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Abstract—This work focuses on the time-predictable execution
of Deep Neural Networks (DNNs) accelerated on FPGA System-
on-Chips (SoCs). The modern DPU accelerator by Xilinx is
considered. An extensive profiling campaign targeting the Zynq
Ultrascale+ platform has been performed to study the execution
behavior of the DPU when accelerating a set of state-of-the-art
DNNs for Advanced Driver Assistance Systems (ADAS). Based
on the profiling, an execution model is proposed and then used to
derive a response-time analysis. A custom FPGA module named
DICTAT is also proposed to improve the predictability of the
acceleration of DNNs and tighten the analytical bounds. A rich
set of experimental results based on both analytical bounds and
measurements from the target platform is finally presented to
assess the effectiveness and the performance of the proposed
approach on ADAS applications.

I. INTRODUCTION

In recent years, the number of Cyber-Physical Systems
(CPS) that make use of Artificial Intelligence (AI) and, in
particular, Deep Neural Networks (DNNs) is significantly
increased. Among popular AI algorithms, DNNs proved to be
particularly effective in performing perception tasks required
to implement autonomous/assisted driving functionality for
modern vehicles, as well as other mission-specific function-
ality for advanced robots and factory automation systems.
The execution of state-of-the-art DNNs (also called network
inference) requires dealing with a complex computing work-
load that processes a large amount of data with massively-
parallel computations [1]. As such, it commonly requires
hardware acceleration to be accomplished under stringent
timing constraints [2].

To match this need, chip manufacturers started producing
heterogeneous embedded computing platforms that integrate
multiprocessors with hardware accelerators such as general-
purpose graphic processing units (GPUs), field-programmable
gate arrays (FPGAs), and digital signal processors (DSPs).
Among such platforms, those based on GPUs recently received
enormous attention by the real-time systems research commu-
nity, which achieved a string of interesting results to improve
the time predictability of GPU-accelerated tasks. Nevertheless,
GPU-based platforms present a set of drawbacks that may not
make them the best choice for CPS, at least for those that
require hardware acceleration for implementing safety-critical
functionalities. Indeed, popular commercial GPUs, e.g., those
produced by Nvidia, exhibit poor execution predictability and
proved to be unsuitable for critical systems, also due to the
fact that they implement an internal scheduling logic that is not

publicly documented. In general, very limited information on
their behavior is known (interesting reverse engineering efforts
notwithstanding [3], [4]). Furthermore, GPUs are characterized
by a high energy consumption [5], [6].

FPGA-based platforms represent an attractive alternative
for realizing time-predictable embedded computing systems
with hardware acceleration. They allow deploying energy-
efficient accelerators with competitive performance [6] with
respect to GPUs. FPGA accelerators are also more suitable
for timing predictability because they are often characterized
by a very regular, clock-level behavior and allow for an explicit
control of the memory traffic they generate, being the hardware
design to be deployed on FPGA under the full control of the
designer. Even if commercial FPGA accelerators are typically
distributed as closed-source modules, the direct access to the
hardware design allows precisely profiling and monitoring
the bus traffic they generate, hence achieving an accurate
characterization and supervision of their execution behavior
that would be simply impossible with other platforms.

Contribution. This paper is focused on FPGA-based accel-
eration of DNNs by means of the Xilinx DPU accelerator,
which to the best of our records is the most mature solution
of this kind on the market at the time of writing. An extensive
profiling campaign focused on the Xilinx Zynq Ultrascale+
platform has been conducted to study the execution behavior
of the DPU by means of a DPU-specific FPGA profiler we
developed. Based on the profiling, we designed an execution
model for the DPU, which is later used to derive a response-
time analysis. We further present a technique to improve the
execution predictability of DNNs models using DICTAT, a
helper FPGA module we developed to fetch DPU instructions
from on-chip memory. All the experimental evaluations pre-
sented in the paper are based on state-of-the-art DNNs for
Advanced Driver Assistance Systems (ADAS).

Paper structure. The rest of the paper is organized as follows.
Section II introduces the system architecture under analysis
and the most popular solutions for DNN acceleration on
FPGA SoCs. Section III describes the experimental profiling
campaign we conducted. Section IV introduces the proposed
model for the DPU and the system architecture. Section V
presents the proposed worst-case analysis. DICTAT and the
corresponding refinements to the analysis are presented in
Section VI. Section VII discusses the experimental evaluation,
while Section VIII illustrates the related work. A discussion



on the proposed approach, its limitations, and future develop-
ments is reported in Section IX. Finally, Section X concludes
the paper.

II. BACKGROUND AND SYSTEM ARCHITECTURE

A. FPGA SoC architecture

A typical FPGA SoC architecture combines a Processing
System (PS), including one or more processors (generally
ARM-based), with a Field-Programmable Gate Array (FPGA)
fabric in a single device. The processors in PS execute software
tasks (SW-tasks). The FPGA fabric can be programmed to
host custom hardware devices such as hardware accelerators.
Figure 1 illustrates a typical FPGA SoC architecture. Typically,
computations are controlled by SW-tasks, which can in turn
activate the hardware accelerators when required. The hard-
ware accelerators and the processors can communicate through
a shared off-chip DRAM memory or an On-Chip Memory
(OCM). The DRAM memory is accessed by a DRAM memory
controller, embedded in PS, and shared between the PS and the
FPGA subsystems. This is crucial to enable high-performance,
asynchronous data communication among hardware acceler-
ators and processors. The communications between the PS
and the FPGA subsystems are allowed by two interfaces: the
FPGA-PS interface and the PS-FPGA interface. The FPGA-PS
interface exports a set of high-throughput ports allowing the
access of the hardware accelerators to the devices in PS (e.g.,
DRAM memory controller, OCM, peripherals). Conversely,
the PS-FPGA interface exports a set of ports leveraged by the
processors to access and manage the hardware accelerators.
The data movement relies on the AMBA AXI bus, which is the
de-facto standard for communications in modern SoCs [7]. The
bus traffic within the PS subsystem (e.g., originated from the
processors or the devices in the FPGA fabric and directed to
the DRAM controller and other peripherals in PS) is managed
by a multi-level AXI-based PS interconnect.

B. Frameworks for DNN acceleration on FPGA SoCs

To date, most of the development and deployment efforts
for DNN models rely on powerful and energy-intensive GPU-
based systems. The parameters of such DNN models, such
as activations, weights, and biases are typically represented
as 16-bit or 32-bit floating-point data. Due to the intrinsic
differences in the architecture of GPU and FPGA platforms,
most of the common neural networks deployed for execution
on GPUs are not compatible out-of-the-box with FPGA SoC
platforms. Indeed, while in GPU-based systems neural net-
works can be executed through calls to parallel computation
APIs (e.g., the CUDA API in NVIDIA platforms), FPGA SoC
platforms require a specific hardware accelerator deployed
into the FPGA fabric for the execution of DNN models. The
academia and the industry proposed several frameworks to
cope with FPGA-based acceleration of DNNs, which combine
conversion tools and specialized hardware accelerators for
the deployment of DNNs on FPGA SoC platforms [8]–[11].
Among such a variety of frameworks, to the best of our records
the most mature one is the Vitis AI framework [11] by Xilinx.

1) The Vitis AI framework: Vitis AI provides a collection
of tools, libraries, and hardware accelerator IP cores for the
conversion and execution of GPU-like floating-point DNN
models upon Xilinx FPGA SoC platforms. Vitis AI supports
DNN models deployed through the most mainstream neural
network frameworks, such as Caffe, Tensorflow, and Pytorch.
The execution of the DNN layers in Vitis AI relies on the Deep
learning Processing Unit (DPU) core. The DPU is a hardware
accelerator to be deployed into the FPGA fabric and optimized
for the execution of convolutional DNNs. A brief description
of the DPU core is provided in Section II-D. The DPU engine
is configured by a control software application running in the
PS of the FPGA SoC platform. Control software applications
can be developed by leveraging the libraries provided by the
Vitis AI framework.

C. DNN working flow with Xilinx Vitis AI

As for any framework for FPGA SoC platforms, a DNN
model must undertake some process in Vitis AI before being
ready to be executed on the target platform. In particular,
in Vitis AI this process involves a quantization phase and a
compilation phase. Such phases are performed once offline,
typically on a powerful workstation. The output of such steps
is a set of instructions and data for the DPU core.

Fig. 1. The sample architecture of a Xilinx FPGA SoC platform deploying
the DPU core in the FPGA fabric.

1) Preparation and quantization: The input to the Vitis AI
framework is a pre-trained (GPU-like) floating-point neural
network model. As of today, the Vitis AI framework supports
only convolutional DNN models operating on images. As a
first step, the data structure of the DNN model must be made
compatible with the features of the DPU core. This means
that the whole DNN data structures must be converted from
floating-point to 8-bit fixed-point data. This process is called
quantization and is performed by the Vitis AI quantization
tool. Quantization is supported by a calibration phase, which
makes use of a subset of the training images to minimize
accuracy losses [11]. The output of the quantization process is
the quantized DNN model. The quantized DNN model is then
provided to the Vitis AI compiler tool that parses the quantized
DNN model and creates an intermediate representation of the
DNN. Such an intermediate representation is then mapped to a
sequence of instructions for the DPU. The Vitis AI tool places



the generated instructions into a .xmodel file. At this point,
the Vitis AI software application that is going to run on the
target FPGA SoC platform can be built. Its development relies
on the Vitis AI software libraries, which contains a set of APIs
for the whole operation of the DPU core. The application is
then cross-compiled for the target platforms using the Xilinx
cross-compilation tools.

2) Running on the target FPGA SoC platform: Vitis AI
applications are distributed as Vitis AI images, which are based
on a Petalinux1 image target for the FPGA SoC platform
under analysis. Once launched, a Vitis AI application starts
the configuration phase. This phase includes the preparation
of the memory buffers in the central DRAM memory for
the execution of the DPU. The application loads in DRAM
memory the instructions and the weights provided by the
.xmodel file. The DPU core is then configured by the
Vitis AI software application. Once the configuration is done,
the Vitis AI software application triggers the DPU to start
the execution. At this point, the DPU is autonomous in the
execution of the DNN model. The Vitis AI software task is
suspended until the execution of the DPU completes (the DPU
will notify the processors once the execution is done by means
of an interrupt signal). The DPU fetches the instructions, the
weights, and the input image to be processed by the DNN
from the DRAM buffer prepared by the Vitis AI software
application. The fetching of instructions and data is performed
in parallel by the DPU core leveraging multiple memory ports.

D. DPU core hardware accelerator

The DPU disposes of direct access to the memory and
the PS through multiple AXI interfaces. Figure 1 illustrates
a sample FPGA SoC architecture including a DPU core. With
reference to the figure, S is the AXI-lite subordinate interface
leveraged by the SW-tasks running in the PS for the config-
uration of the DPU core; M INS is the AXI manager interface
used by the DPU core for fetching the DNN instructions to be
executed from the DRAM memory; and MDATA is the AXI
manager interface leveraged by the DPU core for reading
and writing data from/to the DRAM memory. This latter
interface is used to fetch the parameters (mainly weights)
of the various DNN layers, to fetch the input image to be
processed, to read/write intermediate results generated during
DNN inference, and eventually writing the final DNN outputs.

Unfortunately, the DPU core is distributed as a closed-
source IP block only. To the best of records, no detailed
information about its internal behavior is publicly available.

III. PROFILING THE DPU

Although the DPU is a proprietary accelerator distributed as
a closed-source module, it was possible to understand several
aspects of its execution behavior by developing a custom
hardware module deployed on the FPGA fabric to perform
advanced profiling of the DPU execution and memory access
patterns. It is worth stressing the fact that such an advanced

1Petalinux is a Linux distribution based on Yocto and targeted to run on
Zynq Ultrascale+ platforms.

analysis was possible only thanks to the hardware programma-
bility of FPGA SoC — the same analysis would be very
difficult, if not impossible, to be conducted on commercial
GPU-based SoC platforms.

To obtain precise measurements, we developed a multi-
channel hardware profiler that we integrated in the stock
hardware design of the Vitis AI framework. We connected
our hardware profiler to probe all of the interfaces and ports
of the DPU, such as the AXI interfaces and the interrupt line,
and accurately keep track of the interaction of the DPU with
the DRAM memory with the fine granularity of each clock
beat. It is connected in parallel with the stock connections,
hence ensuring that the execution of the DPU is not perturbed
by the profiler.

Our hardware profiler is capable of recording the behavior of
the DPU at different levels: (i) the DPU bus activity for a given
DNN model, i.e., the number of read/write transactions issued
over time, their burst length, and the corresponding amount
of exchanged data, (ii) the structure of execution phases of
the DPU core, (iii) the execution time of the phases and the
variability of the total inference time and (iv) the identification
of pipelining among the execution phases (i.e., the time in
which multiple execution phases are overlapped).

To consider a representative profiling campaign, we focused
on popular state-of-the-art DNN models that are part of
modern ADAS applications: they include (i) a lane detection
DNN based on a VpgNet model [12], (ii) a plate detection
DNN model, (iii) a plate recognition DNN model, (iv) an
object detection DNN based on a Yolov3 model [13], (v) an
object detection DNN based on an SSD model [14], and (vi) a
pedestrian detection DNN based on an SSD model. For each
of such DNN models, we recorded 1000 DPU executions (to
perform inference of the network) by means of our hardware
profiler. The latest version (v1.3.2) at the time of writing of
Xilinx Vitis AI was used together with the stock Vitis AI
configuration based on Petalinux [15] as provided by Xilinx.
The profiling was conducted on a Xilinx ZCU102 development
board equipped with the Xilinx Zynq Ultrascale+ FPGA SoC.
The considered DPU architecture is the default one (version
3.3) provided with Vitis AI for the Zynq Ultrascale+. The
DPU clock is left to the default value of 330Mhz. All the
DNN models under analysis operate on images. Following
the stock Vitis AI working flow, each execution involves the
analysis of a single image and produces an output result. In the
following, we refer to a single execution as a DPU job. During
our profiling campaign, the input image for each DPU job
was randomly picked from the CityScapes dataset for ADAS
applications [16].

A. Profiling the DPU bus activity

Table I reports the bus activity recorded with our hardware
profiler. The columns of Table I report the per-job bus activity
of the DPU, in order (1) number of read transactions for
instruction fetching (i.e., issued via the M INS port), (2) data
words fetched corresponding to instructions, (3) number of
read transactions for data read (i.e., issued via the MDATA port)



TABLE I
PROFILED PER-JOB BUS ACTIVITY OF THE DPU CORE FOR THE DNN

MODELS FOR ADAS APPLICATIONS UNDER ANALYSIS.

DNN
bus activity

Num
Instr
trans

Data
instr

words
(size)

Num
Read
trans

Data
read

words
(size)

Num
write
trans

Data
write
words
(size)

Lane Detect 17186 68744
(275KB) 91939 1179184

(17.99MB) 48314 424350
(6.48MB)

Plate Detect 2347 9388
(37KB) 7607 83027

(1.27MB) 246 16960
(0.3MB)

Plate Num 9872 39488
(154KB) 53327 579962

(8.85MB) 6075 48908
(0.7MB)

Object
Detect (Yolo) 16060 64240

(251KB) 84410 1011665
(15.44MB) 25457 540416

(8.24MB)
Object

Detect (SSD) 9920 39680
(155KB) 68943 725208

(11.06MB) 4705 554510
(8.46MB)

Pedestrian
Detect (SSD) 11655 46620

(182KB) 56597 639932
(9.76MB) 5505 506096

(7.72MB)

(4) data words fetched corresponding to data read, (5) number
of write transactions for data write (6) data words written to
the memory. Such results are reported for each of the DNN
models under analysis.

Note that, even though we performed 1000 executions, the
amount of interactions with the memory changes very little
from one execution to another: we recorded changes in the
order of less than 0.1% only. The bus activity of the DPU
also resulted to be independent of the input image. This
first observation provides a hint on the high predictability of
the execution of the DPU core. Indeed, memory access and
memory contention are the major sources of unpredictability
for FPGA-based accelerators — a predictable bus activity has
hence a strong positive impact on the predictability of the
whole system [17], [18].

Besides the amount of data exchanged, other important
features to characterize the performance and predictability of
the DPU core are how the data are exchanged, in other words,
the parallelism of the manager ports M INS and MDATA (i.e., the
number of transactions each port can have pending, also called
number of outstanding transactions) and the burst length of the
bus transactions. The parallelism of ports M INS and MDATA

influences the execution time of the DPU. Typically, the higher
the parallelism of the port, the higher the data throughput.
Unfortunately, these numbers are not publicly disclosed by
Xilinx.

Thus, we developed a specific functionality in our hardware
profiler to retrieve these characteristics. We experimentally
found that the parallelism of the port MDATA is of 14 read
outstanding transactions and 7 write outstanding transactions.
Differently, the parallelism of the M INS port is of 2 outstanding
read transactions (it is worth remembering that M INS is used
by the DPU only for reading instructions). Concerning the
burst length of transactions, we found that the burst length
of the transactions issued on MDATA varies during the DPU
execution, from the minimum of one word to the maximum
of 256 word for both read and write transactions – these cor-
respond to the limits defined by the AXI standard. Differently,
the burst length of the transactions issued on the M INS port is
fixed and equal to 4 words.

TABLE II
MEASURED PER-JOB EXECUTION TIMES OF THE DPU PHASES AND TOTAL

MEASURED PER-JOB INFERENCE TIMES.

DNN model
inference times (ms)

Instrc
fetch

Read
data

Write
data

Pure
Elaboration

Total
Inference

Lane Detect
(VpgNet)

min 2.23 6.15 4.17 0.01 7.09
avg 2.26 6.81 4.19 0.04 7.1
max 2.29 7.11 4.20 0.58 7.12

Plate Detect
min 0.29 0.51 0.12 0.01 0.73
avg 0.3 0.71 0.13 0.02 0.74
max 0.31 0.74 0.14 0.2 0.75

Plate Num
min 1.27 2.46 0.56 0.01 3.05
avg 1.28 2.99 0.57 0.02 3.06
max 1.32 3.01 0.58 0.2 3.07

Object
Detection

(Yolov3 ADAS)

min 2.28 7.49 3.46 0.01 7.99
avg 2.31 7.93 3.47 0.1 8.01
max 2.35 8.01 3.48 0.23 8.02

Object
Detection

(SSD ADAS)

min 1.52 6.92 3.74 0.01 8.39
avg 1.54 8.3 3.76 0.1 8.4
max 1.56 8.4 3.77 0.7 8.41

Pedestrian
Detection

(SSD ADAS)

min 1.60 7.95 3.47 0.01 9.10
avg 1.62 8.87 3.48 0.1 9.11
max 1.64 9.11 3.49 0.6 9.12

B. Measuring the DPU execution phases

From the profiling we noted how the DPU has three
concurrent bus activities: read instructions, read data, and write
data. Each of such activities is associated with an execution
time contributing to the total execution time of a DPU job (also
called inference time). Four execution phases for the DPU have
been identified: (1) Read instructions phase: The instructions
are fetched from the DRAM memory through the M INS port.
(In Section VI we demonstrate how using the OCM memory
for instructions fetching helps reduce the pessimism of the
analysis and slightly increases the performance). (2) Read data
phase: The DNN model data (weights, biases, activations)
and the input image are fetched from the DRAM memory
through the MDATA port. (3) Write data phase: The results of
the computation are written to the DRAM memory through
the MDATA port. (4) Elaboration phase: It is defined as the
time when the DPU has not yet completed the job and no
activity on the bus is performed (i.e., the hardware accelerator
is making progress by only computing). The response time of
each DPU phase has been measured leveraging our hardware
profiler. For instance, to measure the execution time of the
read instructions phase, our hardware profiler tracks the time
the DPU is active on the M INS port, considering served and
pending transactions. The hardware profiler stops the profiling
when the DPU interrupt is raised, locally storing the profiled
values that can be read by software as standard memory-
mapped registers. Table II reports the minimum, average,
and maximum recorded times for each of the DPU phases,
accompanied by the measured total inference time, for the
1000 executions under analysis.

C. Observations

This extensive profiling campaign allows us to make some
observations, which are later leveraged in Section IV-A to
design an appropriate model of the DPU with the purpose
of bounding response times during DNN acceleration (Sec-
tion V). The observations follow:



1) The software-DPU interactions are limited to the DPU
configuration: We developed a specific functionality in our
hardware profiler to record the interactions between the Vi-
tis AI control SW-task and the DPU during execution. We
detected that the software-hardware interactions of the tested
DNNs are limited to the configuration phase of the DPU.
This means that no software-hardware interactions are present
during the execution phase (inference) of the DNN model on
the DPU. This consideration allows to reduce the complexity
of the worst-case analysis proposed in Section V.

2) The bus activity of the DPU is constant and independent
from the specific job: From the measurements we observed
that, given a DNN model, the bus activity of the DPU does
not vary job by job.

From the measurements we observed that, given a DNN
model, the bus activity of the DPU does not vary job by job.

This suggests that the DPU implements the very same and
predictable behavior given the structure of the network, the
resolution of the input image, and the size of the outputs. This
also means that the amount of instructions fetched, read data,
and write data is fixed and known a priori. Table I reports the
profiled bus activity for the DNN models under analysis.

LaneDetectPlateDetect PlateNum OD-Yolo OD-SSD PD-SSD
0

20
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Fig. 2. Minimum measured percentage of the total inference time for which
DPU instructions operations and write operations are overlapped with the
DPU read data operations.

3) The DPU exhibits high parallelism in the execution of
phases: By checking the results of Table II it is possible
to notice how, for all the tested DNNs, the results for the
read data phase and the total inference time are very similar.
Also, the sum of the read instruction phase, read data phase,
and write data phase is way higher than the total measured
inference time. Guided by this observation, we developed a
specific functionality in our hardware profiler to measure the
parallel execution of (i) the instruction and write data phases
of the DPU, with (ii) the DPU read data phase. The results
are reported in Figure 2. The results showed how at least 97-
98% of the execution of the former phases is overlapped with
the one of the latter. This has been confirmed by also visually
inspecting the bus activity using the Xilinx Integrated Logic
Analyzer (ILA) — an excerpt of the waveform track of the bus
signals is reported in Figure 3, showing the instruction and data
read transactions performed by the DPU. Figure 3 shows how
the data read operations (DATA PORT) and the instruction
read operations (INSTRUCTIONS PORT) are operated in
parallel by the DPU.

From these considerations, it is possible to conclude the
following: (i) the DPU executes multiple phases in parallel,
hence suggesting an internal pipelined implementation (as it

is common for many FPGA-based accelerators); and (ii) the
read data phase provides the dominant contribution to the total
inference time, i.e., the instruction fetching phase and the write
data phase are almost completely hidden due to the pipelined
behavior. These conclusions motivate the definition of a series-
parallel model for the DPU in the following (Section IV).

4) Limited fluctuations of response times: The results re-
ported in Table II finally show how the fluctuations of the
response times are quite limited. They are mainly attributed
to the delays experienced at the memory controller to access
the external DRAM.

IV. MODELING

This section presents a model for the DPU and the platform
considered in this paper. The assumptions made in deriving the
model are supported by the technical information available
in the official documentation [19] for the platform under
analysis (Xilinx Zynq Ultrascale+) and the profiling campaign
discussed in Section III.

A. The DPU core model

This section presents an execution model of the DPU. Note
that, although it targets a specific DNN accelerator, the model
is general enough to be extended to cope with other high-
performance, instruction-based hardware accelerators for DNN
acceleration featuring autonomous memory access.

1) DPU per-job bus traffic: From Observation III-C2 (Sec-
tion III) we know that the amount of data exchanged with the
memory by the DPU is constant and predictable, i.e., it can
be retrieved and does not change from DPU job to DPU job.
We then model the DPU bus traffic as follows.
Read instructions phase. Each job the DPU issues at most
N INS

R read transactions through port M INS, fetching ∆INS
R data

words corresponding to the instructions for the execution of
the DNN model under evaluation. Port M INS can issue at
most N INS

R,outs outstanding transactions (i.e., pending at the same
time).
Read data phase. Each job of the DPU issues at most
NDATA

R read transactions through port MDATA, fetching ∆DATA
R

data words corresponding to the input data and DNN model
parameters (i.e., bias, weights, and activations). Port MDATA

can issue at most NDATA
R,outs outstanding read transactions.

Write data phase. Each job of the DPU issues at most NDATA
W

write transactions through port MDATA, writing ∆DATA
W data

words corresponding to the results. Port MDATA can issue at
most NDATA

W,outs write outstanding transactions.
To be as general as possible and obtain a model that can

also be applied to other accelerators, no specific pattern of
transactions is considered, i.e., transactions can be arbitrarily
distributed within the time span in which a DPU job is
pending.

2) DPU execution: From Observation III-C3 we know that
the DPU overlaps the execution of multiple phases and that
the contribution of the read data phase is dominant for the
total inference time. For this reason, we adopt a parallel-
series model for the DPU execution as illustrated in Figure 4.



Fig. 3. A particular of the hardware waveform track captured using a Xilinx System ILA recording the bus behaviour of the DPU core when accelerating
the Yolov3 object detection DNN for ADAS applications considered in this work.

Our execution model assumes that the DPU executes the read
data phase in parallel with the instructions phase and the
write data phase. The profiling campaign did not reveal any
evident parallel execution for the instruction phase and the
write data phase. Therefore, to be conservative and obtain a
safer model, these two phases are considered to be serially
executed. Finally, our model considers that the read data phase
and the instructions and write data phase can be followed
by some serial operations operated by the DPU. Note that
our model admits that all such phases are not necessarily
contiguously executed by the DPU core – the execution of each
phase can be interrupted and resumed during the DPU job.
The serial operations consist in the elaboration phase profiled
in Section III, which is modeled as follows.

Elaboration phase. In this phase the DPU spends at most
Etime time units and performs computations only, i.e., no bus
interfaces is active for read/write activities.

Fig. 4. The proposed execution model of the DPU core.

B. Interconnect model

As introduced in Section II-A, ports MDATA and M INS

of the DPU are connected to the FPGA-PS interface. The
configuration port S of the DPU is connected to the PS-FPGA
interface. Following the results of the profiling campaign
of Section III, we assume that the FPGA-PS interface and
the PS interconnect do not introduce limits to the structure
of the AXI transactions issued by the DPU. This means
that the burst lengths of the transactions and the number of
outstanding transactions issued by the DPU are not limited
by the PS interconnect. Being the PS interconnect AXI-based,
there are separate channels for the propagation and service
of read transactions and write transactions. Thus, read and
write transactions do not suffer mutual interference during

propagation. Read and write transactions can instead suffer
mutual interference when they are served by the DRAM
memory controller — this effect is considered in the DRAM
memory controller model proposed in Section IV-C. From the
definition of the AXI standard, the propagation of address and
data into the AXI interconnect is pipelined.

C. PS, DRAM memory controller, and OCM

The DRAM memory controller resides in the PS of the
FPGA SoC platform and is shared between the processors
and the DPU. The DRAM memory controller is conceptu-
ally split in two blocks: (i) the AXI interface block, which
arbitrates the incoming AXI transactions received at its mul-
tiple AXI subordinate ports; and (ii) the DDR physical core
block, which issues the corresponding read and write requests
to the controller’s physical layer, and eventually drives the
DRAM memory by generating control and data signals. In
commercial platforms, the internal architecture of the DDR
physical core includes multi-level queue structures, managed
with dedicated scheduling policies. These can include re-
ordering for throughput optimization and efficiency [20], [21].
Unfortunately, the internals of the DDR physical core block
of the Zynq Ultrascale+, including the scheduling policies
and the queues structure, are not available to us (to the best
of our records, they are not publicly disclosed). Given that
our focus is on bounding the response times of accelerated
DNN models running on the DPU, rather than reversing
the behavior of commercial DRAM memory controllers, a
fine-grained modeling of the DDR physical core block goes
beyond the scope of this paper and it is not addressed here.
Thus, a coarse-grained model of the DRAM-related delays is
adopted; nevertheless, note that if the internals of the DDR
controller were known, then our results can be refined (e.g.,
by adopting the results from [20], [21]). From the perspective
of modules deployed into the FPGA fabric, and hence from
the one of the DPU too, the address requests directed to
the DDR memory controller are served in order (see [19],
p. 440). Therefore, the order of the data read responses on
the AXI data read channel follows the order of the address
read requests granted at the AXI address read channel. This
property is guaranteed by the DRAM Memory Controller AXI
Interface block and is independent of the internal scheduling



policies of the DDR Physical core block, which may include
internal reordering that affects the worst-case service time of
a request. This property enables a fine-grained analysis of
competing read transactions issued by the DPU. Conversely,
no service order is guaranteed among transactions of different
types. As such, the mutual interference between read and write
transactions issued by the DPU cannot be accurately bounded,
as it still significantly depends on the internals of the memory
controller. Based on these considerations, we model the worst-
case delays introduced by the PS and the memory controller as
components that introduce the following (cumulative) delays
on each transaction:

• dread
DRAM bounds the maximum time elapsed from (i) the

sampling of a read transaction directed to the DRAM
memory at the FPGA-PS interface to (ii) the availability
of the first word of the corresponding data at the FPGA-
PS interface without accounting for the interference of
other read transactions issued by the DPU;

• dwrite
DRAM bounds the maximum time elapsed from (i) the

sampling of the last word of data of a PS write transaction
directed to the DRAM memory at the FPGA-PS interface
to (ii) the availability of the corresponding write response
at the FPGA-PS interface.

Note that, from the above definitions, the terms dread
DRAM and

dwrite
DRAM also account for the worst-case memory interference

generated by the processor cores in the PS. Refinements of
the model to enable a more accurate analysis of the DRAM-
related delays are discussed in Section IX.

The Zynq Ultrascale+ platform also includes an On-Chip
Memory (OCM), a memory-mapped DRAM of size 256KB
placed in the PS. From our profiling campaign it emerged
that, in Vitis AI applications, the OCM is not used by the
processors or the DPU. In the following, we show how the
OCM can be used to improve the execution predictability of
the DPU by hosting DPU instructions. Therefore, we model
the OCM as a memory that is exclusively access for reading
instructions by the M INS manager port of the DPU. Similarly
to the case of the DRAM memory, we model the worst-case
delays introduced by the OCM as follows:

• dread
OCM bounds the maximum time elapsed from (i) the

sample of a read transaction directed to the OCM memory
at the FPGA-PS interface to (ii) the availability of the first
word of the corresponding data at the FPGA-PS interface.

Note that, by definition, dread
DRAM, dwrite

DRAM, and dread
OCM include

the propagation times introduced by the PS internal logic and
the overall service time at the DRAM memory controller or
the OCM. These parameters depend on the internals of the PS
and can be quantified using the documentation provided by
the SoC producer (when available) – again, as the documen-
tation of the platform under analysis does not disclose such
details [19], we experimentally profiled these parameters.

D. The Vitis AI control SW-task model

The DPU is setup and activated by a control software
application SWDPU. At the beginning of execution, SWDPU

configures the DRAM memory buffer for the execution of
the DPU. Such a memory buffer contains the input for the
DPU, such as the DPU instructions and the parameters of the
DNN model under analysis and the input image. SWDPU also
prepares another memory buffer to host the results provided
by the DPU. SWDPU then configures the execution by ac-
cessing the internal registers of the DPU. Once the setup is
completed, the DPU is activated and starts the inference of the
DNN model under analysis, following the phases described in
Section IV-A. At this point, SWDPU suspends its execution,
waiting for the interrupt of the DPU signaling completion.

V. RESPONSE-TIME ANALYSIS

This section presents a response-time analysis to bound the
total inference time of DNN models when executed by the
DPU. To this purpose, we adopt a bottom-up approach. The
analysis leverages the parameters obtained by profiling re-
ported in Section III. Although the values of these parameters
proved to be very predictable, they can be anyway monitored
at run-time so that response-time bounds can be deemed safe
as long as the monitored values are below those obtained
from profiling. Otherwise, an exception can be raised. The
monitoring can be performed by an FPGA module similar to
the hardware profiler introduced in Section III.

A. Bounding the response times of the DPU phases

1) Read transactions directed to the DRAM with no con-
tention: According to the AXI standard [7], each AXI read
transaction begins with the issuing of an address request and
terminates with the sampling of the read data. By the AXI
standard, the time each address request has to be held on the
bus to be correctly issued is fixed and equal to daddr, while the
time each data word has to be held on the bus to be correctly
sampled is fixed and equal to dword. The following lemma
bounds the response time of read transactions for both port
M INS and port MDATA. In the former case, the lemma can be
applied with NR = N INS

R and ∆R = ∆INS
R , while in the latter

case with NR = NDATA
R and ∆R = ∆DATA

R .

Lemma 1. In conditions of no contention from read trans-
actions issued by the DPU on other ports, the response time
of NR read transactions issued by the DPU to read ∆R data
words on a port is bounded by:

DNoCont
R,DRAM(NR,∆R) = NR · (daddr + dread

DRAM) + ∆R · dword.
(1)

Proof. During the address phase, each address request Raddr
of one of the NR transactions is issued by a port of the DPU
to be then sampled by the FPGA-PS interface. By the AXI
standard, this phase lasts daddr time units per transaction. Raddr
is then propagated to the DRAM memory controller by the
PS interconnect and eventually served by the DRAM memory
controller. Once the latter provides the required data, the read
data words are propagated to the FPGA-PS interface by the
PS interconnect to be eventually sampled by the DPU. By the
model of Section IV-C, the delay associated to this process
is bounded by dread

DRAM per transaction. Hence the first term of



Eq. (1). The lemma follows by accounting for the time the
∆R read data words have to be held on the bus to be sampled
by the DPU (last term of Eq. (1)).

2) Write transactions directed to the DRAM: Still, accord-
ing to the AXI standard [7], each AXI write transaction begins
with the issuing of an address request, proceeds with the
transmission of the data to be written, and terminates with
the reception of a write response. Times daddr and dword also
hold for write transactions, while the time write responses
must be held on the bus to be correctly sampled is fixed and
equal to dbresp. As stated in Section IV-C, contention for write
transactions directed to the DRAM is all accounted for in the
term dwrite

DRAM, hence the following lemma bounds their response
time.

Lemma 2. The response time of the NDATA
W write transactions

issued by the DPU to write ∆DATA
W data words via port MDATA

is bounded by:

DW,DRAM
DATA = NDATA

W · (daddr + dwrite
DRAM + dbresp)+

+∆DATA
W · dword.

(2)

Proof. According to the AXI standard [7], read and write
requests have the same structure. Thus, the total time to issue
write requests (NW · daddr) follows as for Lemma 1. Each
write request is followed by the corresponding data words to
be written that, in total for all transactions, must be held on the
bus for ∆W ·dword time units. Write transactions are propagated
to the memory controller via the FPGA-PS interface. The
memory controller eventually replies with a write response
for each transaction. By the model of Section IV-C, the delay
associated to this process is bounded by dwrite

DRAM per transaction.
The lemma follows by noting that each write response, once
arrived at the FPGA-PS interface, must be held on the bus for
dbresp.

Note that the above lemmas are independent of the structure
of the memory transactions, i.e., they hold independently of the
burst length of each transaction. This property is particularly
useful in our scenario where the DPU issues bus transactions
with variable burst lengths (see Section III).

3) Bounding the interference for read transactions: In the
stock configuration provided by Vitis AI, the two data ports
of the DPU M INS and MDATA compete to read from DRAM.
As mentioned in Section IV-C, read transactions issued by the
DPU and directed to the DRAM are served in order. For this
reason, the corresponding interference is not accounted for in
the term dread

DRAM of our model as it can be more accurately
bounded as follows.

Lemma 3. The maximum interference suffered by read trans-
actions issued on the M INS port of the DPU due to read
transactions issued by the DPU on the other port MDATA is
bounded by

min
{
N INS

R ·NDATA
R,outs, N

DATA
R

}
· dread

DRAM. (3)

Proof. Recall that, from the perspective of the DPU, the read
transactions issued are served in order. Whenever a transaction

is issued on port M INS there can be at most NDATA
R,outs outstanding

transactions (i.e., pending but not completed) issued before
on port MDATA. Hence, the total number of interfering read
transactions is bounded by N INS

R ·NDATA
R,outs . Furthermore, since at

most one inference instance of the DPU can be pending at the
same time, the total number of interfering read transactions is
also bounded by the total number of transactions issued on port
MDATA. Hence, the minimum of the two is still a valid bound.
The times the address request and the data must be held on
the bus (daddr and dword) do not contribute to the interference
as ports MDATA and M INS are connected to the FPGA-PS
interface with separate AXI links. The lemma follows by
noting that each interfering transaction can take at most dread

DRAM
to be served after receiving the FPGA-PS interface.

In the very same way, the maximum interference suffered
by the transactions to read data (i.e. issued on port MDATA)
due to the transactions to read instructions is bounded by

min
{
NDATA

R ·N INS
R,outs, N

INS
R

}
· dread

DRAM. (4)

4) Bounding the response time of the read instruction and
read data phases: Leveraging the above results it is now pos-
sible to bound the response time of both the read instructions
and read data phases. For each phase, this is accomplished
by summing the response time without contention from read
transactions issued by the other phase (Lemma 1) and the
contention bound of Lemma 3 and Equation (4).

It follows that the response time of the read instructions
phase of the DPU is bounded by

DR,DRAM
INS = DNoCont

R,DRAM(N INS
R ,∆INS

R )+

+min
{
N INS

R ·NDATA
R,outs , N

DATA
R

}
· dread

DRAM,
(5)

while the one of the read data phase is bounded by

DR,DRAM
DATA = DNoCont

R,DRAM(NDATA
R ,∆DATA

R )+

+min
{
NDATA

R ·N INS
R,outs, N

INS
R

}
· dread

DRAM.
(6)

B. Bounding the total DPU response time

Theorem 1. The total DPU response time is bounded by

TDRAM
DPU = max

{
DR,DRAM

DATA , DR,DRAM
INS +DW,DRAM

DATA

}
+Delab. (7)

Proof. Following the parallel-series execution model intro-
duced in Section IV-A2, the read data phase is executed in
parallel with the instruction read and data write phases. Hence,
these three phases are completed after at most the maximum
of the time required to complete the first phase, and the one
required to complete the other two phases. The former is
bounded by Eq. (6), while the latter is bounded by Eq. (5)
plus the bound implied by Lemma 2. Hence the first term of
Eq. (7). The lemma follows by also summing the duration
of the elaboration phase, which is modeled at the end of the
parallel-series flow.

It is worth observing that the above bound can be refined
if more information about the internal behavior of the DNN
accelerator is available, hence enabling a refinement of the
parallel-series model of Section IV-A2.



VI. IMPROVING THE DPU EXECUTION PREDICTABILITY

This section presents a technique to improve the execution
predictability of the DPU. From the above sections, we know
that the DPU suffers auto-interference due to concurring trans-
actions on the M INS and MDATA. Although this interference is
explicitly bounded in the analysis of Section V-A4, it is still
a relevant source of pessimism for the overall response-time
bound.

As it is the case for other commercial SoC platforms,
the Xilinx Zynq Ultrascale+ includes an OCM that can be
accessed by FPGA modules though a dedicated interconnect
in PS, as illustrated in Figure 1. Note that the path between
the DPU and the DRAM memory controller and the path
between the DPU and the OCM are parallel and independent
(this can be confirmed by checking the official technical
reference manual of the Zynq Ultrascale+ [19]). Given that
our profiling campaign of Section III revealed that the size
of DPU instructions is generally compatible with the size
of the OCM and that the OCM is not used by Vitis AI
applications, we investigate the opportunity of storing the DPU
instructions on the OCM. This makes it possible to leverage
the parallelism of the two memories (OCM and DRAM)
and the corresponding bus paths, as well as tightening the
response-time bound by suppressing the mutual interference
generated by read transactions on ports M INS and MDATA.

In particular, by analyzing in detail the compiled .xmodel
file produced by the Vitis AI compiler for all the tested DNN
models for ADAS applications, we found that instructions
represent just a little portion of the file.

Unfortunately, the structure of the .xmodel file is not
publicly documented by Xilinx and hence instructions cannot
be easily extracted to be placed in the OCM. Furthermore,
the low-level driver for the DPU that sets the addresses of the
memory buffers that contain the DPU instructions and data is
not configurable and its source code is not publicly available.
This means that it is not possible to directly configure the
DPU with a different address for instruction fetching so that
instructions are fetched from the OCM, while data are still
fetched from the DRAM.

To solve this problem we developed a minimal custom
FPGA module, which is presented next.

A. The DPU Instruction Dump - Address Translator IP

The DPU Instruction Dump - Address Translator (DICTAT)
is a custom IP developed to allow the DPU fetching instruc-
tions from the OCM. DICTAT is placed between the M INS of
the DPU and the FPGA-PS interface. It has two functionalities:
(1) Dumping the DPU instructions of a DNN model under
analysis; and (2) Rerouting the read transactions issued by the
DPU on port M INS to target the OCM memory. These two
functionalities are described next.

1) Dumping the DPU instructions: This step is executed
only once (i.e., it is a setup step) for a given DNN model
under analysis. From our profiling campaign, it emerged that
SWDPU places the DPU instructions in multiple small DRAM
memory buffers and not in a single buffer as one may expect

– this makes it non-trivial to dump the instructions. DICTAT
is capable of sniffing the DPU instructions fetched by the
DPU during execution by monitoring the bus traffic generated
on port M INS. Before starting the DPU execution, DICTAT
is setup with a memory address pointing to a pre-allocated
DRAM memory buffer where it contiguously writes all sniffed
instructions. The sniffed instructions can then be easily ex-
ported into a dump file. By experiments, we confirmed that
the instructions fetched by DPU jobs remain the same for a
given DNN model, even considering different input images.
This means that the dumped DPU instructions can be placed
into the OCM just once – for instance, the dumped instructions
can be loaded from the file to the OCM before the execution
of the DNN model or in parallel with the configuration of the
DPU. Indeed, still from the profiling campaign of Section III,
we noted that the configuration time of the DPU is long enough
to cover the memory copy of the small amount of instructions
from the dump file to the OCM memory.

2) Rerouting M INS’s read transactions to the OCM: Once
the DPU instructions have been dumped and placed in OCM,
DICTAT is configured with the base address of the OCM.
Once the DPU starts the execution, DICTAT translates on-
the-fly the read requests issued on port M INS, directed to the
default DRAM buffer, to transactions directed to the OCM.
To do so, DICTAT keeps track of the execution phases of
the DPU, using the interrupt it generates as a synchronization
signal to restart the translation from the beginning of the OCM
buffer.

DICTAT supports any burst length allowed by the AXI
standard and is completely transparent to the DPU and the
underlying FPGA SoC platform. To achieve high performance
and minimal area footprint, DICTAT has been developed in
HDL. Also, DICTAT proactively acts on read transactions so
that it does not introduce any additional latency on the bus:
this way, the original performance of the DPU is not affected.

B. Refining the analysis
DICTAT is capable of completely decoupling the service

of bus transactions issued on port M INS from those issued
on port MDATA. This means that the transactions issued on
MDATA do not interfere with the transactions issued on M INS,
and vice-versa. Therefore, it is possible to refine the response-
time bound of Section V-A4.

The transactions issued to the OCM features strong similar-
ities with respect to those issued to the DRAM. Differences
only reside in the different path requests and data have to
traverse.

By making similar considerations to the ones done in
Section V-A1 (see Lemma 1) and considering the worst-case
propagation and service time for the OCM (dread

OCM, introduced
in Sec. IV-C), the response time of the transactions to read
instructions from the OCM is bounded by:

DNoCont
R,OCM(N INS

R ,∆INS
R ) = N INS

R · (daddr + dread
OCM) + ∆INS

R · dword.
(8)

Given that, in the presence of DICTAT, no interference be-
tween the read instructions and read data phases are possible,



their response time is simply bounded by DNoCont
R,OCM(N INS

R ,∆INS
R )

and DNoCont
R,DRAM(NDATA

R ,∆DATA
R ), respectively. Hence, analo-

gously as done for Theorem 1, the total DPU response time
with instructions fetched from the OCM is bounded by:

TDRAM+OCM
DPU = max

{
DNoCont

R,DRAM(NDATA
R ,∆DATA

R ),

DNoCont
R,OCM(N INS

R ,∆INS
R ) + DW,DRAM

DATA

}
+ Delab.

(9)

VII. EXPERIMENTAL EVALUATION

This section presents the results of an experimental evalua-
tion that was conducted to assess the quality of the response-
time bounds and the DPU performance when using DICTAT.

A. Experimental setup

The hardware platform and the software system used for
the evaluation are the same as the profiling campaign of
Section III.

Concerning the modules deployed on the FPGA, we created
a custom hardware design that integrates (i) our clock-level
multi-channel hardware profiler (see Section III), (ii) the
DICTAT module presented in Section VI-A to enable the
use of the OCM memory, (iii) a Xilinx System ILA [22]
IP for model validation and debugging, and (iv) the stock
Xilinx setup of a DPU accelerator. The presented results were
obtained through the analysis of 1000 DPU executions for each
of the considered DNN models. Each execution was tested on
a randomly picked image taken from the Cityscapes ADAS
dataset [16].

B. Profiling the platform

This first set of experiments aimed at profiling the timings
of the FPGA SoC platform under analysis (Zynq Ultrascale+).
They include the worst-case propagation and service times
at the DRAM memory controller, i.e., dread

DRAM and dwrite
DRAM,

and the ones at the OCM memory, i.e., dread
OCM introduced in

Section IV-C. The profiling also copes with the bus times daddr,
dword, and dbresp. The delays are profiled by both considering
the tracks provided by the ILA we integrated in the system and
by implementing specific functionalities in our custom hard-
ware profiler introduced in Section III. The observed bus times
(constant by the AXI standard) expressed in clk cycles are
daddr = 1, dbresp = 1, and dword = 1 for read transactions and
dword = 2 for write transactions (the differences in the value
of dword for read and write is most probably due to an internal
design choice of the DPU). As introduced in Section IV-C,
the cumulative worst-case delays for accessing the DRAM
memory from the DPU depends on many different aspects,
mostly related to the platform design choices and the activities
performed by the processors in the PS. As one may easily
expect, such parameters considerably influence the worst-case
analysis. As a representative setting for our experiments, which
do not have the scope of precisely characterizing the memory
interference generated by the processors, we considered the
stock Petalinux-based Vitis AI image executing a Vitis AI
application that only accelerates DNNs with the DPU. Under
this setting, we experimentally estimated these delays to be

upper bounded by dread
DRAM = 40, dwrite

DRAM = 30, and dread
OCM = 40

clock cycles, respectively, refereed to the clock domain of
the DPU (330 MHz) – these are equivalent to 130, 96, and
130 clock cycles, respectively, at the DRAM memory since it
features a highest clock rate (1067 MHz).

C. Stock DPU configuration with instructions in DRAM

This set of experiments aims at comparing the measured
results for the stock Vitis AI configuration leveraging the
DRAM memory for fetching data and instructions against the
response-time bound presented in Section V. The comparison
considers both the total inference time and each phase individ-
ually. The results are reported in Figure 5. As it can be noted
from the figure, the response-time bounds are always safe and
not excessively pessimistic. The figure also shows that the
largest pessimism is introduced for the read instructions and
read data phases. Despite the fact that the method presented
in Section VI helps reduce this pessimism (other experiments
on this follow), most of the pessimism is still attributed to
the lack of detailed documentation for the PS interconnect
and the DRAM memory controller. Indeed, note that (i) not
all memory transactions directed to the DRAM actually incur
the maximum delay of parameters dread

DRAM and dwrite
DRAM; and

(ii) the DRAM is capable of serving multiple transactions
in parallel (i.e., those directed to different DRAM banks),
while our analysis conservatively assumes that all transactions
are serially served. Coping with these aspects is out of the
scope of this work and we are confident that our analysis
can significantly benefit from a fine-grained modeling of the
DRAM memory controller and the PS interconnect.

D. Using DICTAT: DPU instructions in OCM

This set of experiments aims at evaluating the performance
of the DPU when instructions are fetched from the OCM
thanks to DICTAT and evaluating the corresponding response-
time bounds of Section VI-B. The same experimental eval-
uation performed in the profiling campaign of Section III
to obtain Table II has been repeated under this setting. The
results are reported in Table III. Unfortunately, the size of the
instructions fetched by the Lanedetect DNN model is larger
than the size of the OCM memory available on the Ultrascale+
(256KB), hence we were not able to test this model with
DICTAT. Note however that this limitation does not hold
for newer FPGA SoC such as the Versal by Xilinx, which
integrates a 4MB OCM [23].

The results reported in Table III show how, besides re-
ducing the variability of the measured results with respect
to Table II, leveraging the OCM also slightly improves the
total performance in all of the tested DNN models. In the
best case, the Plate Detect DNN shows a reduction in the
total response time around 6%. The improvements on the
read instruction phase are even more evident: in all of the
considered scenarios the response times of this phase drops
by at least 50%. The best results are obtained for the DNN
exchanging the highest amount of data — the Object Detection
DNNs based on Yolov3 and SSD show a reduction in the
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Fig. 5. Measured results for the DNN execution phases and total per-job inference times for the DNN models under analysis, compared with the bounds
proposed in Section V and Section VI-B

maximum measured DPU instruction phase response time of
62% and 64%, respectively.

While improving the average performance of the DNN
model is not the main purpose of this paper, this is an inter-
esting opportunity for future work. The major result obtained
by leveraging the OCM is the overall improvements in the
pessimism of the analysis. The comparison of the response-
time bounds against the measured times is also reported in
Figure 5. The figure shows that all bounds are safe also in
this case. As we expected, the bound with instructions fetched
from OCM is tighter than the one with instructions fetched
from DRAM.

Indeed, for all of the tested DNN models, the improved
bound of Section VI-B shows a reduced pessimism of at
least 12% on the total inference bound with respect to the
other bound. In memory-intensive DNN models, the improved
OCM+DRAM-based bound shows its best result – on the
Yolov3 Object Detection DNN and on the SSD DNN for
pedestrian detection it reduces the pessimism by 25% with
respect to DRAM-based bound. These results certify how the
interference generated by concurrently accessing the DRAM
memory strongly impacts the pessimism of the system and
how leveraging dedicated memories for fetching instructions
can considerably reduce the pessimism of worst-case analysis.

E. Resource consumption

Table IV compares the resource consumption of the hard-
ware IPs integrated into the developed hardware profiling
environment. The results show how DICTAT has a very limited
resource consumption. This ensures an easy integration to fit
area-constrained designs in platforms featuring a lower amount
of FPGA resources.

VIII. RELATED WORK

To the best of our records, this is the first work that ad-
dresses time-predictability for FPGA-accelerated DNNs. Most

TABLE III
MEASURED PER-JOB EXECUTION TIMES OF THE DPU PHASES AND TOTAL
MEASURED PER-JOB INFERENCE TIMES LEVERAGING THE OCM TO HOST

THE DPU INSTRUCTIONS.

DNN model
inference times OCM (ms)

Instrc
fetch

Read
data

Write
data

Pure
Elab

Total
Inference

Plate Detect
min 0.12 0.49 0.13 0.01 0.69
avg 0.13 0.68 0.13 0.02 0.7
max 0.14 0.7 0.14 0.2 0.71

Plate Num
min 0.53 2.45 0.56 0.01 3.03
avg 0.54 2.99 0.57 0.1 3.04
max 0.55 3.04 0.58 0.23 3.05

Object
Detection

(Yolov3 ADAS)

min 0.87 7.2 3.45 0.01 7.97
avg 0.88 7.87 3.46 0.02 7.98
max 0.89 7.98 3.47 0.59 7.99

Object
Detection

(SSD ADAS)

min 0.53 7.32 3.74 0.01 8.36
avg 0.54 8.26 3.76 0.02 8.37
max 0.55 8.36 3.77 0.34 8.38

Pedestrian
Detection

(SSD ADAS)

min 0.66 7.95 3.47 0.01 9.09
avg 0.67 8.89 3.48 0.1 9.1
max 0.68 9.10 3.49 0.7 9.11

TABLE IV
FPGA RESOURCE CONSUMPTION ON THE ZYNQ ZCU102.

IP Xilinx DPU DICTAT HW profiler Xilinx System ILA
LUT 108134 374 256 21877
CLB 203525 662 1837 33152

BRAM 518 0 0 128
DSP 1394 0 0 0

efforts on analyzing and improving the real-time performance
of DNNs were instead focused on GPU-based platforms.
Wurst et al. [24] addressed the modeling of heterogeneous
platforms for predicting the performance of autonomous driv-
ing applications on Nvidia GPU-based platforms. Gujarati
et al. [25] demonstrated how the inference phase of DNN
models can show deterministic performance. Zhou et al. [26]
proposed a set of techniques to optimize the execution of DNN
workloads on GPU in a real-time multi-tasking environment.
Tan et al. [27] proposed a method to maximize the throughput
of DNN applications on Nvidia Xavier platforms. Liu et



al. [28] and Bateni et al. [29] proposed DNN scheduling
techniques for GPU SoC platforms.

More in general, execution predictability of FPGA-based
platforms has been investigated by several authors. Gracioli et
al. [30] proposed a set of techniques to support the execution
of mixed-criticality applications upon FPGA SoC. Geier et
al. [31] proposed a methodology for monitoring performance
metrics of real-time systems executing on FPGA SoC plat-
forms. Restuccia et al. [32], [33] and Pagani et al. [34]
proposed FPGA devices to predictably control the bus traffic
generated by hardware accelerators. Efforts have also been
spent to analytically bound the delay experienced by AXI bus
transactions issued by hardware accelerators on FPGA [35].

Finally, while this work focused on a commercial accelera-
tor for DNNs, it is worth mentioning that many other research
efforts have been spent to propose frameworks and automatic
tools for the generation of DNN hardware accelerators for
FPGA platforms, addressing high performance [36]–[38], the
constraints of the FPGA platform [39], [40], and power
efficiency [41].

IX. DISCUSSION, LIMITATIONS, AND FUTURE WORK

This section discusses the novelty of this work with respect
to commercial tools available for profiling the DPU execution,
its limitations, and some relevant future directions for further
research on the topic. First of all, it is worth remarking that
this work aims at bounding the inference time of DNN models
leveraging hardware acceleration on commercial FPGA SoC
platforms. This completely differs from the goals of com-
mercial tools available for performance analysis of the DPU,
such as the Xilinx Vitis AI profiler tool, which focus on
the average performance of the DPU core. Also, the Xilinx
System ILA would not be able to extract the metrics reported
in Section III. In particular, the Xilinx System ILA is intended
for capturing continuous waveform tracks after the trigger of
a specific event. Capturing the number of per-job transactions
issued by the DPU and the data words exchanged with the
memory required the development of custom functionalities
analyzing the handshake signals of the AXI bus. Such capa-
bilities are beyond those offered by the Xilinx System ILA.
Considerable research and engineering efforts were required
to perform modeling and analysis of the DPU core and the
system architecture. Despite these efforts, this work comes
with several limitations and can benefit from several further
improvements. Some relevant research directions for future
work are discussed next.

1) Refining the DPU model: The distribution of the DPU
core as a closed-source IP makes challenging the derivation
of an accurate model. The experimental results of Section VII
demonstrate how our model obtained via profiling enabled
a safe analysis to bound the execution time of the DPU.
However, it is worth noting how the proposed worst-case
analysis directly depends on the accuracy of the DPU model.
As such, it can significantly benefit from a refined DPU model
taking into account detailed information on the DPU internals
(e.g., the RTL code of the DPU, a more detailed description

of the internal architecture of the DPU, etc.). Thus, we plan to
focus on the derivation of more accurate models for the DPU
in the future, both by performing further profiling and in the
light of any future release of more detailed documentation
provided by the official vendor channels.

2) DRAM memory parallelism: Modern DRAM memory
controllers offer a considerable degree of parallelism in access-
ing multiple memory banks. This aspect has been considered
in previous works to reduce the pessimism in the worst-case
timing analysis of memory accesses [20], [21]. The analysis
provided in this paper is pessimistic as it does not consider this
aspect due to the reasons mentioned in Section IV-C. As future
work, we plan to extend the analysis to explicitly consider
parallelism in accessing DRAMs. This could allow obtaining
tighter delay bounds.

3) Interference generated by the PS: A fine-grained model
of the DRAM memory controller and PS is beyond the scope
of this paper. Indeed, we focused on the proposal of a model
and an analysis of the DPU core using a coarse-grained
characterization of DRAM-related delays (Section IV-C). In
particular, the approach adopted in this paper does not ex-
plicitly analyze the memory traffic generated by the processor
cores in the PS, which is instead pessimistically accounted for
in the terms dread

DRAM and dwrite
DRAM. Our analysis can be extended

in future work to cope with an accurate model for the DRAM
memory controller [20], [21] and the explicit consideration of
the traffic generated by software workload running in the PS.

4) Extension to other DNN hardware accelerators: The
model and analysis proposed in this paper are mainly focused
on the DPU provided by Xilinx with the Vitis AI frame-
work. Nevertheless, we believe that a similar approach can
be adopted to other instruction-based FPGA accelerators for
DNNs that feature autonomous memory access. As future
work, we also plan to extend our approach to support popular
open-source dataflow DNN accelerators [8], [42]. This step is
facilitated by the widespread usage of the AXI bus, which is
the de-facto standard for communication for modern hardware
accelerators.

X. CONCLUSIONS

This paper studied time-predictability in the execution of
DNNs accelerated with the DPU FPGA accelerator by Xilinx.
A profiling campaign revealed a rather regular execution
behavior of the DPU. A model and a response-time analysis
have been proposed to characterize the worst-case timing
performance of DPU-accelerated DNNs. The DICTAT FPGA
module has also been proposed to allow the fetching of DPU
instructions from the OCM, improving the execution pre-
dictability and the response-time bounds. Experimental results
confirmed the effectiveness of the response-time bounds and
the execution scheme based on DICTAT.
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