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Abstract—Embedded computing systems are becoming in-
creasingly complex. Modern system-on-chips come with hetero-
geneous designs that integrate diverse processing systems and
a large variety of peripherals. When considering software with
mixed and independent security and criticality levels, the hetero-
geneity of modern computing platforms poses considerable chal-
lenges in achieving strong isolation between execution domains.
Tackling these challenges is even more difficult in platforms
that integrate Field-Programmable Gate Array (FPGA) fabrics,
which, due to their wide flexibility, introduce new security- and
safety-related threats that can jeopardize isolation. As a matter
of fact, if no proper countermeasures are in place, hardware
accelerators (HAs) deployed on FPGA can be exploited to break
the isolation capabilities implemented in a system by issuing
dangerous bus transactions. This research proposes a design flow
for heterogeneous platforms to strongly isolate bus transactions
issued by HAs. The design flow is then specialized for the
AMD Zynq UltraScale+ platform, leveraging the virtualization-
related features of the Arm System Memory Management Unit
(SMMU). The proposed solution jointly combines two new IPs
for enforcing information transported by the AXI bus, a tool to
verify the FPGA design, a principled configuration of the SMMU
driver, and a secure boot flow. The proposal is evaluated with an
industry-relevant use case related to embedded machine learning
applied for the railway domain, in which isolation is established
between two AMD Deep Learning Processor Units (DPU) and a
set of FPGA HAs dedicated to a real-time critical application.

Index Terms—Xilinx UltraScale+, Field-programmable gate
array (FPGA), Deep Learning Processor Unit (DPU)

I. INTRODUCTION

Embedded systems play a pivotal role in applications such
as nuclear power plants, railways, automotive systems, and
robotics, where they are often constrained by real-time, power,
and reliability requirements. To meet the growing industry
demands for processing power, semiconductor manufacturers
designed heterogeneous multi-core systems-on-a-chip (SoCs),
which include processors and programmable accelerators, such
as GPUs and FPGAs. An FPGA-based SoC platform com-
bines a Processing System (PS) with an FPGA unit, also
referred to as Programmable Logic (PL). Software tasks run
on processors, while the PL can host hardware accelerators
(HAs). Hardware acceleration is essential to meet performance
and real-time constraints beyond the capabilities of CPUs.
HAs and processors share resources, including memories,
peripherals, and system registers, and communicate via PL-
PS and PS-PL interfaces using a bus such as the Advanced

Microcontroller Bus Architecture (AMBA) AXI protocol [1].
Heterogeneous platforms enable the consolidation of systems
that previously required dedicated processing units. Modern
SoCs hence support systems with Multiple and Independent
Levels of Security/Safety (MILS), allowing both untrusted
(low-critical) and trustworthy (high-critical) applications to
coexist on a single chip, thereby enhancing resource efficiency.
Modern embedded systems often require a general-purpose
environment for user applications alongside a secure, real-time
environment for safety-critical software. The challenge lies in
maintaining predictable behavior while hosting applications
with different levels of criticality and security on the same
hardware. In this context, an SoC can be seen as a collection
of distinct Hardware Domains (HDs), each defined by its
own set of computing resources, bus managers, security levels,
peripherals, and memory address space regions. Specifically,
the PL may be subject to severe security threats: if not properly
managed, HAs in PL may gain unauthorized access to the
system resources [2] [3] [4] [5], hence compromising isolation.
Existing isolation techniques [6]–[12] fail to address key
threats: (i) compromised isolation when multiple HAs share
the same PL-PS interface, (ii) lack of control over critical bus
signals from HAs, and (iii) the introduction of vulnerabilities
at the PL design stage. Furthermore, most solutions often
lack compliance with technologies like Arm TrustZone and
IOMMU virtualization.
Contribution. In this paper, we propose a secure-by-design
workflow to properly isolate HDs at the PL level by making
the following contributions:

1) A design flow for enforcing isolation between different
HDs within a heterogeneous SoC based on:
• An IP called AXI Enforcer to securely control critical

AXI bus signals at the design stage.
• An IP called AXI ID Mapper (AIM) enabling PL-PS

port sharing between HAs belonging to different HDs.
• Compliance with Arm TrustZone technology and

IOMMU virtualization.
• A firmware component for securely configuring the

Arm SMMU.
• A tool to verify the PL design to avoid hardware

vulnerabilities and/or unintended misconfigurations.
2) An experimental evaluation based on an industry-relevant



use case based on the AMD/Xilinx Zynq UltraScale+
MPSoC for a railway system including a real-time
safety-critical HD, managing different protocol interfaces,
alongside two virtual machines (VMs) with dedicated
HDs, each accessing an AMD Deep Learning Processor
Unit (DPU) core. It jointly addresses response times and
latency, bandwidth, and area requirements.

Paper Organization. This paper is structured as follows:
Section II introduces key concepts related to the architecture
of heterogeneous SoC designs and resource isolation when
hosting software with mixed levels of security and criticality.
Section III presents the system and threat model. Section IV
discusses the related work and a corresponding taxonomy. Sec-
tion V presents the proposed design flow. Section VI discusses
implementation issues for the UltraScale+ architecture. Sec-
tion VII illustrates our case study, while Section VIII reports
the corresponding experimental results. Finally, Section IX
concludes the paper and discusses future work.

II. ESSENTIAL BACKGROUND

Modern embedded platforms often consist in heterogeneous
SoCs that integrate a PS unit with an FPGA PL component
within a single device. Fig. 1 illustrates the typical architecture
of a heterogeneous SoC. The PS includes various processing
units, memory elements, and peripherals, while the PL can
host multiple HAs. These components are interconnected via
the AMBA AXI bus protocol, the de facto standard for bus
communication on modern platforms. The PS-PL and PL-PS
ports enable communication between the PS and PL.

The flexibility of heterogeneous systems lies in their ca-
pability to host and execute software with varying levels of
security and criticality on the same platform. In this context,
HDs can be defined based on the separation of resources
according to security- and safety-related levels. Security level
separation is achieved through Trusted Execution Environment
(TEE) technology, which isolates secure applications from
untrusted ones. Safety-critical separation is enforced using
hardware protection units (HPUs) and the IOMMU, which
implement strict access controls and prevent unauthorized
memory access.
AXI protocol. The AXI protocol consists of five channels:
write/read address, write/read data, and write response. Ad-
dress channels include the address of the target transaction
(AxADDR) plus some control signals (AxBURST, AxLEN,
AxSIZE, etc.). Additional control signals include the Trust-
Zone security level (AxPROT), quality of service (AxQOS),
and cache control (AxCACHE). Data channels include the
actual data (WDATA for writes, RDATA for reads) along with
byte strobes (WSTRB) for write operations. Each transaction
follows a handshake mechanism based on valid (VALID) and
ready (READY) signals, ensuring proper synchronization be-
tween master and slave. The write response channel (BRESP)
provides feedback on the outcome of write operations, indi-
cating success or errors. Furthermore, the protocol supports
user-defined signals (AxUSER, WUSER, RUSER, etc.), which

Fig. 1. Modern SoC architecture with hardware accelerators in the pro-
grammable logic.

allow custom metadata to be passed alongside transactions for
specialized applications.
TEEs. To enhance security, manufacturers released hardware
support for implementing TEEs [13] [14]. Many embedded
SoCs rely on the Arm TrustZone technology [15], which
allows trusted applications to run in a TEE. To protect the
execution of trusted applications, TrustZone separates the
system resources into the Secure World and the Non-Secure
World. Memory regions, memory management unit (MMU)
page tables, peripherals, and interrupts are designated as either
Secure or Non-Secure, ensuring that sensitive data and oper-
ations remain accessible to the Secure World only. Moreover,
AXI bus transactions are marked with a security attribute to
recognize the world the bus managers belong to. This setup
allows TrustZone to protect secure applications and data, even
if the Non-Secure World (e.g., a rich OS) is compromised.
HPUs. While TEEs enable resource partitioning by security
level, system resources can also be partitioned to support
varying levels of criticality. This allows real-time, safety-
critical tasks to run alongside less critical tasks managed by a
rich OS. Heterogeneous SoCs include HPUs for enforcing the
isolation of system resources. The Memory Protection Unit
(MPU) enforces access control for memory regions, while
a Peripheral Protection Unit (PPU) manages access to the
peripheral address space. Designers can configure these units
to allow or deny access based on the bus manager ID value,
and the units will act accordingly (e.g., by generating an
interrupt) in case of a violation.
IOMMU. The IOMMU is a hardware component designed to
virtualize memory address spaces for peripherals and, more
generally, for bus managers. Specifically, the IOMMU maps
device addresses to physical addresses. The latest implemen-
tations of this unit support TEE, allowing distinct translation
regimes to be defined according to security levels.

III. SYSTEM AND THREAT MODEL

This section presents the system and threat model adopted
in this work.

System Model. We consider a heterogeneous system including
a PS and a PL FPGA unit that can host multiple HAs. All com-
ponents of the PS, including CPUs and peripherals, are aware



of TEE technology (e.g., Arm TrustZone) and communicate
over the bus using the AXI protocol. The PS includes two
multi-core CPUs. On the first CPU, either native applications
or virtual machines (VMs) managed by a hypervisor can be
executed. The second CPU runs a real-time operating system
(RTOS) where multiple tasks are scheduled. The HPUs are
configured to ensure exclusive access of the CPUs to specific
memory regions and peripherals. Both virtual machines (or
native applications) and RTOS tasks have access to a subset
of HAs in PL. The HAs need to share PL-PS ports for
accessing the PS. A secure boot process employs encryption
and authentication schemes for all the software partitions
(including the PL bitstream). In the following, we assume that,
when access to PL is shared between VMs running on the same
CPU, the hypervisor is responsible for supervising the access
to HAs from each VM, so that VMs can only interact with
the HAs they have been granted access to.

Threat Model. We assume that secure boot cannot be com-
promised, e.g., the system is resistant to differential power
analysis attacks targeting the hardware root of trust (HRoT)
keys [16], [17]. We also assume that the adversary can take
control at run-time of the user applications and the OSes.
The trusted computing base is composed of boot loaders,
the hypervisor (if any), and privileged firmware (e.g., Arm
Trusted Firmware). In this context, threats are related to the
vulnerabilities and potential issues associated with the state-
of-the-art design workflows of FPGA-based heterogeneous
platforms:

• T1. HA-Driven Manipulation of AXI Bus Signals:
The HAs within the system can manipulate AXI signals,
which determine access to secure resources (AxPROT),
access priority on the DDR memory controller (AxQOS),
and control over access to processor caches (AxCACHE).
Malicious or compromised HAs could exploit these sig-
nals to bypass isolation.

• T2. Lack of Isolation on Shared PL-PS Ports: Com-
monly (as it is the case for the Ultrascale+), when HAs
share PL-PS ports, HPUs are unable to enforce distinct
access controls over memory and peripheral address
spaces. Instead, a single access control is applied to the
entire PL-PS port based on the bus manager ID. The
IOMMU cannot in turn be configured to apply separate
translation regimes (i.e., sets of rules for translating
virtual to physical addresses) for the HAs. This limitation
arises because the IOMMU associates translation regimes
either with a single ID linked to each PL-PS port or
with an ID obtained by combining the former with an
HA-controlled ID. This limitation allows an adversary to
exploit a compromised HA to access protected memory
regions or peripherals designated for other HAs or soft-
ware components.

• T3. Insufficient Protection of the IOMMU Configura-
tion Address Space: The IOMMU configuration address
space is generally memory-mapped and accessible to
all bus managers. When multiple bus managers require

access to configure the unit, the integrity of translation
regime configurations cannot be guaranteed. MPUs lack
the granularity to restrict access to specific page tables,
as they can only control access over the entire IOMMU
configuration address space.

• T4. Lack of PL Design verification: The source code
of HAs is vulnerable at the development stage, and it can
be manipulated to introduce hardware vulnerabilities or
trojans [3].

The design flow proposed in this research addresses T1 and
T2 by integrating two new IPs in the PL design: AXI Enforcer
and AXI ID Mapper (see Section V-A). T3 is handled by a
firmware component included in the boot process, which first
configures the translation regimes and then locks the IOMMU
configuration address space (Section V-B). T4 is addressed
through a verification tool that analyzes the PL design and
checks for possible misconfigurations (Section V-C).

IV. RELATED WORK

Various solutions were proposed in previous work for
extending the concept of isolation to the PL, and different
approaches were used in practice. Before analyzing the related
work in this field, a taxonomy is introduced to classify the
existing solutions.

A. Taxonomy

1) Isolation Method. It defines the technology used for en-
suring isolation. Solutions proposed in the literature mainly
leverage one or more technologies: MPU, IOMMU, TEE
realized in PL, or a new architectural approach.
2) Isolation Level. It refers to the layer at which resource
isolation is enforced within a system. The isolation level can
be categorized as follows:

• Application Level: The OS assigns HAs to applications
and ensures isolation.

• VM Level: VMs share access to the PL and the hypervisor
ensures the isolation of the HAs and their corresponding
memory regions.

• HD Level: HDs are isolated by the hardware design and
configuration.

3) AXI Signal Control. It refers to the ability to control
the following AXI signals for HAs: AxPROT (TrustZone),
AxQOS, and AxCACHE (specific to Arm platforms).
5) PL-PS port sharing. It refers to whether PL-PS ports can
be shared among multiple HAs without jeopardizing isolation.
6) Virtualization. It refers to the support for virtualization of
the memory address space exposed to HAs.
7) IOMMU runtime protection. It refers to whether the
IOMMU unit is protected from runtime reconfiguration.
8) PL Design Verification. It refers to whether the PL design
is verified at the development stage.

B. Related work analysis

The works reviewed in this section adopted different isola-
tion techniques for HAs in PL.
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Olson et al. [6] IOMMU App. ✗ ✓ ✓ ✗ ✗

Alam et al. [7] IOMMU App. ✗ ✓ ✓ ✗ ✗

Pham et al. [8] IOMMU VM ✗ ✗ ✓ ✗ ✗

Karabulut et al. [9] MPU HD TZ ✗ ✗ - ✗

Donchez et al. [10] MPU HD TZ ✗ ✗ - ✗

Milan et al. [11] MPU HD TZ ✓ ✗ - ✗

Armanuzz. et al. [12] TEE HD ✗ ✗ ✓ - ✓

Ren et al. [18] TEE App. ✗ ✗ ✓ - ✗

Benhani et al. [19] Architect. HD TZ ✗ ✗ - ✓

Gouveia et al. [20] Architect. HD ✗ ✓ ✓ - ✗

Asmussen et al. [21] Architect. HD ✗ ✓ ✓ - ✗

This Paper IOMMU HD ✓ ✓ ✓ ✓ ✓

-: Not applicable, TZ: Only AxPROT TrustZone control.

One common approach is utilizing the IOMMU to enforce
isolation in multi-tenant environments within the PL. Olson
et al. [6] proposed a solution called Border Control, which
leverages the IOMMU’s Address Translation Service (ATS)
to ensure that HAs adhere to memory access permissions
defined in the page table. This method confines accelerators
to the virtual memory space of their corresponding OS pro-
cesses. Alam et al. [7] presented an enriched IOMMU design,
called CryptoMMU, for improving scalability when dealing
with multiple untrusted accelerators. In this solution, cached
IOMMU translations related to HAs are authenticated using
secure hash functions, with authentication keys defined for
each pair of the form {accelerator, OS process}. Pham et
al. [8] proposed an FPGA OS that ensures memory isolation
for accelerators on the Xilinx UltraScale+ architecture. Their
system employs a kernel driver to configure the IOMMU and
map each accelerator to a dedicated translation regime.

Another possibility is to use an MPU-like approach to
protect access to shared memory. Emre Karabulut et al. [9]
extended the AXI crossbar switch by incorporating access
control functionality to secure AXI subordinate access, sup-
porting dynamic reconfiguration privileges and compatibility
with Arm’s TrustZone. Donchez et al. [10] leveraged the
XMPU PL (Xilinx Memory Protection Unit for PL isolation)
[22] to safeguard access to HAs and restrict them to their
allocated memory regions. Milan et al. [11] presented an
SoC architecture that extends TrustZone to support multiple
environments that can be associated with different HAs.

Another relevant approach is building customized TEEs
inside the PL. BYOTee (by Armanuzzaman et al. [12]) is
a hardware-software co-design infrastructure for creating en-
claves with customized hardware in the PL, establishing a
dynamic root of trust for secure execution of sensitive appli-

cations. Ren et al. [18] proposed extending TEEs for multi-
tenant cloud environments by introducing an architecture that
uses the AccGuard [23] framework for secure and encrypted
communication between host and PL-based TEEs. AccGuard
is a hardware enclave framework supporting isolation and
remote attestation. The authors also extended the Coyote
framework [24] to enable virtualization. This framework pro-
vides OS abstractions and a variety of features for enhancing
the FPGA capabilities.

Different architectural approaches to guarantee isolation
of accelerators were proposed in previous work. Benhani et
al. [19] presented six distinct attacks to TrustZone’s security
mechanisms in FPGA-based SoCs and two new security con-
trollers to enhance access control and mitigate attacks. Gou-
veia et al. [20] introduced Midir, a manycore capability-based
architecture that uses hardware-based trusted components,
called T2H2, to manage access to shared resources. Asmussen
et al. [21], [25] presented M3, a hardware/software co-design
that implements isolation between cores and accelerators in a
heterogeneous system, leveraging a Network-on-Chip (NoC)
as a communication subsystem. Kurth et al. [26] proposed an
IP called ID Remapper to set the AXI IDs to dynamic values.
However, if used in our context, crucial isolation requirements
would not be satisfied.

Table I classifies the related work according to the taxonomy
presented above. Solutions that rely on software components
only do not implement HD-level isolation and do not adhere
to our threat model. Many approaches also lack isolation
when PL-PS ports are shared between HAs, which is critical,
especially when the number of HAs exceeds the number of PL-
PS ports. IOMMU-based approaches overlook the possibility
of runtime reconfiguration of translation regimes, highlighting
the need to secure the IOMMU configuration address space.
MPU-based solutions, on the other hand, cannot provide mem-
ory virtualization. While using a dedicated TEE in PL is an
excellent strategy for establishing isolation, challenges emerge
when dealing with resource-constrained SoCs that have limited
PL area/resources. When a large number of HAs must reside
in the PL, the resources required to build the TEE can
hardly be available. Custom architectural solutions face similar
limitations, as they require substantial re-implementation of
the bus and memory subsystems. Most of those proposed in
previous work are also incompatible with Arm’s IOMMU and
TrustZone.

Most importantly, none of the previous works provided
control of critical AXI signals, such as AxQOS, which reg-
ulates access priority to the DDR memory controller, and
AxCACHE, which controls access to the processor caches,
thereby overlooking the potential risk for malicious HAs freely
manipulating these signals. In this regard, Bossuet et al. [27]
demonstrated the feasibility of Flush+Reload and Evict+Time
attacks by exploiting cache coherency mechanisms between
the PS and PL in modern SoCs. Some of the works provided
support for TrustZone by controlling the AxPROT signal only.
Finally, all but one of the works we reviewed did not address
PL design verification, leaving them susceptible to hardware



trojans that may be introduced by designers.
In summary, although various approaches were proposed to

isolate HAs, none of them implemented strong and resource-
efficient isolation at the HD level while enabling memory
virtualization and providing support for controlling critical
AXI signals and PL design verification. This work fills this
relevant gap.

V. DESIGN FLOW

The design flow presented in this section addresses the
challenge of achieving HD-level isolation while offering all
the features specified in the taxonomy of Sec. IV-A. To do so,
the proposed flow ensures the following requirements.

R1. Protected access from/to HAs. HAs needs to be pro-
tected from unauthorized access by PS managers while HAs
themselves must be prevented from performing unauthorized
accesses to PS resources.

R2. Dedicated IOMMU translation regimes for HAs.
Modern IOMMUs, such as the Arm’s SMMU, can implement
isolation by configuring separate translation regimes based
on an identifier and TrustZone security level. In the AXI
protocol, the identifier is called Stream ID. Typically, in
heterogeneous platforms including a PL unit, Stream IDs are
determined by (i) a PS hard-wired part and (ii) a flexible part
set by PL devices. The latter is specified through an attribute
called AXI ID. The HAs hence need to be associated with
a unique set of Stream IDs and a TrustZone security level,
so that the IOMMU can be configured to enforce a per-HA
translation regime, successfully implementing virtualization
and TrustZone compliance.

R3. Explicit management of critical AXI bus signals. HAs
can freely control critical AXI signals such as cache control
and QoS. As stated in the previous section, a malicious HA
can manipulate these signals to compromise the isolation of
the HDs. It is therefore required to control the TrustZone, QoS,
and caching AXI bus signals for each HA at the design stage.

R4. Configuration and locking of the IOMMU. In principle,
the IOMMU configuration address space can be accessed by
all bus managers. As such, the IOMMU translation regimes
must be configured during at boot time and locked at runtime.
This is crucial to prevent any component within an HD from
reconfiguring the IOMMU, which could compromise isolation.
R5. Anti-tampering. Software partitions and the PL bitstream
(i.e., its configuration) must be authenticated and encrypted
using an HRoT to prevent system tampering.

The proposed design flow is composed of three steps. (I)
To match requirements R1, R2, and R3 it requires integration
of two IPs in PL, which are presented in Section V-A. (II) To
match requirement R4, it requires to install a firmware com-
ponent, detailed in Section V-B. (III) To match requirement
R5, it mandates secure boot and PL design verification, which
are addressed in Section V-C. Specialized implementations of
these steps are discussed later in Section VI. Note that, since
the IPs are statically configured at design time, the design flow

cannot be applied in cases of dynamic partial reconfiguration
that require changes to their configuration.

A. Two new IPs to isolate HAs

We designed and implemented two new lightweight IPs:
AXI Enforcer and AXI ID Mapper (AIM). They are meant
to work in conjunction to fix the AXI attributes and dedicate
a set of Stream IDs to each HA. The PS hard-wired part of
a Stream ID is associated with the PL-PS port, while the PL
flexible part is specified in the AXI ID. AXI IDs are used
to implement multithreading in the AXI protocol, and their
values are either set by interconnection units, or by the IPs
themselves when directly connected to the PL-PS interface.
Consequently, the resulting Stream ID in the PS is out of the
control of designers.

The idea of the proposed approach consists in statically
assigning a set of AXI IDs to each HA in the PL design. In this
way, each HA will generate a set of unique Stream IDs to be
associated with a dedicated translation regime in the IOMMU.
Translation regimes are also matched based on the AXI
TrustZone security level. Fig. 2 provides a logical overview
of the proposed solution. First, an MPU unit is required to
protect the access to the HAs from the PS managers. The
AXI enforcer is then used to fix the TrustZone security level
signal (AxPROT), the AxQOS signal, and the AxCACHE
signal. It is also used to set the AXI user signal (AxUSER)
to the manager ID of the connected HA. Bus transactions
then pass through the interconnection unit to the AIM, where
the AxUSER signal identifies the manager interface and maps
incoming AXI IDs to a unique set for each HA. In this way,
the resulting Stream IDs will be uniquely associated with
the HA. The IOMMU can be configured to match the HAs
transactions to dedicated translation regimes while preserving
the TrustZone’s Secure/Non-Secure resource separation. The
next sections specify the details regarding the IP functionality
and configuration parameters.

1) AXI Enforcer: HAs are free to manipulate critical AXI
signals, being directly generated by them. Furthermore, when
a new transaction arrives from the manager port of an inter-
connect unit, it is common that AXI IDs do not consistently
match those of the source managers. For instance, this happens
with all the AMD PL interconnects we tested. To address
these issues, AXI Enforcer can be employed to enforce the
information transmitted on critical bus signals such as security
level (AxPROT), QoS (AxQOS), caching (AxCACHE), and
user-defined (AxUSER), on both read and write channels. All
the other AXI signals are propagated as they are.

The AXI Enforcer must be installed between the PL
manager interface and the subordinate port of interconnects.
Differently from the AXI ID, the interconnection unit does
not apply any modification to AxUSER signals. Therefore,
AXI Enforcer can set AxUSER signals to identify managers
at later stages on the bus. Enforcing the AxPROT signal to
a value chosen by the designer prevents HAs from changing
their TrustZone security level on the bus, thereby preserving
TrustZone-assisted isolation. As DDR memory controllers



Fig. 2. Design flow to isolate the transaction of HAs sharing a port using an interconnection unit.

TABLE II
AXI ENFORCER CONFIGURATION PARAMETERS

Parameter Name Description Value
Range

AXI_ADDR_WIDTH The AXI address channel width 12-64
AXI_DATA_WIDTH The AXI data channel width 32-512
AxPROT_value The value of the AxPROT channel 0-7
AxUSER_value The value of the AxUSER channel 0-1023
AxQOS_value The value of the AxQOS channel 0-15
AxCACHE_value The value of the AxCACHE channel 0-15

prioritize AXI transactions based on the AxQOS values, it is
also crucial to enforce AxQOS to values chosen by designers
to prevent HAs from altering their access priority to memory.
Finally, also enforcing the AxCACHE signal allows restricting
unauthorized access to the processor’s caches. The values
to be enforced can be set by designers in the configuration
parameters of AXI Enforcer, reported in Table II.

2) AXI ID Mapper (AIM): The interconnection unit is
directly connected to an IP called AXI ID Mapper (AIM).
The AIM can be configured to dedicate a set of unique AXI
IDs to each HA for both read and write channels. When a
transaction arrives, the AXI ID provided by the interconnection
unit is mapped based on the AxUSER signal value configured
by AXI Enforcer. The resulting Stream IDs on the PS will
uniquely identify the HA that has originated the transaction.
On the response, the AIM maps the incoming AXI ID to
the original value. In this way, the interconnection unit can
correctly route the response to the HA according to its AXI
thread assignment. The configurable parameters of AIM are
summarized in Table III.

AIM works on pools, which are unique sets of AXI IDs ded-
icated to an HA. The number of pools in AIM is configurable
at design time, based on the number of HAs to be supported
(each HA is assigned a pool). For each pool with index i,
a corresponding configuration parameter AxUSER MAP i,
which defines the maximum number of AXI IDs associated
with the HA, is provided (see Table III) to match with the
value carried by the AxUSER signal. Each pool hence contains

TABLE III
AIM CONFIGURATION PARAMETERS

Parameter Name Description Value
Range

AXI_ADDR_WIDTH The AXI address channel
width

12-64

AXI_DATA_WIDTH The AXI data channel width 32-512
POOL_SIZE The pool size, i.e., number of

unique AXI IDs per manager
1-64

NUMBER_OF_MANAGERS Number of isolated managers 1-64
AxUSER_MAP_i AxUSER channel value asso-

ciated with the ith pool
0-1023

WRITE_REQ_BUF_SIZE Write request channel buffer
size

2-64

WRITE_BURST_BUF_SIZE Write burst channel buffer
size

2-64

WRITE_RSP_BUF_SIZE Write response channel buffer
size

2-64

READ_REQ_BUF_SIZE Read request channel buffer
size

2-64

READ_BURST_BUF_SIZE Read burst channel buffer size 2-64

POOL_SIZE AXI ID values, which are incremental. The first
pool contains values from 0 to (POOL_SIZE−1), the second
from POOL_SIZE to 2× (POOL_SIZE− 1), and so on. The
larger the pool size, the larger the number of out-of-order
transactions that the AIM can handle. In the design flow, it
is sufficient to fix the POOL_SIZE parameter to the number
of threads the interconnection unit can generate. Given the
pool size, the maximum number of HAs that can be isolated
is given by

Nmanagers max =
2AxID Width

POOL_SIZE
, (1)

where AxID Width is the length in number of bits of the AXI
ID (e.g., for the AMD UltraScale+, AxID Width=6).

When setting POOL_SIZE=1, the maximum number of
HAs is 64. However, as interconnection units usually have
a limited number of subordinate ports, a cascade of intercon-
nections is required to sustain a large number of HAs.

The AIM unit includes FIFO buffers to store pending
transactions for write and read operations on both the AXI



response, burst, and request channels. This buffering mecha-
nism helps maintain a continuous flow of transactions between
AXI endpoints by temporarily storing information when one
side is not ready to receive or process them immediately. This
reduces the idle time and maximizes the utilization of available
bandwidth. When a new manager transaction reaches the AIM,
the target subordinate interface may not be ready to process
it. This is established by checking the xREADY channels.
Instead of waiting for the subordinate to be ready, the AIM
keeps accepting transactions and stores them in internal FIFO
buffers. When the subordinate is ready, the AIM will send
the stored transactions in FIFO order. The buffer parameters
in Table III (i.e., those that include the BUF label) define the
size of the buffers for each channel. The larger the buffer, the
more transactions the AIM can process without initiating an
xREADY handshake. Once the buffer is full, the AIM asserts
its xREADY signal to halt the manager. The AIM complies
with the following behavioral rules:

1) The AIM can receive both AXI read and write transac-
tions. It handles them using separate FIFO buffers.

2) Upon receiving a valid request, if the target request buffer
is not full, the transaction is buffered and the original AXI
ID is replaced with a new value from the assigned pool
selected from the AxUSER value identifying the manager.

3) Upon receiving a valid response, if the target response
buffer is not full, the transaction is buffered and the AXI
ID is reset to its original value.

4) On the rising edge of the clock, if the target subordi-
nate interface is ready, the AIM sends the first buffered
transaction, if any, and removes it from the buffer.

5) The AIM sets the corresponding xREADY signal when
the buffer for that channel is full.

6) In the event of a design configuration error (e.g., the
AIM subordinate interface receives an AxUSER that is
not mapped), an interrupt notification signal is sent.

In bus communication, both the PL-PS interface and the
interconnection unit may assert ready signals to indicate they
cannot receive a response or request. AIM Buffers are used
to minimize the latency by AIM during these events. Larger
buffers allow the AIM to store more transactions, reducing
ready handshakes and increasing area utilization. This trade-
off is analyzed with experiments in Section VIII.

B. Configuring and locking the IOMMU

A firmware component is in charge of managing the
IOMMU. As any AXI manager can potentially access and
modify the translation regime of the HAs, compromising HD
isolation, the IOMMU configuration must be protected. The
firmware is hence required to first configure the IOMMU with
the desired translation regimes and then lock the IOMMU
register address space, so that no unauthorized modifications
can be performed to jeopardize isolation. The First-Stage Boot
Loader (FSBL), commonly present in SoCs, is responsible for
initializing the hardware and loading the second stage boot-
loader (e.g., U-Boot), setting up the basic system configuration
and secure environment before transitioning to the next stage

of the boot process. Our firmware component can hence be
executed at the end of FSBL operations. After it executes, no
modifications to the memory virtualization scheme are allowed
unless required by privileged software components that are
part of the trusted computing base, e.g., a hypervisor.

C. Secure Boot and PL design integrity

When considering the proposed design flow, it is important
to address the potential threats that could compromise the
security of the system. The design flow enables HD-level
isolation within the PL design. When working with complex
heterogeneous systems running mixed-criticality applications,
designers may either need to deal with untrusted (low-critical)
HAs or inadvertently introduce vulnerabilities by means of
malicious HAs (e.g., hardware trojans). To address these
issues, our design flow integrates a verification tool to auto-
matically validate the PL design, ensuring that both AIM and
AXI Enforcer are installed and properly configured. Malicious
users with access to the physical system may also attempt
to modify one of the boot partitions or the PL bitstream to
compromise the isolation between HDs. For this reason, the
last step of the design flow consists in configuring a secure
boot for enabling the authentication and encryption of the
boot partitions, including the validated PL design. At the core
of a secure boot process is the concept of HRoT. A HRoT
is a secure, immutable component embedded within a SoC
that serves as the foundation for establishing the system’s
integrity. It performs the authentication and decryption of the
boot partitions to ensure that the system only boots with
trusted software. A realistic secure boot process integrated
with our design flow, based on the AMD UltraScale+’s HRoT
implementation, is described in detail in the following section.

VI. IMPLEMENTATION

The implementation of the design flow is carried out on
the AMD/Xilinx UltraScale+ MPSoC platform, which matches
the characteristics of the typical heterogeneous SoC presented
in the background section. The PL available on this plat-
form can host multiple HAs, such as processors for artificial
intelligence (AI), crypto accelerators, DMAs, and various
protocol interfaces (e.g., SPI, UARTs, CAN). The proposed
design flow can be utilized by designers seeking to implement
HD-level isolation while ensuring full compliance with the
features outlined in the taxonomy. Fig. 3 illustrates the steps
when specializing the proposed design flow for the AMD
Ultrascale+, starting from a block design that includes AXI
Enforcer and AIM modules. The isolation capabilities of the
design flow have been validated through software programs
that instruct HAs to attempt illegal access to memory regions
across different HDs and to use forbidden AXI signal control
values.

Portability. The design flow is conceived for AXI in general
and Arm-based SoCs. While the implementation is specialized
for UltraScale+ in the following, it can be adapted to other
platforms (e.g., those produced Intel/Altera).



Fig. 3. Block diagram of the proposed design flow steps for AMD Ul-
traScale+. The final output is a BOOT.bin file containing authenticated and
encrypted executable binaries along with the authenticated and encrypted PL
bitstream.

A. Verified PL Design

Configuring the PL design to match the architecture in Fig. 2
requires considerable effort from designers. To simplify and
automate this process, we developed a tool (written in Python)
compatible with the AMD Vivado design suite. This tool takes
two input configuration files that the designers must provide
to specify the isolation requirements for the HDs:

1) An exported block design from the Vivado project in Tool
Command Language (TCL).

2) A JSON file specifying the HD scheme, including:
• The set of HAs assigned to each HD, identified by a

unique number.
• The number of AXI threads used by each HA.
• The values of AXI signals AxUSER, AxPROT, Ax-

CACHE, and AxQOS for each HA (see Section V-A1).
• The desired access bus priority for each HA.

The tool parses the TCL block design and matches each IP
configuration based on its name in the design. It then verifies
the connections and validates the AIM and AXI Enforcer
parameters. Finally, it outputs the set of Stream IDs associated
with each HA and generates warnings if the priority access
scheme defined in the configuration file does not align with
the AxQOS-assigned values. Fig. 4 shows an example template
of the JSON configuration file. Fig. 5 illustrates the Vivado
design used to isolate two central DMA (CDMA) units. The
AXI Enforcer fixes the AXI signals reported above, while
the SmartConnect interconnection unit from AMD/Xilinx [28]
manages data flow. Finally, the AIM maps the transaction to
a predefined set of AXI IDs, resulting in a dedicated set of
Stream IDs in the PS. Notably, the AXI SmartConnect does not
enforce AXI ID signals [28, p. 17], making the AIM essential

1 {
2 "IP_Name": "<value>",
3 "Hardware_Domain_ID": "<value>",
4 "AXI_Threads"; "<value>",
5 "AxUSER": "<value>",
6 "AxPROT": "<value>",
7 "AxCACHE": "<value>",
8 "AxQOS": "<value>",
9 "Bus_Priority": "<value>"

10 }

Fig. 4. Example template of the JSON configuration for the PL design verifier.

for enforcement.

B. PS Design

A subset of the PL-PS interfaces of the UltraScale+ are
subject to SMMU virtualization. The HP and HPC ports are
the only PL-PS interfaces passing through the SMMU, while
the remaining ports cannot be utilized for enabling memory
virtualization. The stream-to-context mapping feature of the
SMMU is used to map Stream IDs to different translation
contexts. The SMMU can be configured to match the Stream
IDs of transactions generated by HAs traversing the PL-PS
interfaces. This enables the association of different contexts
with the PL HAs to apply a dedicated translation regime.
Secure context banks can be dedicated to the HAs flagged as
TrustZone-secure. Translations can be organized in one or two
levels. This is useful for a two-stage translation when running
VMs upon a hypervisor.

When considering the PL-PS ports in the UltraScale+, the
Stream ID has the following structure:

• Translation buffer unit (TBU) number (bits 14 to 10).
• Manager ID (bits 9 to 6).
• AXI ID from the PL manager (bits 5 to 0).

Each PL-PS port is connected to a single TBU unit and it is
identified by a unique manager ID. The AXI ID serves two
purposes: identifying the transaction’s originating manager in
the PS via the Stream ID and implementing transaction threads
within the AXI protocol. Transactions with the same AXI ID
must be returned in order, while those with different AXI
IDs can be completed out of order. When connecting multiple
managers to a single PL-PS port, a SmartConnect is needed.
The AXI IDs originated by the connected HAs are modified by
SmartConnect according to one of two possible configurations,
(i) Single-ordered mode or (ii) Multi-threaded mode. In single-
ordered mode, the transactions issued by HAs are propagated
and returned in order. The propagated AXI ID has always a
value of 0. On the other hand, in Multi-threaded mode the
transactions issued by HAs share a set of AXI IDs that are
dynamically assigned by the SmartConnect. In multi-threaded
mode, the SmartConnect remaps the original AXI ID of the
HA into one of the free AXI IDs available in a set. The size of
the set specifies the number of threads that the SmartConnect
can generate. When a transaction ends, the AXI ID is freed
up and becomes available for a new transaction, which could
be initiated by a different HA. In both configurations, HAs



Fig. 5. Vivado PL block design showing the configuration for the isolation of two CDMA units belonging to different HDs.

connected to the SmartConnect share the same set of AXI IDs,
resulting in identical Stream IDs in the PS. For this reason,
the two IPs are necessary to bind each HA to a unique set of
AXI ID values, resulting in a set of unique Stream IDs in the
PS.

C. Secure Boot

At boot time, a firmware component first configures the
translation regimes on the SMMU context banks and then
locks the register address space. This is accomplished by
configuring the XMPU PS to block access from any manager
to the memory-mapped region of the SMMU register address
space. The secure boot feature in the UltraScale+ is offered
by two hardware units: the platform management unit (PMU)
and the configuration secure unit (CSU). The secure boot
starts with dedicated hardware validating the PMU ROM and
performing PMU registers zeroization. The PMU performs
additional checks on the CSU ROM code and releases its
reset signal. The CSU decrypts and authenticates the FSBL
partition. Finally, the FSBL decrypts and verifies the proposed
firmware component, provided in a separate partition, and the
PL FPGA bitstream using the CSU cryptographic accelerators.
The authentication scheme is the HRoT proposed by AMD/X-
ilinx [29], which is based on two pairs of public-private keys.
The encryption method is based on a key-rolling scheme
still proposed by AMD/Xilinx, in which the entire encrypted
image is composed of smaller AES-encrypted blocks. The PL
bitstream file is too large to be contained inside the tightly-
coupled memories of the platform. For this reason, encryption
and authentication are performed by splitting the bitstream
into 8 MB blocks, which are loaded from the external DDR
memory [30].

VII. USE CASE: MIXED-CRITICALITY HARDWARE
ACCELERATORS FOR A RAILWAY SYSTEM

Diverse applications can coexist on heterogeneous SoCs,
such as the UltraScale+, each with its own safety and security
level, provided that applications with higher criticality or
security levels are not adversely impacted by those with lower
levels. This section presents an industrial-grade use case of
this kind from the railway domain, which includes three HDs:

• A real-time, safety-critical, and secure (RTSC) HD, char-
acterized by a set of tasks running on FreeRTOS on
the Real-time Processing Unit (RPU) of the Ultrascale+
(2xCortex-R5).

• A virtual machine VM_0 HD that utilizes an AI-based
image processing algorithm for a driver alert system [31]
(mid criticality), running on 2 cores of the Application
Processing Unit (APU) of the Ultrascale+ (Cortex-A53).

• A virtual machine VM_1 HD that leverages AI-based
image processing to gather and analyze data about rail
conditions to support maintenance decisions [32] (low
criticality), running on other 2 cores of the APU.

The system is designed as a 2-out-of-2 redundant architec-
ture with two replicas, a configuration commonly used in
the railway domain for fault detection. Fault detection is
implemented using a watchdog unit periodically refreshed by
the replicas. When the voting differs, the watchdog stops
actuation and transitions into the fail-safe state [33]. In case
of matching votes, one of the two replicas is configured to
apply the actuation. In our work, one UltraScale+ MPSoC
platform implements a replica (see Fig. 6). The two replicas
are connected via two wired inter-replica communication
interfaces: one for sending and one for receiving the data
which should be voted using a consensus voting protocol.
Only vital outputs, i.e., critical data handled by the RTSC HD,
undergo the voting protocol. The PL of each replica includes
several communication interfaces associated with components
belonging to the RTSC HD, which are discussed next.
SPI Interfaces. Two instances of the Serial Peripheral In-
terface (SPI) protocol are used for implementing distributed
replica voting. Both interfaces operate at 100 MHz:

• The first interface, SPI_Send_Vote, is responsible for
transmitting the data to be voted on.

• The second interface, SPI_Recv_Vote, receives the
data to be voted on from the other replica.

These separate interfaces are essential to prevent contention
between sending and receiving tasks.
CAN Interfaces. Two Controller Area Network (CAN) inter-
faces operate at 10 MHz and are used for communication with
the braking and traction control systems: CAN_Brake for the
braking system; CAN_Traction for traction control.



UART Units. Two Universal Asynchronous Receiver-
Transmitter (UART) units are included, each connected to a
display to show system status: namely UART_Status0 and
UART_Status1.
AXI CDMA Units. Each SPI, CAN, and UART unit is paired
with an AXI Central Direct Memory Access (CDMA) IP [34]
running at 200MHz, which facilitates efficient data transfer
from the PL devices to the DDR memory used by the tasks.

Each HA in the RTSC domain is managed by a dedicated
task running on FreeRTOS. The TrustZone security level for
the protocol interfaces is set to secure, ensuring access to
secure memory regions through a secure translation regime
on the SMMU. The QoS values are adjusted based on the
criticality associated with each task. QoS values between 12
and 15 are ideal for low-latency applications [35]. The caching
for the HAs is set to 0, as the AxCACHE signal dictates
coherency on the APU caches, while the tasks run on the
RPU processors. This is crucial to avoid potential data leaks.

Additionally, the PL of each replica hosts two AMD DPUs,
which are soft cores specifically designed to accelerate convo-
lutional neural networks [36]. DPUs are well-suited for em-
bedded AI applications due to their scalability in both resource
and power consumption [37]. The two DPUs, referred to as
DPU0 and DPU1, are each equipped with two data interfaces
(DATA0 and DATA1) and an instruction fetch interface (IF).
The APU processors host CLARE-Hypervisor [38], which
manages two VMs, each running PetaLinux, a specialized
Linux distribution for AMD SoCs. Each VM can access one
of the two DPUs implemented in the PL, which are used
to perform AI-enabled image classification. In both VM_0
and VM_1, all transactions are marked as non-secure. The
AxQOS priority values are set to 0 to minimize interference
with the RTSC HD and the APU processors. The AxCACHE
values are not enforced, allowing the DPUs to optimize their
transactions through caching as needed. The configuration of
the HD elements is summarized in Table IV. It is impor-
tant to recall that the Ultrascale+’s SMMU can only apply
virtualization to high-performance (HP0, HP1, HP2, HP3)
and high-performance coherent (HPC0, HPC1) ports. Due to
the limited availability of PL-PS port interfaces, HAs from
different hardware domains HDs need to share a port.

The design flow proposed in this work can hence be used
to guarantee isolation between the HDs. The PL design was
verified using our tool, proving its effectiveness in a realistic
use case. AXI Enforcer and AIM were used to dedicate unique
sets of AXI IDs to the HAs, resulting in unique Stream
IDs in the PS. The SMMU is configured to apply separate
translation regimes for each HA. The software partitions are
encrypted and authenticated using the secure boot feature of
the UltraScale+ platform, which is configured according to the
scheme outlined in Section VI.

VIII. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of the
design flow implemented on an AMD/Xilinx Kria KR260
board based on the use case in Sec. VII. The proposed design
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RAILWAY SYSTEM HD CONFIGURATION
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RTSC

HP0 SPI_Recv_Vote S 15 0
HP0 SPI_Send_Vote S 15 0
HP1 CAN_Brake S 15 0
HP1 CAN_Traction S 14 0
HP2 UART_Status0 S 13 0
HP2 UART_Status1 S 13 0

VM_0
HP3 DPU0.DATA_0 NS 0 -
HPC0 DPU0.DATA_1 NS 0 -
HPC1 DPU0.IF NS 0 -

VM_1
HP3 DPU1.DATA_0 NS 0 -
HPC0 DPU1.DATA_1 NS 0 -
HPC1 DPU1.IF NS 0 -

-: not configured, S: TrustZone Secure, NS: TrustZone
Non-Secure.

Fig. 6. Block diagram of one replica of the 2-out-of-2 architecture of our
railway case study based on AMD/Xilinx Kria KR260 boards.

flow introduces latency, power consumption, and area utiliza-
tion overhead. The AXI Enforcer is a simple combinatorial
logic IP that leaves all AXI signals unchanged except for
AxUSER, AxPROT, AxQOS, and AxCACHE, which are set to
fixed values. The Vivado synthesizer identifies that the high-
level description (HDL) of the IP consists of only assigning
constant values to specific signals. Consequently, in the gate-
level netlist, this IP is synthesized as a set of connections to
constants. As such, in the bitstream, this IP does not utilize
any area or impact the resource usage of the PL. When either
subordinate interface sets one of the xREADY signals to 0, the
AIM buffers the transactions issued by managers. The AIM
can be configured with different request, burst, and response
buffer sizes. As anticipated in Section V-A2, increasing the
sizes of these buffers helps minimize the idle time induced by



additional xREADY handshakes. The next section analyzes the
performance impact of the AIM for increasing buffer sizes. It
is important to note that, since the SMMU translation regimes
are statically configured, translation processing has minimal
overhead. This is because the TBU units efficiently cache the
static translations. In the following evaluations, the overhead
associated with SMMU translation is included.

A. Performance Evaluation of the VM DPUs: Inference Time
Comparison on Image Datasets

Each DPU was tested using a ResNet50 model to perform
inference on a dataset [39] consisting of 500 images, each
sized at 224x224 pixels. The software process that controls
the DPU runs at maximum priority on a single CPU. The
overhead of the design flow is assessed by comparison with
the base case, i.e., the PL design without the AXI Enforcer and
AIM units. The DPU includes three manager interfaces, each
connected to the chain of IPs specified in the design flow: an
AXI Enforcer, a SmartConnect, and an AIM. Each AIM was
tested with progressively larger buffer sizes to evaluate their
impact on inference time. Buffer sizes were increased until
xREADY handshakes ceased on both read and write channels.
This was verified using an Integrated Logic Analyzer (ILA)
IP core [40]. For the read response channel and all the write
channels of the DPU interfaces, the required buffer size to stop
xREADY handshakes, and achieve full bandwidth, is 2. The
following list provides the parameter values for each AIM unit
connected to the DPU interfaces, using the format AIM DPU-
Interface.Parameter:

• AIM {DATA0-1,IF}.WRITE_REQ_BUF_SIZE: 2
• AIM {DATA0-1,IF}.WRITE_BURST_BUF_SIZE: 2
• AIM {DATA0-1,IF}.WRITE_RSP_BUF_SIZE: 2
• AIM IF.READ_BURST_BUF_SIZE: 2
The read burst channels of the DATA0 and DATA1 in-

terfaces required larger buffer sizes on the connected AIM
units to prevent xREADY handshakes. This was expected,
as the read channels generate more transactions to read the
parameter of the AI model and the input image from DDR
memory, whereas write channels are used to write the in-
ference results only. Starting from the above configuration
of buffer sizes, Table V shows the results when increasing
the value of AIM DATA0-1.READ_BURST_BUF_SIZE. The
last line represents the configuration parameters to get no
xREADY handshakes on both channels. As it can be noted
from the table, the impact of the AIM is very marginal and
not particularly affected by the buffer size.

B. Performance Evaluation for the RTCS HD

All HAs within the RTCS HD rely on a CDMA unit
configured with a 32-bit data width. The CDMA provides a
total bandwidth, BCDMA, calculated as:

BCDMA = 32 bits × 200MHz = 6400Mbps. (1)

Since SPI requires the highest data bandwidth among the
protocols (compared to UART and CAN), it becomes the
primary focus for our bandwidth analysis. SPI operates at a

TABLE V
AVERAGE INFERENCE TIME FOR DIFFERENT READ BURST BUFFER SIZES

ON DATA0-1 DPU INTERFACES

DATA0
read buffer

DATA1
read buffer

Average inference time
(ms)

Standard
deviation

2 2 62.39 0.01422
3 3 62.37 0.01336
4 4 62.38 0.01253
8 8 62.37 0.01227
24 24 62.38 0.02146
24 48 62.37 0.02041

Base Case 62.08 0.01373

8 64 512 4096 32768
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Fig. 7. Average response time for different CDMA transfer sizes

frequency of 100 MHz with a 16-bit data width, yielding a
total bandwidth, BSPI, given by:

BSPI = 16 bits × 100MHz = 1600Mbps. (2)

When implementing the proposed design flow, a delay on
the CDMA transfers is introduced. Hence, we must verify that
this delay does not heavily affect the communication with the
protocol interfaces. To assess the impact on the CDMA units,
we measured the overhead introduced across various transfer
sizes. The average time was calculated on 10,000 trials. The
results are shown in Fig. 7. The maximum response time for
the same experiment is reported in Table VI. These experi-
ments indicate an overhead on the transfer times in the order
of microseconds. The bandwidth utilization was calculated
using different transfer sizes. The results of this experiment
are presented in Table VII. Analysis of the xREADY signals
using the ILA core showed that they remained high (i.e., they
did not transition to 0) even with the largest buffer sizes.
The design flow achieved a bandwidth exceeding 3000 Mbps,
demonstrating its ability to keep pace with the requirements of
the protocol interfaces. To conclude, the observed overheads
are minimal and do not have a significant impact on the timing
behavior of the tasks.

C. Impact of AIM’s Buffer Sizes

The above experiments show that increasing AIM buffer
sizes does not significantly enhance performance, as most
overhead comes from the AIM adding two clock cycles of



TABLE VI
MAXIMUM RESPONSE TIME FOR DIFFERENT CDMA TRANSFER SIZES

Transfer
size (bytes)

Base case
(µs)

Design flow (µs)

8 4.35 4.37
64 4.56 4.64
512 5.84 6.03
4096 14.95 15.13
32768 86.70 87.28

TABLE VII
BANDWIDTH COMPARISON IN MBPS (BUFFER SIZE 2)

Transfer size
(Bytes)

Base case band-
width (Mbps)

Design flow band-
width (Mbps)

8 17.33 14.84
64 118.64 118.56
512 1131.12 1129.42
4096 1412.28 1410.78
32768 3019.69 3017.34

TABLE VIII
AREA UTILIZATION AND POWER WITH INCREASING WRITE REQUEST

BUFFER SIZES

Buffer
Size

CLB
LUTs

CLB
Reg

CARRY8 CLB Power
(W)

2 1819 1467 66 369 0.011
4 2064 1467 66 405 0.013
8 2362 1881 66 472 0.015
16 3806 2438 66 680 0.022
32 5200 3543 66 680 0.022
64 12239 5759 66 2093 0.052

latency for the first request or burst data, and one clock cycle
for subsequent requests. This latency impacts communication
between the HA and the PL-PS interface. The minimal transfer
time improvements using larger buffer sizes are not worth the
increased area and power usage. Table VIII shows that AIM
area and power consumption increase with larger buffer sizes,
using 40-bit addresses and 128-bit data widths. Parameters
like NUMBER_OF_MANAGERS and POOL_SIZE also affect
area utilization, as shown in Table VI, which considers a fixed
buffer size of 2.

The experiments demonstrate the feasibility of the proposed
design flow in the use case. In the RTSC domain hosted on
the RPU, unforeseen delays can jeopardize the mission of
the system. However, the recorded overhead is in the order
of microseconds and it can be accounted for at the stage of
schedulability analysis to prevent deadline misses. The VMs
running on the APU, consisting of two separate domains,
do not execute safety-critical applications, and the increased
latency only slightly affects the inference time.

IX. CONCLUSION

Heterogeneous embedded systems offer a wide range of
isolation features that enable the deployment of applications
with varying security and criticality levels. In this framework,
multiple HDs, each with its own set of computing resources,
can be defined to support these distinct application needs.

TABLE IX
AREA UTILIZATION AND POWER WITH VARIOUS MANAGER NUMBER AND

POOL SIZE COMBINATIONS

# Man-
agers

Pool
Size

CLB
LUTs

CLB
Reg

CARRY8 CLB DSPs Power
(W)

2 1 1799 1449 66 353 0 0.011
4 2 1818 1467 66 367 0 0.011
8 3 1990 1471 68 398 0 0.012
16 4 1897 1471 66 392 2 0.011

This paper addressed the problem of resource isolation when
incorporating PL-based HAs into HDs. The proposed design
flow, based on two novel AXI IP cores (AIM and AXI
Enforcer) enforces security at the PL level using IOMMU
virtualization features. This solution effectively addresses the
challenge of preserving isolation when PL HAs share a PL-PS
interface, overcoming the limitation of assigning a single HA
per port. It also addressed the challenge of explicitly managing
critical AXI bus signals, such as the TrustZone security level,
QoS, and cache control settings. The proposed solution follows
a secure-by-design approach, where the isolation of the HDs
is guaranteed at design time through the use of a verification
tool and secure boot. The feasibility of the design flow was
validated through an industrial-grade use-case of a railway
system. The experiments demonstrate that the overhead in-
troduced by the proposed approach is negligible, ensuring no
impact on the overall system performance and on the timing
behavior of the real-time tasks. Future work should address the
extension of the design flow to support partial reconfiguration
capabilities. This would require a trusted software component
to manage the reconfiguration of AIM/Enforcer settings for
the reconfigured PL region. Additionally, the IPs would need
to be extended with memory-mapped interfaces to access a
configuration address space. The source code related to this
project is publicly available on GitHub [41].
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