analysis

The goal of this analysis is to identify the internal functions
of Mimalloc that exhibit the larger variability in execution
time, which can then be investigated to reduce LOAT. The
Linux ptrace utility was used to trace Mimalloc at the
instruction level. Despite the detailed level of granularity,
ptrace introduces a huge performance overhead that pre-
vents tracing complex benchmark allocations using Mimalloc.
For this reason, the synthetic workload introduced in Sec-
tion IV-B was used. For all Mimalloc functions, we measured
the minimum, maximum, mean, and variance of the number
of instructions and the number of calls. The number of
instructions was recorded to identify the internal paths in
Mimalloc that vary the most allocation by allocation, which
is what distinguishes typical-case allocation patterns from the
rare ones that determine the LOAT.

Table IV reports the functions whose variance is larger than
or equal to the one of the free function. Those functions
might be the source of any unpredictability of Mimalloc, and
they must be deeply analyzed to reason about possible changes
for reducing the LOAT. Key observations are reported next.

Obs. 1) The function mi_segment_alloc has a huge
variance and maximum number of instructions. This is at-
tributed to the creation and initialization of a new seg-
ment. Moreover, that function might execute a system-call
like mmap to request the allocation of very large memory
areas to the operating system (OS). Note that system-calls
are not traced by ptrace, hence the actual number of
instructions executed when calling this function is larger.
Function mi_segment_free has dual behavior with respect
to mi_segment_alloc. Its purpose is to delete a segment
and it might also invoke system-calls like munmap.

Obs. 2) Function _mi_heap_collect_retired is
used to release retired pages. Those pages are empty but not
immediately released. The idea behind this is that in the next
future, another allocation request for blocks handled by those
pages will come. Hence this function is used for optimization.

Obs. 3) As introduced above, the free list is
not entirely initialized when it is created. Function
mi_page_free_list_extend is responsible to extend
the free list (see Figure 4). The list is extended by n blocks
at a time, where n is inversely proportional to the block size.
The high variance of such a function is due to the variable
number of blocks with which this list is extended.

Obs. 4) The search for a free page in a segment is
performed by mi_segment_find_free. It uses a linear
search algorithm, whose duration is hence proportional to the
size of the list. This explains the variance of this function.

Obs. 5) Functions mi_page_queue_push and
mi_page_queue_remove are responsible to update
the pages_direct array once a page becomes free or full.
Since multiple entries of the pages_direct array might
point to the same page (see Figure 6), each entry belonging
to the same group should be updated. This behavior causes
the high variance of this function.

Fig. 6: Some entries of the pages_direct array that point
to the same page.

VI. BUILDING RT-MIMALLOC

Leveraging the results of the analysis presented above, this
section discusses how we modified Mimalloc to enhance its
predictability, hence decreasing its LOAT while preserving
as much as possible its excellent average-case performance.
The modified version is hereafter named RT-Mimalloc and
is primarily conceived for soft real-time applications that
require both tight long-tail allocation latency and average-case
performance, such as real-time Linux applications [34].

A. Profile-driven initialization

A major source of unpredictability in Mimalloc is due to the
creation and release of memory segments at run-time. This can
however be only avoided by pre-initializing the data structures
of Mimalloc when a thread is created.

To address this issue we propose an approach based on
the extraction of a profile of the dynamic memory alloca-
tion requests issued by the target application. This clearly
requires knowing a priori the target application — a realistic
assumption for real-time software. The approach is illustrated
in Figure 7.

6



TABLE IV: In-depth analysis results. Maximum, minimum, mean, and variance in terms of the number of instructions for the
Mimalloc C functions with largest variance, alongside the number of calls while running the synthetic workload presented in
Section IV-B

Mimalloc C function Max Min Avg Variance Num. of calls Description
mi segment alloc 5200 4 103.99 346084.77 77 Allocates and initializes segments

mi heap collect retired 801 24 338.29 51817.89 75 Releases retired pages
malloc 5927 17 170.27 20742.51 18003 Allocates memory for user application

mi page free list extend 1298 14 44.31 13579.02 242 Extends the free list for a certain amount of blocks
mi segment find free 269 9 61.05 5141.28 148 Searches a free page within a segment

mi page queue push 135 21 63.00 2301.19 74 Adds a page in the head of pages_direct whenever a page
becomes non full

mi page queue remove 143 31 70.15 2139.96 72 Removes a page from the head of pages_direct whenever a
page becomes full

mi segment free 101 6 40.67 1833.56 30 Releases a segment
free 117 47 103.79 634.61 18002 Releases memory for user application

Fig. 7: Process to be followed to create a profile of the dynamic
memory allocation requests issued by the target application.

During the profiling phase, the target application starts with
an empty profile. After every run of the application, the profile
is updated and the application path coverage is monitored.
The profile needs to be obtained as the result of multiple runs
of the target application, ensuring that all its internal paths
are stimulated. Real-time software, especially a safety-critical
one, typically undertakes thorough testing activities that cope
with code coverage, e.g., using modified condition/decision
coverage (MC/DC) techniques [35]. The profile required by
RT-Mimalloc can hence be extracted during these testing
activities, ensuring that full path coverage is achieved.

To support profile-driven pre-initialization, the API of
Mimalloc was extended by introducing two functions:
load_profile and save_profile. The former needs to
be used at deployment time while both of them are clearly
used at the profiling stage.

Note that, as also observed by Chang et al. [36], memory
pre-initialization also allows speeding up memory-intensive
applications in the average case.

Two variants of the profile can be defined: one based
on tracing the creation of segments and another one based
on the creation of pages. Each of these variants implied
different changes to Mimalloc. Therefore, two versions of the
allocator were designed, referred to as RT-Mimalloc-seg and
RT-Mimalloc-pag, respectively.

Preliminary remarks. Both versions use profiles that store
maximum values, which are defined as the peak values reached
during the profiled execution instances (e.g., a periodic job)

of the target application. Furthermore, in this context, profile-
based pre-initialization does not imply that the DynMA needs
to pre-allocate all the buffers required by applications, trans-
lating dynamic memory allocation into a static one. Rather,
it refers to the initialization of the internal data structures
of Mimalloc and the pre-allocation of memory segments or
pages, to be requested to the OS, which can be dynamically
used to host different buffers during the execution of the target
application.

RT-Mimalloc-seg. In this version, the profile is defined by

profileseg = small medium pages ∪ huge pages, (2)

where

small medium pages = {(k, sk) | k ∈ {64KB, 4MB}} ,

and

huge pages = {(b, pb) | b ∈ B ∧ b > 512KB} ,

with B as defined in Eq. (1). In the above sets, sk and pb
denote the maximum number of segments allocated for both
page kinds k and the maximum number of pages allocated for
each block size b, respectively.

The profile is used to initialize the data structures of Mimal-
loc as follows. For each tuple (k, sk) ∈ small medium pages,
sk segments are created for page kind k (each of size 4MB),
possibly requesting some memory to the OS, and the meta-
data of the segments are initialized so that the segments are
empty (no pages allocated within them). The same will be
done for each tuple (b, pb) ∈ big pages, with the difference
that the pb segments are initialized with a single page.

The internal function mi_segment_free was disabled
to avoid the release of segments: note that does not mean
that the application cannot free the buffers it allocates, as
the management of segments pertains to the internal memory
management behavior of Mimalloc only. In fact, this is just re-
quired to enforce that the internal data structures of Mimalloc
always contain the information required to handle all segments
allocated for small and medium pages (see Sec. V). For huge
pages, this is not enough, since the size of the segments
handling those pages is variable (see Sec. V). Therefore, for
huge pages only, function _mi_page_free was disabled

7



too. These changes also avoid calling mmap and munmap
system calls during the execution of the target application,
which are instead just invoked once at its initialization when
the profile is loaded.

RT-Mimalloc-pag. For this version, the profile is defined
as a collection of tuples composed of the block size and the
number of pages allocated:

profilepag = {(b, pb) | b ∈ B} , (3)

where pb denotes the maximum number of pages allocated for
each block size b. Function _mi_page_free was disabled
for all page sizes to enforce that the internal data structures of
Mimalloc always contain the information required to handle
all block sizes.

Extraction of the profiles. With the proposed modifi-
cations, both RT-Mimalloc-pag and RT-Mimalloc-seg always
contain in their data structures the information required for the
profile. For example, RT-Mimalloc-pag stores the maximum
number of pages used for each block size at any time,
as _mi_page_free has been disabled. In this way, the
profiling phase is transparent to the user and does not require
extra execution time to compute the profile.

B. Constant-time search for free segments

This modification was applied to reduce the variance of
the function mi_segment_find_free. A bitmap related
to each segment was introduced to implement a constant-
time search in this function. Each bit of the bitmap represents
whether a page is used or not.

In this way, the page to be returned by the function can be
directly identified by the first bit set in the bitmap, if any.
This modification is meaningful for RT-Mimalloc-seg only
because function mi_segment_find_free should never
be called in RT-Mimalloc-pag, as the loading of a sound profile
ensures that a pre-initialized page is always available to serve
all allocation requests.

C. Constant-time free list extension

The huge variance of mi_page_free_list_extend is
due to the variable number of blocks with which free list is
extended. For RT-Mimalloc-seg, this function was modified
by strictly limiting to two the number of blocks with which
free list is extended every time the function is called. This
choice was made to both satisfy the allocation request (one
block) and be ready for the next one. While this enhances the
predictability of the function, it generally tends to introduce
more overhead on average, as future requests will more likely
fail to follow shorter allocation paths multiple times first
before reaching function mi_page_free_list_extend.
Conversely, for RT-Mimalloc-pag instead, the function was
modified to extend free list as much as possible the first time
the function is called, which occurs when the profile is loaded.
The function is then not intended to be called anymore during
the execution of the target application.

D. Constant-time pages direct update

Functions mi_page_queue_push and
mi_page_queue_remove were made more time-
predictable by modifying the pages_direct data structure.

Fig. 8: Modified structure of the pages_direct array to
update one value only (’Pointer ...’) during the execution of
mi_page_queue_push and mi_page_queue_remove.

By comparing Figure 8 (modified data structure) with
Figure 6 (original version), each entry of pages_direct
is now a pointer pointing to a second pointer, which in turn
points to a corresponding list of pages with at least one free
block. In this way, once a page needs to be moved from or
into any of such lists, Mimalloc needs to update one pointer
only, as opposed to several ones in the original version.

TABLE V: Summary of Modifications to Mimalloc

Modifications RT-Mimalloc-seg RT-Mimalloc-pag
Profile-driven initialization Segments Pages
mi segment free Disabled Disabled

mi page free Disabled for huge
pages

Disabled

mi page free list extend Limited at 2 blocks Extend completely
mi segment find free Optimized with bitmap Disabled
pages direct Modified Modified

mi heap collect retired Disabled Disabled

Table V reports the summary of configurations applied for
both RT-adapted versions of Mimalloc.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

This section reports experimental results to evaluate RT-
Mimalloc-pag and RT-Mimalloc-seg, both with and without
profile-driven initialization. The same state-of-the-art bench-
marks mentioned in Section IV were used. To obtain the
profiles, full coverage was ensured for the synthetic workload
used to stimulate DynMAs. Conversely, we noted that the
benchmarks in Mimalloc-bench [32] are characterized by
fixed inputs. Hence, to build their profile, we were not able
to follow an approach based on coverage as recommended in
Section VI-A, as this would have required consistent modifi-
cations to the benchmarks, which was beyond our capabilities
and scope. For this reason, we adopted an approach based on
convergence of the profiles, executing the benchmarks multiple
times until the resulting profile did not change after the last
execution.

In this section, we also include a comparison against
Talloc [37], a memory pool allocator used in the Samba
project [38]. The free lists of Talloc were built using the profile
generated for RT-Mimalloc-pag, being the version that behaves
more similarly to a memory pool allocator.

8



Fig. 9: Insets (a)-(b): Allocation times of RT-Mimalloc when stimulated by the synthetic workload compared to the LOAT of
the original Mimalloc and TLSF. Inset (c): Allocation times of Mimalloc (MI), RT-Mimalloc-pag (RT-MP), RT-Mimalloc-seg
(RT-MS), the two versions of RT-Mimalloc without profile-driven initialization (RT-MP-NO-P and RT-MS-NO-P), Talloc (TA)
and TLSF.

TABLE VI: RT-Mimalloc: Maximum, Minimum, Mean, and Variance in terms of number of instructions of relevant C functions,
alongside the number of calls while running the synthetic workload. The values for the original Mimalloc are reported between
parentheses.

RT-Mimalloc C function Max (orig.) Min (orig.) Avg (orig.) Variance (orig.) Num. of calls (orig.)
mi page free list extend (RT-Mimalloc-seg) 28 (1298) 14 (14) 19.39 (44.31) 31.95 (13579.02) 140 (242)

mi segment find free (RT-Mimalloc-seg) 24 (269) 3 (9) 13.50 (61.05) 110.25 (5141.28) 78 (148)
mi page queue push (RT-Mimalloc-seg) 25 (135) 21 (21) 23.15 (63.00) 3.98 (2301.19) 39 (74)

mi page queue remove (RT-Mimalloc-seg) 32 (143) 21 (31) 27.80 (70.15) 20.73 (2139.96) 39 (72)
malloc (RT-Mimalloc-seg) 751 (5927) 18 (17) 166.57 (170.27) 1062.30 (20742.51) 18003 (18003)

free (RT-Mimalloc-seg) 110 (117) 41 (47) 97.45 (103.79) 649.93 (634.61) 18002 (18002)
malloc (RT-Mimalloc-pag) 176 (5927) 18 (17) 161.04 (170.27) 997.30 (20742.51) 18003 (18003)

free (RT-Mimalloc-pag) 55 (117) 52 (47) 54.50 (103.79) 1.26 (634.61) 18002 (18002)

A. Evaluating allocation time variability

Figure 9 reports the allocation times under RT-Mimalloc-
seg and RT-Mimalloc-pag when stimulated by the synthetic
workload, alongside the LOAT under TSLF and the original
Mimalloc. Both versions evidence a very significant decrease
of the LOAT with respect to the original Mimalloc. Further-
more, both have LOATs comparable to one of TLSF. From
these tests, it also emerges that both versions of RT-Mimalloc
have similar average-case allocation times with respect to
Mimalloc. The graph also reports the results obtained in the
same tests by running RT-Mimalloc without profile-driven
initialization and Talloc. In these cases, the LOATs of RT-
Mimalloc increase, but their average-case allocation times
remain constant.

Table VI reports the maximum, minimum, mean, and
variance of each C function of RT-Mimalloc-seg in terms
of number of instructions. For every function, a drastic re-
duction of the variance, maximum, and mean values was
observed. The first four functions reported in the table were
not measured for RT-Mimalloc-pag, as they are only called
during the profile driven initialization phase (not traced by
ptrace). For instance, since under RT-Mimalloc-pag the
free list is completely extended when the profile is loaded,
function mi_page_free_list_extend should never be
called when the target application executes.

Figure 10 reports the results for both versions of RT-
Mimalloc with or without the profile-driven initialization,
the memory pool Talloc, the original Mimalloc, and TLSF
when stimulated by the benchmarks in Mimalloc-bench.
Several observations can be made. First, note that the observed

minimum allocation times of RT-Mimalloc coincide with one
of the original Mimalloc, and are much lower than the one
of TLSF. The original Mimalloc and RT-Mimalloc perform
similarly in the average case, while TLSF is much slower.
Note also that the standard deviation reduces with RT-Mimaloc
with respect to the original Mimalloc. The LOAT of RT-
Mimalloc is in general lower than the one of the original
version of Mimalloc and competitive with TLSF, especially
for RT-Mimalloc-pag, which proved to be more predictable
than RT-Mimalloc-seg. Furthermore, for benchmarks alloc-
testN and cache-scratchN, RT-Mimalloc-pag exhibited a much
lower LOAT than TLSF. This is because these are multi-
threaded benchmarks and, while Mimalloc adopts lock-less
data structures, TLSF uses centralized locks to ensure mutual
exclusion. Compared to RT-Mimalloc, Talloc has, in general,
the worst average and minimum allocation times. The LOAT of
Talloc is typically larger or equal than the one of RT-Mimalloc-
pag. In most cases, Talloc has a lower LOAT than the original
Mimalloc, with the exception of the espresso and glibc-simple
benchmarks. Figure 10 also reports the performance of RT-
Mimalloc without profile-driven initialization. Under these
conditions, RT-Mimalloc is characterized by a higher LOAT
and, in some cases, also by worsened average allocation times.
Furthermore, the recorded LOAT is mostly larger than the one
of TLSF, while the minimum and average allocation times are
lower than the ones of TLSF.

B. Evaluating general performance

Tables VII and VIII report the canonical benchmark results
of Mimalloc-bench (time in seconds to complete the exe-

9



Fig. 10: Allocation times (in nanoseconds) obtained with Mimalloc-bench (one graph per benchmark). Legend: RT-MP:
RT-Mimalloc-pag, RT-MS: RT-Mimalloc-seg, MI: Mimalloc, TA: Talloc, RT-MP-NO-P and RT-MS-NO-P: RT-Mimalloc-pag
and RT-Mimalloc-seg without the profile-driven initialization phase, respectively.

TABLE VII: Real-world applications from Mimalloc-bench: results in terms of seconds elapsed from the start to the end
of the test with RT-Mimalloc.

Allocator cfrac espresso redis larsonN-
sized larsonN gs lua

TLSF 16.77 11.03 X 877.63 872.02 1.38 6.72
Mimalloc 7.74 6.11 5.24 12.53 12.14 1.36 6.05

RT-Mimalloc-seg 8,37
(8,14%)

6,21
(1,64%)

5.32
(1.53%)

12,16
(-2,95%)

11,52
(-5,11%)

1,38
(1,47%)

6,48
(6,23%)

RT-Mimalloc-pag 8,24
(6,46%)

6,16
(0,82%)

5.24
(0%)

12,63
(0,8%)

12,64
(4,12%)

1,38
(1,47%)

6,83
(11,97%)

RT-Mimalloc-seg no profile 8,38
(8,27%)

6.22
(1.8%)

5.28
(0.76%)

12.13
(-3.19%)

11.52
(-5.11%)

1.38
(1.47%)

6.47
(6.07%)

RT-Mimalloc-pag no profile 8,21
(6,07%)

6.13
(0.33%)

5.24
(0%)

14.62
(16.68%)

14.84
(22.24%)

1.38
(1.47%)

6.95
(13.93%)

Talloc X 10.38 X X X X X

cution of the benchmarks) when using RT-Mimalloc for real-
world applications and stress tests, respectively. The results of
the original Mimalloc, Talloc, and TLSF are also reported for
comparison.

In most cases, RT-Mimalloc introduces a slowdown. For
real-world applications (Table VII), the maximum slowdown
measured for RT-Mimalloc-pag and RT-Mimalloc-seg was
however limited and equal to 12% and 8%, respectively. Note
also that, except for lua, both versions of RT-Mimalloc provide
much better results than TLSF. Larger maximum slowdowns
were observed for stress tests, with particular reference to

sh6benchN and sh8benchN. After some investigations, in
most cases we attributed this slowdowns to the fact that RT-
Mimalloc limits the number of blocks with which free list
is extended. In fact, sh8benchN executed with RT-Mimalloc-
pag experienced a slowdown of only 9.2%, compared to the
64.32% obtained with RT-Mimalloc-seg. In some cases, we
also noted a speed-up of the benchmarks, e.g., larsonN when
executed with RT-Mimalloc-seg (-5.05%) and xmalloc-testN
executed with RT-Mimalloc-pag (-0.94%). Talloc fails with
most of the real-world applications due to segmentation faults
or abort errors. In the cases in which it worked properly, it

10



TABLE VIII: Stress tests from Mimalloc-bench: results in terms of seconds elapsed from the start to the end of the test
with RT-Mimalloc.

Allocator alloc-
test1

alloc-
testN

glibc-
simple

glibc-
thread sh6benchN sh8benchN xmalloc-

testN
cache-
scratch

cache-
scratchN rocksdb

TLSF 9.57 220.94 16.29 X 169.29 371.02 81.29 2.00 1.43 X
Mimalloc 4.66 4.41 2.04 3.22 0.32 1.09 0.84 2.00 0.40 5.77

RT-Mimalloc-seg 4,92
(5,58%)

4,65
(5,44%)

2,29
(12,25%)

3,44
(6,83%)

0,43
(34,38%)

1,80
(65,14%)

1,25
(48,81%)

2,01
(0,5%)

0,40
(0%)

5,89
(2,08%)

RT-Mimalloc-pag 4,88
(4,72%)

4,64
(5,22%)

2,20
(7,84%)

3,38
(4,97%)

0,43
(34,38%)

1,19
(9,17%)

0,83
(-1,19%)

2,01
(0,5%)

0,40
(0%)

5,90
(2,25%)

RT-Mimalloc-seg no profile 4.94
(6.01%)

4.65
(5.44%)

2.29
(12.25%)

3.43
(6.52%)

0.45
(40.63%)

1.85
(69.72%)

1.24
(47.62%)

2.01
(0.5%)

0.41
(2.5%)

5.89
(2.08%)

RT-Mimalloc-pag no profile 4.89
(4.94%)

4.65
(5.44%)

2.20
(7.84%)

3.28
(1.86%)

0.41
(28.13%)

1.22
(11.93%)

0.84
(0%)

2.01
(0.5%)

0.41
(2.5%)

5.90
(2.25%)

Talloc 11.70 37.09 14.95 71.72 19.74 X 286.04 2.01 0.41 X

proved much slower than Mimalloc and RT-Mimalloc, as well
as faster than TLSF. RT-Mimalloc’s profile-driven initialization
does not seem to particularly affect average-case performance,
except for RT-Mimalloc-pag when running the larsonN and
larsonN-sized benchmarks. In some cases, the results evidence
a little speedup. After investigations, we concluded that it
happens because profile-driven initialization forces the Linux
kernel to instantiate all the memory pages required by the
process at its startup. This in turn increases the number of
memory reclaim events, especially during the first allocation
requests of the applications, which increase the duration of the
test.

C. Evaluating the amount of memory allocated

Tables IX and X report the amount of memory allocated
by each DynMA for each benchmark alongside the maximum
memory requested by each test (first row of the tables).

These results show that, except for some limited cases,
TLSF allocates less memory with respect to all other DynMAs.
Conversely, Talloc allocates the largest amount of memory due
to its memory pool behavior that forces it to pre-allocate huge
memory areas for each benchmark. General purpose DynMAs
allocate a similar amount of memory in most of the cases. The
results for RT-Mimalloc without profile-driven initialization
are not reported to save space but, in general, its maximum
allocated memory is lower than RT-Mimalloc, since all the
paths might be not stimulated in the first run.

In the worst case, RT-Mimalloc can require more memory
than TLSF due to the fact that mi_segment_free is
disabled and because even the original version of Mimalloc
instantiates one heap per thread, while TLSF has a single
shared heap. RT-Mimalloc-seg tends to allocate more memory
than Mimalloc (up to 62.6% more in the worst case—see
rocksdb in Table X). In some cases, RT-Mimalloc-seg uses
even less memory than Mimalloc (see espresso) and TLSF (see
sh6benchN). Also RT-Mimalloc-pag, due to its similarity with
a memory pool, allocates much more memory than the original
Mimalloc. However, in general, it allocates much less memory
than Talloc. The only exception is for xmalloc-bench. This
benchmark runs several threads where half threads perform
allocations only and the other half perform deallocations only.
In this sense, the benchmark can be seen as a producer-

consumer example. If producers (threads calling malloc) are
faster than consumers (threads calling free), then the amount
of allocated memory tends to grow in time. In the opposite
case, if the speed of producers and consumers is similar, the
amount of allocated memory will remain constant in time.
This explains the large amount of memory allocated by RT-
Mimalloc-pag and the few amount of memory allocated by
TLSF. In particular, RT-Mimalloc-pag has a malloc function
that is much faster than free in the average case, while in
TLSF those functions have similar execution times on average.
We can conclude that, in terms of allocated memory, RT-
Mimalloc-seg has a behavior similar to a general-purpose
DynMA, while RT-Mimalloc-pag stands between general-
purpose DynMAs and memory pools. Other cases in which
RT-Mimalloc-pag allocates more memory than Mimalloc and
TLSF are larsonN-sized and larsonN. This is due to the fact
that these benchmarks spawn a large number of threads that
remain active for the whole duration of the banchmark. Hence,
RT-Mimalloc-pag suffers of the extra memory overhead intro-
duced by the per-thread heaps.

Fragmentation is another important factor characterizing
DynMAs [8]. In tests conducted by Masmano et al. [39],
TLSF exhibited an average fragmentation of 15%, while that
of Mimalloc was estimated to be approximately 12.5% [40].
This factor is determined by the block sizes in the free lists;
since RT-Mimalloc uses the same block sizes, it inherits the
fragmentation factor from Mimalloc.

D. Discussion

After the comparison of RT-Mimalloc against Mimalloc and
TLSF, a more detailed discussion can be opened by compar-
ing RT-Mimalloc-seg against RT-Mimalloc-pag. In particular,
some observations can be made on the different ways used to
build the profiles of these two versions of RT-Mimalloc.

First of all, RT-Mimalloc-seg has a more coarse-grained
profile. By profiling and initializing segments, RT-Mimalloc-
seg is blocking the kind of pages that each initialized segment
will handle. Inside each segment, the allocator gives to the
user the freedom to allocate any page with the same kind
(small or medium). Instead, RT-Mimalloc-pag requires a more
fine-grained profile that constrains the number of objects that
can be allocated for each size. However, upon receiving an

11



TABLE IX: Real-world applications in Mimalloc-bench: results in terms of the maximum amount of allocated memory
(in kilobyte) from start to end of the test.

Allocator cfrac espresso redis larsonN-sized larsonN gs lua
Requested (Ideal DynMA) 1735 1511 6937 13810 13794 21686 35111

TLSF 3316 2232 X 17279 17276 39193 64496
Glibc 3072 2348 8199 39282 39282 38053 64704
Hoard 4636 5372 9684 36416 36416 43381 76272

Jemalloc 4976 5271 10202 39584 39452 46045 69824
Rpmalloc 3300 2964 8126 39266 39344 38289 65480
Snmalloc 3280 3868 8352 56494 56875 39977 69976
Tcmalloc 8836 9300 14056 33712 33580 45293 78168

Talloc X 7249100 X X X X X
Mimalloc 4480 5764 9184 47076 46700 40564 74552

RT-Mimalloc-seg 4440 4796 9292 58852 58492 40888 77316
RT-Mimalloc-pag 6348 11196 15140 2667488 2720980 52080 107080

TABLE X: Stress tests in Mimalloc-bench: results in terms of the maximum amount of allocated memory (in kilobyte)
from start to end of the test.

Allocator alloc-
test1

alloc-
testN

glibc-
simple

glibc-
thread sh6benchN sh8benchN xmalloc-

testN
cache-
scratch

cache-
scratchN rocksdb

Requested (Ideal DynMA) 8947 9012 1188 1432 215163 107582 3962 1077 1078 78329
TLSF 14284 14476 1720 X 501936 197408 4433 3640 3668 X
Glibc 13268 13252 1800 2824 423776 174016 47701 3728 3768 95403
Hoard 13456 13992 3836 8216 357140 276448 367470 4024 4056 X

Jemalloc 12231 13565 3864 5419 273526 181713 113470 4416 4853 97030
Rpmalloc 13308 13292 2268 3292 424304 174440 48792 3724 3764 95292
Snmalloc 13384 14852 1952 5867 321900 193555 53993 3828 4044 101136
Tcmalloc 16768 17910 7776 9642 272018 128266 40259 7924 7972 95333

Talloc 9012086 44931582 23501868 2647883 25806819 X 7321744 3906 3930 X
Mimalloc 12980 13960 3844 4964 266248 152860 51132 4096 4192 100572

RT-Mimalloc-seg 12924 13860 3936 5060 286680 145888 73708 4164 4292 163528
RT-Mimalloc-pag 18672 25264 4960 27468 704012 226124 25387696 4924 5748 190700

allocation request, RT-Mimalloc-seg might need to initialize
a page and start the extension process of free list. This adds
extra latency, which is never paid under RT-Mimalloc-pag. In
other words, in the average case, RT-Mimalloc-pag needs less
time to process an allocation request because the entire free
list is pre-computed, but it leaves less flexibility due to its
finer-grained profile.

Conversely, in general, RT-Mimalloc-seg is more flexible
but slower than RT-Mimalloc-pag. Moreover, the profile re-
quired by RT-Mimalloc-pag may be more difficult to obtain
precisely. Consider, for instance, the example of a router for
real-time traffic. In this scenario, the packets in input can be
seen as allocation requests while packets exiting are seen as
de-allocation requests, as suggested by Masmano et al. [20].
The size is very variable, but bounded, and we may not be able
to precisely track how many blocks of each size are needed
during the entire life of the application. RT-Mimalloc-seg can
instead better handle this scenario, as it only requires knowing
how many segments for each page kind are needed. On the
contrary, if an application has allocation and de-allocation
requests that do not depend on external inputs, RT-Mimalloc-
pag is most likely the best option.

While the results show that profile-driven initialization helps
reduce the LOAT of RT-Mimalloc, note that, without the ini-
tialization, both RT-Mimalloc-pag and RT-Mimalloc-seg still
work properly with good average-case performance. Profile-
driven initialization might be also applied to TLSF. However,
this would likely lead to an allocator with competitive worst-

case performance with respect to RT-Mimalloc, but with much
worse average-case performance.

VIII. CONCLUSIONS

Although several system designers typically discourage the
use of DynMAs in RT applications, dynamic memory is a
prominent capability of modern software systems. The chal-
lenge for RT systems is to provide dynamic memory allocation
while ensuring bounded allocation times, which with previous
work was unfortunately only possible by accepting significant
drawbacks in terms of average-case performance.

This paper leveraged recent results in the field of general-
purpose DynMAs to propose RT-Mimalloc, a modified version
of Mimalloc, a modern DynMA, capable of providing compet-
itive time predictability and better average-case performance
with respect to the TSLF RT DynMA, which is mostly
used in systems such as Linux PREEMPT RT. Compared
to TLSF, RT-Mimalloc also inherits from Mimalloc a lock-
less architecture, which makes it more suitable than TLSF for
multi-threaded applications.

RT-Mimalloc leverages both profile-driven pre-
initializations of data structures and modifications to internal
functions to improve time predictability. Two versions of
RT-Mimalloc were proposed, one based on the initialization
of pages and the other based on the initialization of segments.
The profile can be automatically extracted during the testing
activities to which RT software is subject, thus containing the
effort to use for the deployment of RT applications.

12



REFERENCES

[1] H. Kopetz and W. Steiner, “Real-time communication,” in Real-time
systems: Design Principles for Distributed Embedded Applications 3rd
edition, pp. 177–200, Springer, 2022.

[2] J. Herter and S. Altmeyer, “Precomputing memory locations for paramet-
ric allocations,” Proceedings of 10th International Workshop on Worst-
Case Execution Time (WCET) Analysis, 2010.

[3] B. Kenwright, “Fast efficient fixed-size memory pool: No loops and
no overhead,” The Third International Conference on Computational
Logics, Algebras, Programming, Tools, and Benchmarking, 2022.

[4] B. Kenwright, “Fast efficient fixed-size memory pool: No loops and no
overhead,” arXiv preprint arXiv:2210.16471, 2012.

[5] J. Shen, M. Hamal, and S. Ganzenmüller, “Dynamic memory allocation
on real-time linux,” Architecture, vol. 86, p. 32, 2011.

[6] J. Rosén, C.-F. Neikter, P. Eles, Z. Peng, P. Burgio, and L. Benini,
“Bus access design for combined worst and average case execution
time optimization of predictable real-time applications on multiprocessor
systems-on-chip,” in 2011 17th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pp. 291–301, IEEE, 2011.

[7] D. Leijen, B. Zorn, and L. de Moura, “Mimalloc: Free list sharding in
action,” in Programming Languages and Systems: 17th Asian Sympo-
sium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1–4, 2019,
Proceedings 17, pp. 244–265, Springer, 2019.

[8] M. S. Johnstone and P. R. Wilson, “The memory fragmentation problem:
Solved?,” ACM Sigplan Notices, vol. 34, no. 3, pp. 26–36, 1998.

[9] T. Ogasawara, “An algorithm with constant execution time for dynamic
storage allocation,” in Proceedings Second International Workshop on
Real-Time Computing Systems and Applications, pp. 21–25, IEEE, 1995.

[10] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “TLSF: A new dynamic
memory allocator for real-time systems,” in Proceedings. 16th Euromi-
cro Conference on Real-Time Systems, 2004. ECRTS 2004., pp. 79–88,
IEEE, 2004.

[11] F. Reghenzani, G. Massari, and W. Fornaciari, “The real-time linux
kernel: A survey on PREEMPT RT,” ACM Computing Surveys (CSUR),
vol. 52, no. 1, pp. 1–36, 2019.

[12] S. Kuenzer, V.-A. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain,
C. Soldani, C. Lupu, Ş. Teodorescu, C. Răducanu, et al., “Unikraft: fast,
specialized unikernels the easy way,” in Proceedings of the Sixteenth
European Conference on Computer Systems, pp. 376–394, 2021.

[13] S. S. Craciunas, C. M. Kirsch, H. Payer, A. Sokolova, H. Stadler, and
R. Staudinger, “A compacting real-time memory management system.,”
in USENIX Annual Technical Conference, pp. 349–362, 2008.

[14] M. Ramakrishna, J. Kim, W. Lee, and Y. Chung, “Smart dynamic
memory allocator for embedded systems,” in 2008 23rd International
Symposium on Computer and Information Sciences, pp. 1–6, IEEE,
2008.

[15] J. Herter, J. Reineke, and R. Wilhelm, “Cama: Cache-aware memory
allocation for wcet analysis,” in Proceedings Work-In-Progress Session
of the 20th Euromicro Conference on Real-Time Systems, 2008.

[16] W. Su, J.-R. Abrial, G. Pu, and B. Fang, “Formal development of a real-
time operating system memory manager,” in 2015 20th International
Conference on Engineering of Complex Computer Systems (ICECCS),
pp. 130–139, IEEE, 2015.

[17] J. Herter and J. Reineke, “Making dynamic memory allocation static
to support wcet analysis,” in 9th International Workshop on Worst-
Case Execution Time Analysis (WCET’09), Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2009.

[18] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Crespo,
“Memory resource management for real-time systems,” in 19th Euromi-
cro Conference on Real-Time Systems (ECRTS’07), pp. 201–210, IEEE,
2007.

[19] I. Puaut, “Real-time performance of dynamic memory allocation al-
gorithms,” in Proceedings 14th Euromicro Conference on Real-Time
Systems. Euromicro ECRTS 2002, pp. 41–49, IEEE, 2002.

[20] M. Masmano, I. Ripoll, P. Balbastre, and A. Crespo, “A constant-time
dynamic storage allocator for real-time systems,” Real-Time Systems,
vol. 40, pp. 149–179, 2008.

[21] M. Masmano, I. Ripoll, and A. Crespo, “A comparison of memory allo-
cators for real-time applications,” in Proceedings of the 4th International
Workshop on Java Technologies for Real-Time and Embedded Systems,
pp. 68–76, 2006.

[22] M. A. Awais, “Memory management: Challenges and techniques for
traditional memory allocation algorithms in relation with today’s real
time needs,” Advances in Computer Science: an International Journal,
vol. 5, no. 2, pp. 22–27, 2016.

[23] Google, “Tcmalloc.” 2014. [Online] Available: https://github.com/
gperftools/gperftools.

[24] P. Liétar, T. Butler, S. Clebsch, S. Drossopoulou, J. Franco, M. J.
Parkinson, A. Shamis, C. M. Wintersteiger, and D. Chisnall, “Snmalloc:
a message passing allocator,” in Proceedings of the 2019 ACM SIGPLAN
International Symposium on Memory Management, pp. 122–135, 2019.

[25] M. Jansson, “rpmalloc-general purpose memory allocator.” 2017. [On-
line] Available: https://github.com/mjansson/rpmalloc.

[26] W. Gloger et al., “Dynamic memory allocator implementations in
linux system libraries.” 1997. [Online] Available: http://www.dent.med.
uni-muenchen.de/wmglo/malloc-slides.html.

[27] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,”
in Proceedings of the BSDCan Conference, Ottawa, Canada, 2006.

[28] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded applications,”
ACM Sigplan Notices, vol. 35, no. 11, pp. 117–128, 2000.

[29] D. Langr and M. Kočička, “Reducing the impact of intensive dynamic
memory allocations in parallel multi-threaded programs,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 31, no. 5, pp. 1152–1164,
2019.

[30] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova, “Evaluation
of the intel® core™ i7 turbo boost feature,” in IEEE International
Symposium on Workload Characterization (IISWC), pp. 188–197, IEEE,
2009.

[31] A. Tsariounov, “cset shield.” 2011. [Online] Available: https://manpages.
ubuntu.com/manpages/trusty/man1/cset-shield.1.html.

[32] D. Leijen, “Mimalloc-bench.” 2021. [Online] Available: https://github.
com/daanx/mimalloc-bench.

[33] P. Guide, “Intel® 64 and ia-32 architectures software developer’s man-
ual,” Volume 3B: System Programming Guide, Part, vol. 2, no. 11, pp. 1–
64, 2011.

[34] W. Yuan and K. Nahrstedt, “Energy-efficient cpu scheduling for multi-
media applications,” ACM Transactions on Computer Systems (TOCS),
vol. 24, no. 3, pp. 292–331, 2006.

[35] K. J. Hayhurst, A practical tutorial on modified condition/decision
coverage. DIANE Publishing, 2001.

[36] J. M. Chang, Y. Hasan, and W. H. Lee, “A high-performance memory
allocator for memory intensive applications,” in Proceedings Fourth
International Conference/Exhibition on High Performance Computing
in the Asia-Pacific Region, vol. 1, pp. 6–12, IEEE, 2000.

[37] A. Tridgell, “Using talloc in samba4,” tech. rep., Samba Team, 2004.
http://samba.org/ftp/unpacked/talloc, 2004.

[38] C. Hertel, “Samba: An introduction.” 2001. [Online] Available: http:
//us1.samba.org/samba/docs/SambaIntro.html.

[39] M. Masmano, I. Ripoll, J. Real, A. Crespo, and A. J. Wellings, “Im-
plementation of a constant-time dynamic storage allocator,” Software:
Practice and Experience, vol. 38, no. 10, pp. 995–1026, 2008.

[40] Microsoft, “mi-malloc documentation.” 2021. [Online] Available: https:
//microsoft.github.io/mimalloc/.

13


