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Abstract—The automotive software industry is facing a
paradigm shift driven by the need to develop more and more
advanced functionality distributed on multiple electronic control
units. The AUTOSAR Adaptive standard has been designed
as a service-oriented architecture on top of a general-purpose
operating system to tackle this paradigm shift.

Nevertheless, it does not provide means to ensure deterministic
communication, as required in safety-related components.

This paper studies the integration of the System-Level Logical
Execution Time (SL-LET) paradigm in AUTOSAR Adaptive.

The key design challenges and requirements to support SL-
LET in AUTOSAR Adaptive are described, highlighting how to
overcome the considerable differences between the AUTOSAR
Classic and Adaptive domains. Then, a meta-protocol named
AP-LET is presented, together with two concrete instances: one
based on high-priority tasks and another leveraging timestamps
in the message payload to handle communications and ensure
determinism. A complete implementation of both protocols is
also described. AP-LET was finally evaluated with a realistic
automotive application, showing its feasibility and effectiveness.

I. INTRODUCTION

The automotive industry has historically been rather con-
servative, relying on simple Electronic Control Units (ECUs)
running domain-specific real-time operating systems (e.g.,
OSEK [1]) and networks (e.g., CAN, LIN, FlexRay) to handle
safety-critical functions. This legacy paradigm is matched by
the well-established AUTOSAR Classic standard [2]. How-
ever, the recent increase in the complexity of automotive
systems — due to the integration of new functionalities, such
as assisted or autonomous driving — has forced the industry
to replace the original signal-oriented design with a mod-
ern service-oriented architecture (SoA). Using this different
paradigm, the various software components are decoupled
from each other and communicate by requesting and providing
services. Each component can thus be designed in isolation,
lowering the complexity of the designed system, with benefits
also in terms of scalability and reusability. In addition, tradi-
tional automotive networks are being replaced with general-
purpose networks and stacks (namely, Ethernet and TCP/IP)
that allow to both reach higher throughput and reduce the
amount of cabling inside the vehicle.

Consistently with this paradigm shift, a new standard has
been proposed to extend AUTOSAR Classic. In 2017, the
AUTOSAR international consortium started pursuing these
goals by creating a novel Adaptive Platform (AP) standard [3].
This new standard is based on POSIX [4] operating systems

(e.g., Linux) and a set of C++ libraries to support multi-thread
applications. Unlike the previous AUTOSAR Classic specifica-
tion, however, it has not been designed to guarantee the timing
constraints of the executed applications by construction.
The challenge. Despite the need to handle much more flexible
systems than those managed by AUTOSAR Classic, next-
generation automotive applications still require guaranteeing
deterministic inter-task communication and bounded end-to-
end latency for a set of relevant chains of software com-
ponents. In this work, we argue that the Logical Execution
Time (LET) paradigm represents an effective solution to tackle
this challenge. LET, although initially proposed in 2001 for
synchronous programming languages [5], attracted renewed
attention in the last decade by the automotive industry to face
the transition towards multi-core systems. LET enforces data
exchange between tasks to logically occur at pre-determined
time instants, thus enabling communication determinism with-
out relying on the actual scheduling of tasks. Furthermore,
it proved to be beneficial to bound the end-to-end delay
of cause-effect chains [6]–[8] and reduce memory-contention
delays [9], possibly leveraging direct memory access engines
for improved communication performance [10].

System-Level Logical Execution Time (SL-LET) [11] was
later proposed extending LET by coping with the non-
negligible duration of data transfers through networks in
distributed systems. Being AUTOSAR Adaptive conceived
to handle multi-ECU, distributed systems running dynamic
workloads, SL-LET represents a perfect match to enable de-
terministic communication. Nonetheless, integrating SL-LET
within AUTOSAR Adaptive is nothing but straightforward due
to two major, non-trivial difficulties:

1) SL-LET assumes communication between periodic tasks
(activated by timers); instead, in AUTOSAR Adaptive,
communication is message-driven and follows a service-
oriented architecture (as for the pub/sub paradigm [12])
and works with tasks that are mostly activated by data
reception.

2) Traditional LET implementations [9] typically con-
sider static systems; instead, AUTOSAR Adaptive sup-
ports tasks that can dynamically join and leave the
LET paradigm at runtime. LET, therefore, needs to be
rethought to cope with the peculiarities of AUTOSAR
Adaptive.
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Fig. 1: Architecture of AUTOSAR Adaptive [3].

Contribution. This paper investigates the integration of SL-
LET with the AUTOSAR Adaptive and POSIX standards.
It proposes a novel meta-protocol named AP-LET and two
concrete specializations of the same, discussing the corre-
sponding implementations and the design principles of the
meta-protocol that allow it being compatible with Adaptive.
The two approaches are then compared to show advantages
and disadvantages, both qualitatively and quantitatively. Im-
plementations of AP-LET are also discussed. A quantitative
comparison is presented in the form of an extended exper-
imental evaluation based on the WATERS 2017 Challenge
by Bosch [13] and the Brake Assistance Demonstrator of
AUTOSAR Adaptive, which are representative of industrial-
grade automotive applications.

II. BACKGROUND

This section provides the key background information on
AUTOSAR Adaptive, LET, and SL-LET.
AUTOSAR Adaptive. The Adaptive Platform is a modern
service-oriented architecture (SoA) built on top of a POSIX-
enabled operating system [4]. Functionalities and services are
grouped in a few “Functional Clusters” accessible through a
C++ API, called Runtime Environment for Adaptive Applica-
tions (ARA). Figure 1 shows the architecture of the Adaptive
Platform and the services offered by ARA. Communica-
tion Management (ara::com) and Execution Management
(ara::exec) are the clusters in charge of service-oriented
communication and application lifecycle, respectively.

The standard does not mandate any specific communication
protocol (although SOME/IP [14] is recommended), but a
growing interest has persuaded the consortium to include the
Data Distribution Service (DDS) protocol inside both the Clas-
sic and Adaptive specifications [15]. Message-passing commu-
nication between software components (SWCs) is based on
the client-server pattern, where servers offer a set of services
that might be invoked by clients, including: (i) Events: allow
clients to be notified about events happening on the server
side; (ii) Methods: allow servers to expose remote procedure
calls (RPC) to be invoked by clients; and (iii) Fields: provide
access to data values that clients can remotely get and set.

The interfaces for these services are described at design
time through ARXML files. The binding between clients and
servers is then performed at run-time via service discovery.

LET. First introduced as part of the GIOTTO framework [5]
in the context of synchronous languages, the LET paradigm
is used in the automotive sector for multi-core intra-ECU
communications, e.g., in the context of AUTOSAR Classic.

LET enforces determinism of read/write communication
between periodic tasks. Without LET, tasks communicate at
scheduling-dependent time instants, introducing variable jitters
that depend on the interference received from other tasks. This
phenomenon also appears under the implicit communication
paradigm [16] of AUTOSAR, which mandates reading/writing
data at the beginning/end of the task execution only, possibly
leveraging local data copies. In contrast, LET allows removing
any output jitter by logically enforcing communications at
predetermined time instants, such as the beginning and end
of the task period. Note that the actual read/write operations
are not strictly required to happen at these time instants,
but the system should behave as this was the case. Most
commonly, the beginning and end of the logical execution for
an instance of a periodic task are assumed to coincide with
the release times of the considered instance and the following
periodic instance, respectively, i.e., communications occur at
the task’s period boundaries. In this way, communications are
time-deterministic, which also implies data-flow determinism1.
Most commonly, the beginning and end of the logical execu-
tion of an instance of a periodic task are assumed to coincide
with the release times of two consecutive periodic instances,
i.e., communications occur at the task’s period boundaries.

Sometimes, LET is implemented through shadow data
copies and dedicated high-priority tasks that perform the actual
read/write operations. This approach allows for ensuring pre-
dictable memory access times, which in turn enables accurate
control of memory contention [9].
SL-LET. The original LET model assumed logically instan-
taneous communication, preventing its adoption to distributed
systems. Indeed, two main challenges arise when considering
distributed ECUs: (i) the clock of different ECUs may not be
perfectly synchronized, and (ii) the time required to perform
communications cannot be neglected. To overcome (i), SL-
LET [11, 18] assumes that each ECU has its own local
time base and that the difference between any two local time
bases is bounded by a synchronization error. More generally,
the scope of a local time base is called time zone. The
concept of time zone is also used to cope with (ii). The
communication delay between any two time zones is modeled
as an interconnect task. This task has the purpose of hiding
the varying communication delay that can be incurred while
traversing networks with a logical time. In this way, messages
between time zones become visible only when their logical
time expires, even if they arrived earlier. The logical execution
time of the interconnect task must be higher than the sum of
the worst-case communication latency between the two time

1A producer task producing data for a consumer task is said to communicate
in a data-flow deterministic fashion if each instance of the consumer task
always reads from the same instance of the producer task in any execution
run [17].
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zones plus the synchronization error [11]. Within the same
time zone, the original LET model can be applied.

III. SYSTEM MODEL

This paper considers a system composed of multiple ECUs
interconnected by the network (e.g., based on Ethernet). The
symbol E denotes the set of all ECUs.

Each ECU Es ∈ E comprises a multi-core platform and
manages a set of real-time tasks. The set of cores included
in Es is denoted by Cs. The symbol cs,k denotes instead
the k-th core within Cs. As required by SL-LET, the clock
synchronization error between two ECUs must be bounded.
To this end, δs,d denotes the maximum clock synchronization
error between two arbitrary ECUs Es, Ed ∈ E .

We consider a set Γ of real-time tasks, in which the i-th task
is denoted as τi ∈ Γ. Each task releases a potentially infinite
sequence of instances (jobs) and is characterized by a worst-
case execution time Ci, a period Ti, and a relative deadline
Di ≤ Ti.
Scheduling. Each ECU runs the AUTOSAR Adaptive mid-
dleware on top of a POSIX-compliant Operating System (OS)
embedding the PSE51 (Portable Operating System Interface),
such as Linux. POSIX PSE51 is one of the four real-time pro-
files defined by the POSIX standard. POSIX (and hence Linux)
provides different schedulers, including the fixed-priority real-
time and general-purpose (SCHED_OTHER) schedulers. The
fixed-priority scheduler comes into two different variants,
which provide slightly different behavior for tasks assigned to
the same priority: the SCHED_RR scheduler, which schedules
equal-priority tasks in a round-robin manner with a given time
slice, and SCHED_FIFO, which releases the processor only on
suspension, termination or preemption [19]. All schedulers are
preemptive.

This work leverages the SCHED_FIFO scheduler, i.e., clas-
sical preemptive fixed-priority scheduling, which AUTOSAR
Adaptive also uses. We consider the partitioned scheduling
paradigm, i.e., each task is mapped to one core and cannot
migrate across cores: this is known to be the preferred choice
by the automotive market thanks to the lower overheads
incurred and the more mature literature in terms of real-
time analysis technique [20, 21], which can re-use decades
of results for single-processor scheduling. Furthermore, also
LET and SL-LET consider partitioned scheduling [9, 17].

The set Γs denotes all the tasks allocated to ECU Es while
Γs,k denotes all the tasks allocated to core cs,k of ECU Es.
Service-oriented communication. Tasks communicate by
leveraging a service-oriented architecture, in which they sub-
scribe to and/or provide services. Services implement logical
communication channels between tasks: a task acting as a
service provider is essentially a producer sending messages to
all the subscribers (i.e., consumers) interested in its service.

This paradigm is similar to the well-known publish/sub-
scribe communication. However, AUTOSAR Adaptive sits on
a higher level to abstract how the SoA is actually implemented.
The publish/subscribe paradigm is, hence, a possible imple-
mentation option, leveraging SOME/IP [14] or DDS [22].

The set of all services is denoted by Θ. Each service θj ∈ Θ
has a single producer while it can have multiple consumers.
A task can be a producer, providing a service, a consumer, by
subscribing to the service, or both. Function P(θj) returns
the task that produces messages about θj ; instead, S(θj)
returns the set of tasks subscribing to θj . Service-oriented
communications can also involve tasks executing on different
ECUs, as described next (Sec. IV-B). Therefore, we distinguish
between (i) intra-ECU and (ii) inter-ECU communications.

A communication that involves a service θj , a producer τp =
P(θj), and a consumer τr ∈ S(θj), is said to be intra-ECU if
both the tasks are in the same ECU, i.e., τp ∈ Γs ∧ τr ∈ Γs,
with Es ∈ E . Instead, a communication is said to be inter-
ECU if the two communicating tasks are allocated to cores in
two different ECUs, i.e., τp ∈ Γs∧τr ∈ Γ\Γs. As required by
SL-LET, the worst-case transmission time (WCTT) between
two ECUs Es ∈ E and Ed ∈ E \Es for sending/receiving the
data related to a service θj ∈ Θ must be known and bounded.
Essentially, the WCTT ωj

s,d bounds the maximum time needed
for performing communication between a producer τp in Es ∈
E and a consumer τr in Ed ∈ E for a service θj ∈ Θ, which
depends on the size of the sent/received data, and includes the
time needed for context switches, execution of the network
drivers and stack, and the network delay.

Table I summarizes the main symbols used throughout the
paper.

Symbol Description
E set of all ECUs
Es s-th ECU
Cs set of cores within Es

cs,k k-th core within Cs
δs,d max. synchronization error of Es and Ed

Γ set of all real-time tasks
τi i-th real-time task
Ci worst-case execution time for τi
Ti period of τi
Di relative deadline of τi, Di ≤ Ti

Γs set of all tasks allocated to Es

Γs,k set of all tasks allocated to core cs,k in Es

Γk
L set of tasks registered to AP-LET and executing on core k

Θ set of all services
θj j-th service
P(θj) function returning the task producing messages on θj
S(θj) function returning the set of tasks subscribing to θj
ωj
s,d WCTT between ECUs Es and Ed for service θj

TABLE I: Main notation used throughout the paper.

IV. THE AP-LET META-PROTOCOL

This section presents AP-LET, an AUTOSAR Adaptive-
specific meta-protocol that allows matching AUTOSAR Adap-
tive with state-of-the-art LET/SL-LET proposals. The meta-
protocol is instantiated in two different variants: (i) HP-AP-
LET: (High-Priority AP-LET) based on high-priority LET
tasks on both the producer’s and consumer’s sides; (ii) TM-
AP-LET: (TiMestamp AP-LET) it uses a timestamp in the
payload of the message to distinguish whether a message is
valid at the destination.

Both variants satisfy the following requirements:
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RQ1 Communications must be deterministic.
RQ2 The differences in the communication paradigms must

be managed. Indeed, Adaptive is based on the service-
oriented paradigm, in which consumer tasks are triggered
by the reception of messages from the services they
subscribe to. Very differently, LET (and SL-LET) is
designed to work with subscribers that are triggered by
periodic stimuli and not in a message-driven fashion.

RQ3 A dynamic network of producers/consumers must be
supported. Indeed, differently from AUTOSAR Classic,
Adaptive allows tasks to join and leave AP-LET at
runtime. Thus, a dynamic mechanism to register the
subscribers of each service is required.

RQ4 Producers need to transparently send messages using
the same Application Programming Interface (API), in-
dependently of whether the consumers are in the same or
in different ECUs, despite the two cases being handled
differently under SL-LET (Sec. II).

A. Design Principles

Next, we discuss how to address the design requirements
in an actual protocol. RQ1, RQ2 and RQ3 are protocol-
related requirements; therefore, they must be considered when
designing AP-LET. Differently, RQ4 is an implementation-
related requirement and is discussed later in Sec. V.

Determinism (RQ1). The first requirement is the most com-
mon for a LET protocol: determinism. In LET communi-
cations, there are two notions of determinism: time deter-
minism and data-flow determinism. In a system with time-
deterministic communications, it is possible to predict with
certainty the timing in which data will be sent and received.
Data-flow determinism is, instead, a weaker property: a task τp
producing data for a consumer task τc is said to communicate
in a data-flow deterministic fashion if each consumer job
τc,r always reads from the same job τp,g [17]. Therefore,
time-determinism allows ensuring data-flow determinism. For
dynamic systems such as those managed by Adaptive, data-
flow determinism is still a mandatory requirement, while time-
determinism is an optional (but desirable) requirement.

Message-driven vs. time-driven communications (RQ2). As
LET and SL-LET are typically designed to work with peri-
odic tasks, Adaptive’s service-oriented communication triggers
tasks following a message-driven activation pattern. Different
design solutions can be devised to overcome this issue.

We underline that most of the software running on au-
tomotive ECUs is periodic rather than message-driven. This
paper, therefore, follows the most natural approach for this
application domain, privileging periodically triggered tasks.
Moreover, since the AUTOSAR Adaptive specifications al-
low the usage of common C++ functionalities, our design
optimizes the performance of intra-ECU communications by
leveraging shared-memory buffers rather than the message-
passing mechanisms offered by the ara::com layer.

Inter-ECU communications, instead, are message-driven
activities, since they necessarily require the usage of the

network layer API (e.g., sockets). ECUs receiving messages
leverage listener tasks, which have the purpose of receiving
the message from the network and copying it into the ECU’s
local memory. After that, SL-LET communication can be
implemented by following two different paradigms, which are
detailed next. Listener tasks are also leveraged by communi-
cation middlewares, such as the FastDDS implementation of
the DDS standard [23], in which, instead, a fully non-LET
message-driven communication paradigm is used.

This approach minimizes the number of message-driven
communications, with benefits on the overall timing pre-
dictability: indeed, it is known [23]–[25] that message-driven
tasks’ activations introduce scheduling effects that must be
accounted for in the timing analysis and typically results
in an increased number of interfering job instances (and
thus a higher interference) on low-priority tasks. Further-
more, message-driven communication in AUTOSAR Adaptive
always leverages the network stack, introducing overheads
on the system. By keeping the duration of message-driven
activities at the bare minimum (only for the time required
to copy the data from the I/O buffers to the ECU memory),
the additional interference introduced on lower-priority tasks
and the communication overheads are minimized.

As shown later, these design choices led to a time-
predictable SL-LET solution. Nevertheless, other solutions are
possible — a different paradigm can, for example, leverage
message-driven communications and implement SL-LET by
programming the communication channels to deliver messages
(and thus trigger tasks’ activations) only after the logical
execution time associated with the specific communication has
expired. However, such an approach would lead to a more
complex implementation of the buffering mechanism at the
channel level and of the corresponding LET-driven expiration
mechanism. Nonetheless, this design solution could still be
beneficial for intrinsically message-driven systems (e.g., DDS-
based IoT and edge systems), which typically do not exhibit
periodic activations of real-time tasks. This research direction
is left for future work.

Supporting dynamic producers/consumers (RQ3). As AU-
TOSAR Adaptive allows tasks to join and leave the service-
oriented architecture dynamically, AP-LET must provide
mechanisms to register and deregister tasks to services. This
constitutes another considerable difference from classical au-
tomotive architectures, in which tasks are statically declared
to be part of communication at the design time.

B. Definition of AP-LET

This section presents the AP-LET Meta-Protocol. AP-LET
is specialized to provide SL-LET communications on the
service-oriented communication architecture of AUTOSAR
Adaptive. AP-LET manages intra-ECU communications based
on classical shared-memory communication [26]; however, its
implementation has been deeply revisited to cope with the
peculiarities of AUTOSAR Adaptive (see Sec. V). Inter-ECU
communications are instead managed in two different ways,
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giving rise to the two instances of the meta-protocol: HP-
AP-LET, a variant based on high-priority tasks managing
communications and TM-AP-LET, a variant that leverages
message timestamps to implement SL-LET.

The meta-protocol is defined by the following set of rules.
AP1 Registration phase. When joining AP-LET, tasks must

specify their task id, period, and communication mode.
The communication mode is used to distinguish between
producers (i.e., service providers) and consumers (i.e.,
service subscribers). The task must also declare whether
the communication is meant to be intra- or inter-ECU.

AP2 Deregistration phase. When leaving AP-LET, a task
must specify its task id, so that AP-LET can proceed
with deregistering it from all the subscribed services (if
the task is a subscriber) or removing the provided service
itself (if the task is a producer).

AP3 Intra-ECU communications. Given an arbitrary ECU
Es ∈ E , the intra-ECU communications involving a
producer task τp ∈ Γs and a consumer τc ∈ Γs follow
the intra-ECU communication protocol (see Sec. IV-C).

AP4 Inter-ECU communications. Given an arbitrary ECU
Es ∈ E , the inter-ECU communications involving a
producer task τp ∈ Γs and a consumer τc ∈ Γ\Γs follow
the inter-ECU communication protocol. The inter-ECU
communication protocol can be instantiated by either HP-
AP-LET or TM-AP-LET (see Sec. IV-D and Sec. IV-E).

AP5 LET communication invariant. The intra-ECU com-
munication protocol needs to guarantee that an intra-
ECU communication involving a job τp,g of producer task
τp ∈ Γs and a job τc,a of a consumer task τc ∈ Γs for
a service θj ∈ Θ follows the following invariant. If τp,g
and τc,a are released at times to and tr, respectively, the
message sent by τp,g is said to be valid for τc,a only
if tr ≥ to + Tp. The most recent valid one must be
considered if there are multiple valid messages at a time.

AP6 SL-LET communication invariant. Both HP-AP-LET
or TM-AP-LET ensure that an inter-ECU communication
involving a job τp,g of producer task τp ∈ Γs and a job
τc,a of a consumer task τc ∈ Γz ̸= Γs, for a service
θj ∈ Θ, follows the following invariant. If τp,g and τc,a
are released at times to and tr, respectively, the message
sent by τp,g is said to be valid for τc,a only if tr ≥
to +Tp + δs,z +ωj

s,z . The most recent valid one must be
considered if there are multiple valid messages at a time.

Note also that rules AP5 and AP6 establish two invariants
required to comply with LET (intra-ECU) and SL-LET (inter-
ECU) for guaranteeing data-flow determinism. AP5 states that
consumers need to read the most recent message sent by a job
of the producer at the end of its period. AP6 extends AP5 to
account for the clock synchronization error δs,z between two
different ECUs and the worst-case transmission time ωj

s,z .
Note that dynamic task handling can lead to a transitory

interval of non-deterministic behavior, due to computations
required by registration/deregistration operations.

Consider, for example, a linear task chain composed of three
tasks τ1 ≻ τ2 ≻ τ1, where ≻ states the data dependencies

between tasks. The registration operation can extend or register
a new service and, hence, fork the existing cause-effect chain
to provide multiple different outputs τ1 ≻ τ2 ≻ τ3 and
τ1 ≻ τ2 ≻ τ4. After a transitory time the registration
operation is performed by the HP-LET tasks, the deterministic
behavior is restored in the steady state. It is possible to use the
registration operation also to enhance the cause-effect chain by
adding a task in the middle of the chain τ1 ≻ τ2 ≻ τ3 ≻ τ4.
However, to not break determinism and the functional behavior
of the cause-effect chain, the tasks that must link to the newly
registered task must deregister to their actual service and
perform a new registration to the new one.

The same concept applies also for the deregistration phase,
which can be used to remove an existing service from the non-
linear cause-effect chain by deregistering one of the last tasks
of the chain τ1 ≻ τ2 ≻ τ3. After the deregistration operation
performed by the HP-LET tasks, the deterministic behavior
is restored. It is possible to use the registration operation
also to reduce the cause-effect chain by removing a task in
the middle of the chain. However, to not break determinism
and the functional behavior of the cause-effect chain, the task
must unlink from the deregistering task and perform a new
registration.

C. Intra-ECU communications

This section focuses on the communications occurring
within tasks in an arbitrary ECU Es ∈ E (rule AP3).

For these communications, following previous work [26],
we handle intra-ECU (but inter-core) communications while
guaranteeing adherence to the original LET semantics [5] by
leveraging tasks running at the maximum priority, which are
referred to as HP-LET tasks in the following.

The protocol is defined by the following set of rules:

IE1 For each core cs,k ∈ Cs, an HP-LET task τL
s,k ∈ Γs,k

is introduced and runs at the highest priority to manage
intra-ECU communications within Es ∈ E .

IE2 When a task joins AP-LET for intra-ECU communica-
tions on a core cs,k ∈ Cs of ECU Es ∈ E , it registers to
the HP-LET task τL

s,k ∈ Γs,k of Es.
IE3 When a task quits AP-LET on a cs,k ∈ Cs of ECU Es ∈

E , it de-registers to the HP-LET task τL
s,k ∈ Γs,k of Es.

IE4 For each core cs,k ∈ Cs, consider the job of a task τi ∈
Γs running in [to, to + Ti). During its execution, the job
reads and writes data from/to a local variable, which is
accessible by both τi and the LET task τL

s,k of its core.
All the read operations of such a job are performed by
τL
s,k and are scheduled to occur at the beginning of the

interval [to, to + Ti), i.e., at to. All write operations of
such a job are performed by τL

s,k and are scheduled to
occur at the beginning of the interval [to+Ti, to+2 ·Ti)
in which the next job runs, i.e., at to + Ti.

IE5 For each core cs,k ∈ Cs, task τL
s,k is activated at the

release time of each task that needs to produce or con-
sume data for/from tasks in the same ECU, and behave
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Fig. 2: Data flow between producer τp and a consumer τc under the HP-AP-LET protocol. Local outputs/inputs are made
available to the HP-LET task by producer/consumer tasks at the end of their period. Instead, network outputs and inputs are
managed by the HP-LET task at the beginning of activation period of every job of τp and τs, respectively. All communication
operations are performed at pre-determined time instants.

following rules IE2-IE42.
IE6 Given an arbitrary time t, let ΓL

s (t) be the set of LET
tasks (in different cores cs,k ∈ Cs) that need to perform
read and write operations at time t in the ECU Es ∈ E
under analysis. Each τL

s,k ∈ ΓL
s (t) starts first executing

all the write operations scheduled for time t.
IE7 After the writing phase, all LET tasks τL

s,k ∈ ΓL
s (t),

synchronize before starting the reading phase.
IE8 Finally, all LET tasks τL

s,k ∈ ΓL
s (t) perform all the read

operations scheduled for time t.
Rules IE6-IE8 guarantee ensuring the so-called “first all

writes - then all reads” LET semantics [5, 9] required by
scheduled communications in a multi-core platform (rule IE6
and IE8), taking into account that communications occurring
in different cores can have different duration (rule IE7). Fur-
thermore, the LET communication invariant AP5 is satisfied
by writing (and reading) each message in the next period of
the producer (rule IE4).

D. The HP-AP-LET Protocol

The first approach to implement SL-LET on AUTOSAR
Adaptive is through dedicated tasks running at the highest pri-
ority. To integrate SL-LET with the LET protocol discussed in
the previous section, it is possible to extend the HP-LET tasks
(see Sec. IV-C) to also implement inter-ECU communications.
They can hence send/receive messages to/from the network

2Please note that this rule does not specify a strictly-periodic activation.
Indeed, the HP-LET task τL

s,k follows the activation pattern Generalized
Multiframe Task [27]. This is further discussed in Section V .

on behalf of producers and consumers executing on the same
ECU, similarly to the intra-ECU communication protocol.

The rules of HP-AP-LET are reported next, specializing
those of the AP-LET meta-protocol.

HP1 For each ECU Es ∈ E , the HP-LET tasks τL
s,k of

each cs,k ∈ Cs also manage inter-ECU communications
registered in Es.

HP2 When a new task joins AP-LET for inter-ECU commu-
nications on a core cs,k ∈ Cs of ECU Es ∈ E , it registers
to the HP-LET task τL

s,k ∈ Γs,k.
HP3 When a task quits AP-LET on a core cs,k ∈ Cs of ECU

Es ∈ E , it de-registers to the HP-LET task τL
s,k ∈ Γs,k.

HP4 On the core cs,k ∈ Cs of the producer task, the commu-
nication is handled by the HP-LET task τL

s,k executing
on the same core of the producer. τL

s,k is activated at the
release time of each job of each registered task to perform
communications. τL

s,k also updates the timestamp of the
message setting it to the current activation time plus syn-
chronization delay plus WCTT, i.e., to+Tp+δs,z+ωj

s,z ,
with to defined as in rule AP6.

HP5 On the core cz,x ∈ Cz of the consumer task τc ∈ Γz ,
messages are received by the HP-LET task τL

z,x executing
on the same core of the consumer. τL

z,x runs at the release
time of each job of each registered task, and it processes
the received message for τc when its next job τc,a is
released, say at tr. τL

z,x then delivers the message to the
consumer task only if tr is ≥ to the message timestamp,
i.e., if it satisfies the invariant AP6 (see Sec. IV-B).
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Fig. 3: Data flow between producer τp and a consumer τc under the TM-AP-LET protocol. As opposed to the HP-AP-LET
approach, network outputs and inputs are directly managed by producer and consumer tasks, respectively. Furthermore, all
communication operations are scheduler-dependent, while data-flow determinism is ensured by using timestamps.

Example. Figure 2 shows an example for the HP-AP-LET
protocol. Consider a producer task τp ∈ Γs,k and a consumer
task τc ∈ Γz,x executing respectively on the Es and Ez

and communicating using service θj . When τp finishes its
execution, it makes available the output to the HP-LET task
τL
s,k, whose activation is set at the beginning of the next release

time of τp, when it sends the message from the network. Note
that the time τp makes the output available may vary for each
job. However, rule HP4 enforces the output operation to occur
at the end of the period of the current job of τp and sets the
timestamp of the message to to + Tp + δs,z + ωj

s,z as if it
always experiences a fixed network delay. Upon receiving the
message on Ez , the HP-LET task τL

z,x then forwards it to
τc ∈ Γz,x according to the rule HP5, enforcing determinism.

E. The TM-AP-LET Protocol

Differently from the HP-AP-LET, TM-AP-LET does not
use high-priority tasks to manage SL-LET communications.
Instead, timestamps are used to enforce data-flow determinism
at the cost of losing time determinism, but with the advantage
of reducing overheads and high-priority interference. Pros and
cons of the two approaches are detailed in Sec. V-D. The rules
of the TM-AP-LET protocol are listed next, extending those
of the meta-protocol.

TM1 When a task joins AP-LET, it registers directly to the
AUTOSAR Adaptive services it requires.

TM2 When a task quits AP-LET, it de-registers directly from
the AUTOSAR Adaptive services it was using.

TM3 When a job τp,g of a task τp ∈ Γs, released at time
to, produces a message, it directly performs the output
operating by sending it through the network. Before
sending the message, the timestamp value of the message
is updated with the current activation time plus the
synchronization delay plus its WCTT, i.e., setting it to
to + Tp + δs,z + ωj

s,z .

TM4 On the ECU Ez ∈ E of the consumer task τc ∈ ΓZ ,
messages are directly received by the consumer. At the
beginning of the execution of each job τc,a of τc, released
at tr, only the most recent message with timestamp less or
equal to tr is made available to τc, i.e., only if it satisfies
the invariant AP6 (see Sec. IV-B). If the invariant is not
satisfied, it is checked again in the next job.

The key difference between the two approaches is when the
data is logically produced (which in this case means “made
available outside the ECU”) and thus made available to the
consumer: in the HP-AP-LET approach the corresponding
time instants are entirely deterministic since the HP-LET tasks
run at pre-determined time instants, as reported in Sec. V-A.
Differently, under TM-AP-LET, messages are directly sent
and received by the producer and consumer tasks, which are
subject to scheduling-induced delays as they do not run at the
highest priority. Hence, while data-flow determinism is guar-
anteed by construction by invariant AP6, time determinism
cannot be guaranteed.

Example. Figure 3 shows an example of the TM-AP-LET
protocol in action. Consider a producer task τp ∈ Γs,k and a
consumer task τc ∈ Γz,x executing on Es and Ez , respectively,
and communicating using service θj . When τp completes its
execution, it sends the output directly to the network. Despite
the time needed by τp to send the output may vary, Rule TM3
sets the timestamp of the message to to + Tp + δs,z + ωj

s,z as
if the output is sent at the end of τp’s period (accounting for
communication delay and synchronization). Upon receiving
the message on Ez , τc considers the message valid if it
fulfills AP6. As opposed to the HP-AP-LET protocol, TM-AP-
LET guarantees only data-flow determinism, as the time the
producer sends the output to the network is not deterministic.
However, communication does not involve high-priority tasks.
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Fig. 4: Workflow to obtain the AP-LET Adaptive Platform
executable.

V. IMPLEMENTATION

This section describes the implementation of our solution.
The workflow is shown in Fig. 4. The implementation was
performed in C++ on the Linux operating system, leverag-
ing the AUTOSAR Adaptive Platform Demonstrator (APD),
which is freely available to all members of the AUTOSAR
consortium. APD, in turn, was modified to implement the
proposed protocols. Following AUTOSAR Adaptive, services
are statically declared within ARXML files. Starting from
the ARXML, the service-specific routines and data structures
needed for AP-LET are generated by modifying the AU-
TOSAR Adaptive tooling, which generates the service-specific
classes. These classes are Proxy and Skeleton, illustrated
in Fig. 4, and constitute wrappers of AUTOSAR Adaptive
to handle communications. In particular, the Skeleton class
implements all the operations that need to be performed on the
sender side (e.g., publishing messages and offering services).
Similarly, the Proxy class implements all the operations on
the receiving side, such as the subscriptions to services and
the reception of messages. The generated classes are merged
with our custom AP-LET module for Adaptive to generate
AP-LET-aware executables for AUTOSAR Adaptive.

To implement the service-oriented architecture, we used the
SOME/IP publish/subscribe middleware, which is the default
solution in Adaptive. Therefore, inter-ECU communications
are performed by wrapping the AUTOSAR Adaptive API to
interact with SOME/IP into a unified interface for both intra-
ECU and inter-ECU communications (RQ3).

The clock between different ECUs on AUTOSAR Adap-
tive is regulated using the time synchronization functionality
provided by the Time Synchronization functional cluster [28].

Next, we describe our protocol-specific implementations.

A. LET and SL-LET with High-Priority Tasks

We present how we managed LET and SL-LET with high-
priority tasks. This is common to both the intra-ECU protocol
(Sec. IV-C) and the HP-AP-LET protocol for inter-ECU com-
munications (Sec. IV-D).

Data Structures. To manage the communications between
producers and consumers by means of high-priority tasks,
logical communication channels are created. They are meant
to transfer the data needed to manage the services used by
producers and consumers. Services are implemented in such a
way that both local and remote consumers can subscribe to the
same service, i.e., to allow a service to support both intra-ECU
and inter-ECU communication to different subscribers. Logical
communication channels include a metadata section containing
all the relevant information related to tasks registered to the
channel and buffers to exchange messages between tasks.

Metadata consists of (1) a unique channel identifier, (2) a
status flag, which states whether new data is available from
the producer, (3) a timestamp, stating when the consumer
is ready to accept new data, (4) the size of the channel’s
messages, (5) the number of members joining the channels. To
manage communication between tasks, metadata also contains
(6) a reference to the producer task, (7) the core where
it is executing, and (8) consumers’ references queue, to
address all the consumers of the channel correctly. Finally, to
discriminate between intra- and inter-ECU communication it
includes (9) a flag indicating the scope of the communication
is used, along with a (10) pending queue used by the HP-LET
task to store incoming messages from the network, ordered by
timestamp.

The logical communication channel also includes a private
memory buffer, where the message is stored. It can be ac-
cessed only by the HP-LET task managing the communication
during the communication phases.
Registering to a service. Since AUTOSAR Adaptive relies
on a dynamic POSIX-compliant OS, all the tasks running on
each ECU Es ∈ E must register before communicating. This
operation is required to allow tasks to join AP-LET at runtime.

On each arbitrary consumer ECU Es ∈ E and core
ck,s ∈ Cs, the HP-LET tasks τL

s,k ∈ Γs,k keeps track of
the tasks registered to AP-LET. The registration phase allows
producer and consumer tasks to share the information required
by HP-LET tasks to handle communication. Every time a task
τi registers to AP-LET to either publish or subscribe for a
topic, a registration data structure is created. It is mapped to
a memory segment shared between τi and the corresponding
HP-LET running on its core. For each registering task τi, the
data structure’s metadata contains:

(1) the task name is used as a unique identifier, (2) the
last activation time, (3) the period, (4) the core where it
is executing, (5) service name to identify the service to
which the task is registering uniquely, (5) the communication
mode for a service (producer or consumer), (6) the shared
buffer used to communicate with the HP-LET task, (7) a
communication scope flag stating whether the service is
internal or external the ECU, and (8) a service ID in the
latter case. During the registration phase, any registering task
τi also creates a shared-memory buffer to host data. The latter
is used by both τi and the HP-LET tasks to communicate.
Finally, τi notifies the HP-LET task executing on the same
core to complete the registration. The HP-LET task in turn
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finalizes the registration phase using the information stored in
the shared registration data structures.

Algorithm 1 HP-LET activation time setting process

1: Q is the sorted queue managed by the HP-LET task
2: t is the current time
3: k is the core index where HP-LET task is executing
4: function SETNEXTACTIVATIONTIME(t)
5: for each τi ∈ Γk

L(t) do
6: Insert (t+ Ti) in Q, sorted in ascending order
7: return first element in Q
8: end function

Each HP-LET task must then activate each time a task regis-
tered to AP-LET is released. This mechanism is implemented
using a private ordered queue that keeps track of the next
activation time of each task registered to AP-LET on the same
core. Algorithm 1 shows how the HP-LET activation time
is selected, where Γk

L(t) denotes the set of tasks registered
to AP-LET running on the k-th core that have an activation
event at time t. For each task τ , the new activation time is
computed by adding the related period Tτ to the current time
t (line 6), which is eventually inserted in the ordered queue Q
managed by the HP-LET task in ascending order. Finally, the
next activation time of the HP-LET task is chosen by taking
the first element in Q. The schedulability analysis of the HP-
LET task can be performed by leveraging the multi-frame task
model, as discussed in [9]. Finally, the deregistration operation
is performed at runtime by tasks in order to leave the AP-
LET protocol. Once a task is deregistered to AP-LET, the
shared buffer used for communication with the HP-LET task is
deleted. Then the task is unlinked with all the communication
channels it was connected to, and its registration data structure
is deleted.

Implementation of Intra-ECU communications. Intra-ECU
communication is managed by means of three types of buffers:
(i) a buffer for the producer, (ii) a buffer of the communication
channel, and (iii) a buffer for each consumer. (i) and (iii) are
the shared buffers specified by each task during the registration
phase. When an output operation is managed by the HP-LET
task related to a certain producer, the HP-LET task copies
the data produced by the producer in buffer (i) to buffer (ii).
In general, when producer and consumer tasks execute on
the same core, it is possible to employ pointer swapping of
buffer (i) and buffer (iii), bypassing buffer (ii) and avoiding
unnecessary memory copy operations [29]. Similarly, when
an input operation is processed, the HP-LET task running in
the core of each consumer copies the data from buffer (ii)
to buffer (iii). Each consumer’s memory buffers are accessed
by the consumers references queue, presented in Sec. V-A.
Similarly, the buffer of the consumer is accessed through
the producer reference. Synchronization between LET tasks is
achieved by using a custom barrier based on POSIX spinlocks.
As done in [9, 10, 26], we consider LET intervals that never
overlap to avoid inconsistencies.

Implementation of Inter-ECU Communications. In AU-
TOSAR Adaptive, inter-ECU communications occur through
the Proxy and Skeleton classes, which interact with the
underlying SOME/IP layer. These classes are automatically
generated from the ARXML configuration files, which were
extended to support inter-ECU communication. Skeleton con-
tains the API to offer services and send messages. Similarly,
Proxy contains the functions to subscribe to services. In our
implementation of AP-LET, each core that performs inter-
ECU communication interacts with an instance of Skeleton
and Proxy. SOME/IP provides two types of communication:
synchronous and asynchronous. The former forces the read
of messages to occur upon reception on the destination ECU.
Since AP-LET requires messages to be read at predetermined
time instants, this work uses asynchronous communication.
Under HP-AP-LET, HP-LET tasks manage Skeleton and
Proxy on behalf of all producer/consumer tasks, while under
TM-AP-LET, Skeleton and Proxy are directly managed by
application tasks depending on the used interfaces.

B. HP-AP-LET implementation

Next, we focus on HP-AP-LET, summarizing the operations
occurring on the producer and consumer side.
Producer side. Every time an inter-ECU communication
message needs to be sent, independently from the service
it belongs to, the producer writes the message in the buffer
shared with the HP-LET task created during the registration
phase. Messages are actually sent over the network by the HP-
LET task only at the next release time of the producer task,
following rule HP4. Before sending the message, however,
the message timestamp is updated with the next activation
time w.r.t. the job that sent the message, with an additional
delay equal to the WCTT plus the synchronization error. It
is important to remark that the producer is not aware of
the presence of the HP-LET task and can transparently send
messages using a unified API (requirement RQ4).
Consumer side. Every time a read operation is executed by
the HP-LET task, the possible messages to be delivered are
considered. These messages are given by those contained in
the queue of pending messages of the channel, defined in
Sec. V-A, which contains all the messages that have been
received in previous executions of the HP-LET task but have
not yet been delivered (because AP6 was not satisfied). Among
all these messages, if there is at least one message satisfying
AP6, the most recent one is delivered to the consumer, and all
the others are discarded. Otherwise, the messages contained in
the queue of the Proxy class are moved to the queue of pending
messages of the channel and no message is delivered to the
consumer. Delivered messages are copied to the buffer of the
HP-LET task of the consumer’s core. Also in this case, the
consumer is not aware of the presence of the HP-LET tasks.

C. TM-AP-LET implementation

Registration Phase. In this case, the registration phase is
much simpler and only requires registering for the services
of interest by using the standard API of AUTOSAR Adaptive.
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This simplicity is due to the fact that TM-AP-LET does not
involve other tasks in the communication phase. For each task
registering as a subscriber for a service, a local message queue
is created and used to store received messages.
Producer side. Every time the producer needs to send a
message on a service, it must set the message timestamp
according to the protocol rules (see Sec. IV-B, AP6). This
operation is performed by a function introduced into the
ara::com functional cluster.
Consumer side. At the beginning of the consumer’s execution,
the possible messages to be used are processed, similarly to
Sec. V-B. They are those stored in the local message queue
(containing messages that were not delivered in previous jobs
because AP6 was not satisfied) and those received by the
network since the last job execution. The latter messages are
contained in a queue of Proxy. For each of these messages,
the timestamp is evaluated according to AP6. If there is at last
one valid message, i.e., a message for which the timestamp
value precedes the current activation time of the consumer,
the most recent valid message is used by the current job of
the consumer, and all the others are discarded. Otherwise, no
new message is delivered to the current job. These operations
were implemented within the ara::com functional cluster.

D. Qualitative comparison of the two protocols

Both HP-AP-LET and TM-AP-LET have advantages and
disadvantages. HP-AP-LET has the advantage of guaranteeing
both time and data-flow determinism of communications,
which are performed by tasks running at the highest priority
and ensures time determinism of communications. Never-
theless, since HP-LET tasks are scheduled with the highest
priority of the systems, some overheads are introduced. This
means that whenever it is required to perform communication
operations, the current task is preempted, and a context switch
takes place. Such context switch introduces an overhead in
the order of microseconds that, depending on the number of
communicating tasks, their periods, and the size of messages,
could become non-negligible and affect the overall system
performance and the response time of all tasks due to inter-
ference. Furthermore, higher-priority functional tasks need to
wait for the termination of communications of low-priority
tasks, which are performed at the highest priority by the HP-
LET task. This leads to an SL-LET-induced priority-inversion
phenomenon [30]. Hence, more communication operations
may come at the cost of more priority inversion and more
overhead introduced.

Conversely, TM-AP-LET does not introduce these draw-
backs, as it does not need additional tasks for perform-
ing the communication over the network. However, HP-LET
tasks are still present for intra-ECU communication. This
design choice is made because it allows to perform intra-
ECU communications more efficiently, without involving the
network stack, while maintaining their design coherent with
well-established industrial practices in automotive systems [9,
29]. Furthermore, this guarantees time-deterministic intra-
ECU communications. While both our protocols leverage

message timestamps, HP-AP-LET can be optimized similarly
as suggested by [11] to reduce the space overhead in the
message payload by using a sequence number rather than an
actual timestamp. This optimization is, instead, not possible
for TM-AP-LET. Hence, if this optimization is applied to
HP-AP-LET, TM-AP-LET needs more room in the message
payload to store the needed timing information: on 64-bit
ARM Linux machines, for example, 16 bytes are needed for
storing a timespec data structure versus one or a few bytes
needed to store sequence numbers. With respect to HP-AP-
LET, the overhead is therefore introduced in the message size
rather than in the CPU execution time. Moreover, TM-AP-
LET can only guarantee data-flow determinism and not time
determinism since sending and receiving operations can occur
at any time during the execution of the tasks. Instead, the data-
flow determinism is guaranteed since it only depends on the
time when the messages are read. Also, causality is preserved.

As highlighted in [11], the adoption of the LET paradigm
for distributed systems comes with different limitations. Al-
though it is possible to embed the communication delay into
the logical execution time of the sender task, this technique
leads to serious disadvantages. In particular, the logical exe-
cution time of the sender task must be sufficiently large to
include both the task response time and the communication
delay, bounding the communication delay to not exceed the
logical execution time of the sender task. This restriction
is usually hard to meet. The AP-LET protocol overcomes
this limitation by addressing the communication delay to the
message validity time, which is represented by its timestamp.
However, the time- and data-flow determinism come with
the price of an inflated maximum end-to-end latency due to
writing operations performed at the end of the period.

E. Robustness of AP-LET protocol

Although AP-LET is designed to enable determinism in
the AUTOSAR Adaptive system, operations performed at
runtime may threaten the system’s deterministic behavior.
Such operations are represented by dynamic task handling to
join and leave the LET paradigm.

To better explain the effect of the dynamic registration and
deregistration operations on the determinism of the AP-LET
protocol, it is required to discriminate whether the communi-
cation is meant to be inter- or intra-ECU.

Intra-ECU. As stated by rules IE2 and IE3 in Sec. IV-B,
the registration/deregistration of a task to the AP-LET meta-
protocol for intra-ecu communication is handled by the high-
priority tasks. Hence, during the registration/deregistration
phase, the high-priority task creates/destroys the communica-
tion channels and shared buffers related to the task, as ex-
plained in Sec. V-A, updating the cause-effect chain. Rules IE4
and IE5 state that input (read) and output (write) operations
are performed by the high-priority tasks at predetermined time
instances. Therefore, any changes on the cause-effect chain
lead to an initial transitory interval of time of non-deterministic
behavior, due to computations required by registration/dereg-
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istration operations. After that, the deterministic behavior is
ensured by rules IE4 and IE5.

Inter-ECU. For the HP-AP-LET protocol, as stated by rules
HP2 and HP3, tasks that want to join/leave the AP-LET
protocol must register/deregister to the HP-LET tasks, which
then take charge of registering/deregistering to AUTOSAR
Adaptive services. Rules HP4 and HP5 state that input (re-
ceive) and output (send) operations are performed by the high-
priority tasks at predetermined time instances. Therefore, any
changes on the cause-effect chain lead to an initial period
of non-deterministic behavior, due to computations required
by registration/deregistration operations. After that, the deter-
ministic behavior is ensured by rules HP4 and HP5. For the
TM-AP-LET protocol, rules TM1 and TM2 state that tasks
register and deregister directly to the AUTOSAR Adaptive
services, while rule TM4 ensures that data-flow determinism is
guaranteed even in the presence of changes in the cause-effect
chain.

From this analysis, it is possible to infer that dynamic
registration and deregistration operations do not harm the
deterministic behavior in the steady state of the system and
the possibility of bounding the end-to-end latency.

VI. EVALUATION

The evaluation of this paper consists of two different exper-
imental campaigns based on two different realistic automotive
applications. The first one is based on the WATERS 2017
Challenge by Bosch and evaluates the overhead injected by
the HP-LET tasks and how it reflects on response times. The
second one is based on the Brake Assistant Demonstrator of
Adaptive and shows the benefit of deterministic communica-
tion in a distributed environment.

The purpose of the evaluation is the following: (i) to show
that the overhead cost introduced by implementing HP-AP-
LET and TM-AP-LET is limited, and it is a price worth
paying for achieving determinism in AUTOSAR Adaptive; (ii)
comparing, still in terms of overhead, the difference between
HP-AP-LET and TM-AP-LET, highlighting what is the extra
cost needed by HP-AP-LET to achieve time-determinism (in
addition to the data-flow determinism already provided by
TM-AP-LET); (iii) reporting on the effects on the jitter for
both HP-AP-LET and TM-AP-LET to validate their properties
empirically; (iv) reporting on practical advantages in terms of
percentage of dropped frames and inputs mismatches of an
automotive communication pipeline.

A. Evaluation based on the WATERS 2017

The evaluation test-bed consists of an automotive applica-
tion (namely, the one presented in the WATERS Challenge
2017 [13]). This application has been modified to be executed
on the AUTOSAR Platform Demonstrator (APD), which is
freely available to all members of the AUTOSAR consortium.
APD, in turn, has been modified to implement the AP-LET
protocols, as discussed in Sec. V. To achieve a meaningful
distributed setup required to evaluate AP-LET, the WATERS
2017 application has been split among two Raspberry Pi4

boards, powered by a quad-core 64-bit ARM SoC and running
the Linux operating system (kernel version 5.4). The commu-
nication leverages the SOME/IP protocol over Ethernet.
Test-bed Application. We tested a large number of different
configurations of task-to-ECU and task-to-core allocation and
decided to report the two most significant ones. Next, we
report the experimental results of both the allocations shown
in the Fig. 5. Configuration A) has been designed to stress the
system by maximizing the number of messages exchanged
over the network to stress the AP-LET protocol variants, thus
providing the most interesting results. Indeed, Task 10ms,
allocated to ECU2, communicates with all the other tasks
allocated to ECU1, thus maximizing the number of inter-ECU
communications. Configuration B) balances both computation
load and network traffic among the three cores of the two
ECUs. One core on each ECU is left unused by the WATERS
challenge and is dedicated to all the basic applications and
services that AUTOSAR AP needs to run. Since all tasks have
a different period, following the naming convention used in the
WATERS 2017 Challenge, the name of each task is made by
the composition of the word “Task ” and its period (reported
in Fig. 5). Other tasks are named “ISR ” (i.e., interrupt service
routines) followed by a unique identifier (again, following the
naming convention of WATERS 2017). Tasks priorities have
been assigned according to the rate-monotonic algorithm.
WCTT estimation. An empirical analysis of the network
latency has been carried out to obtain an empirical bound
on the worst-case transmission time to be used during the
protocols. The analysis has been performed considering all
the sizes of messages exchanged between ECUs. According to
our measurements, the largest delay experienced among all the
payloads is 6ms. The WCTT has been then set to 9ms, inflating
the largest experienced delay with a 50% safety margin. The
synchronization delay has been deemed negligible because our
implementation leverages the Time Synchronization functional
cluster provided by AUTOSAR Adaptive [28].
WATERS 2017 on AUTOSAR Adaptive. To implement the
WATERS 2017 Challenge on AUTOSAR Adaptive, several
configuration ARXML of AUTOSAR Adaptive files have
been customized to configure the system. ARXML files were
defined to describe the services (i.e., message exchanges used
in the challenge) used by tasks of the WATERS Challenge.
These files include all the information related to a specific
service, such as the message type (e.g., string, or integer),
the message size, and the service name. Also, a manifest
file has been defined for the WATERS application. This file
describes the main Linux process that creates all the tasks of
the WATERS challenge and specifies the scheduler used for
executing it (SCHED_FIFO, in this case) and its priority. It
also specifies which services are used by the application.
Comparison of two approaches. Fig. 6 shows a comparison
between HP-AP-LET and TM-AP-LET implementations in
terms of the average and maximum execution time of the LET
high-priority tasks. In particular, the average execution time is
highlighted by the colored bars, while the spikes represent the
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Fig. 5: Task-to-ECU and Task-to-core mapping for the WATERS Challenge 2017. Tasks listed in the same column are allocated
to the same core. Tasks in gray color perform inter-ECU communication.

maximum execution time reached during the whole execution
of the experiment. Cores 2, 3, and 4 of each ECU contain the
tasks shown in the first, second, and third columns in Fig. 5,
while core 1 is left unused on both ECUs.

As expected, in both configurations, the overhead introduced
by the HP-AP-LET is higher than the TM-AP-LET, in which
the overhead of the HP-LET tasks can be considered negli-
gible, as they only manage intra-ECU communications. As
shown in Fig. 6, the most significant overhead is experienced
in core 3 of ECU 2, which executes the tasks with the
higher network traffic load on the whole WATERS challenge
obtained with the chosen tasks’ mapping. In the evaluation
of Configuration B), the overhead injected is present more
uniformly among the ECUs, except for core 3 of ECU 1,
which experiences the higher overhead. Also, in this case,
the higher network traffic is located in the core with the
highest overhead, suggesting a strong proportional relationship
between these two factors. To better understand the behavior
of the HP-AP-LET implementation, further analysis has been
carried out considering the most important phases of the HP-
LET tasks. These phases are the reads and writes from/to

E C Avg Execution Times [µs] Max Execution Times [µs]
W R S W R S

1

1 0 0 0 0 0 0
2 4 63 128 24 275 481
3 1 0.5 0.5 25 37 25
4 2 9 72 28 133 346

2

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 1 0.4 0.4 28 32 25
4 3 83 452 28 594 594

TABLE II: Avg. and max. execution times of the different
phases of LET communication with HP-AP-LET. Legend: C
= Core Number, E = ECU number, W = Writes, R = Reads,
S = Sends.

memory buffers and the send operation to the network. The
receive operation from the network is not considered because
it is performed by the operating system, which copies the
received data into the Proxy queue. For this analysis, only
the unbalanced mapping configuration has been considered,
as it represents the most interesting case between the two
configurations, with the higher spikes on maximum overhead.
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configuration under waters vanilla communication compared
with HP-AP-LET and TM-AP-LET implementations. Markers
highlight the maximum normalized response time observed.

Table II highlights that most of the overhead is due to
the send operations over the network. In the experiment, we
observed up to 452 and 594 microseconds for average and
maximum registered values, respectively. Since high-priority
tasks perform these operations, these overheads can potentially
cause a priority-inversion delay since messages of low-priority
tasks are managed at the maximum priority, potentially leading
to deadline misses. Hence, the TM-AP-LET configuration can
be preferred in cases where the network traffic is particularly
intense, and the timing constraints of tasks are tight.
Empirical Response Times. Fig. 7 shows the average and
maximum response times of nine representative tasks of the
WATERS challenge to further compare the proposed imple-
mentations with the vanilla system and evaluate the impact
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Fig. 8: Average normalized response time with balanced
configuration under waters vanilla communication compared
with HP-AP-LET and TM-AP-LET implementations. Markers
highlight the maximum normalized response time observed.

of AP-LET. The considered vanilla system consists of the
standard AUTOSAR Adaptive communications without AP-
LET, with communications occurring at any time. The con-
sidered tasks are those performing inter-ECU communications.
The chart reports the response times normalized by dividing
by the corresponding periods. The evaluation considers the
unbalanced mapping configuration. Fig. 7 shows that the effect
of the priority inversion problem can be noticed. In particular,
with the HP-AP-LET implementation, tasks with the highest
priority within their core, such as Task 2ms and Task 20ms,
experience a longer response time w.r.t. the TM-AP-LET. This
phenomenon occurs since, in the HP-AP-LET implementation,
HP-LET tasks can preempt high-priority tasks to perform
external communication on behalf of low-priority tasks. In
the TM-AP-LET implementation, priority inversion is instead
limited to intra-ECU communications, causing a smaller delay.
Nevertheless, the phenomena shown in Fig. 7 are expected
because the figure targets an unbalanced configuration, which
is studied to stress inter-ECU communications. However, with
the balanced configuration, priority inversion is drastically
reduced, as shown in Fig. 8.

Measured Jitter. Finally, the HP-AP-LET and TM-AP-LET
implementations were analyzed in terms of average input
and output jitter, considering the same tasks as in Fig. 7.
In particular, the output jitter of the k-th job of task τi
was computed as Jo

k,i = |t(k+1) − ts,k|, where t(k+1) is the
activation time of the (k+1)-th job of τi and ts,k is the time
in which the actual send operation is performed by the k-th
job. The input jitter, instead, was computed as J i

k,i = |tr − ta|
where tr is defined in the invariant AP6 discussed in Sec IV-B,
and ta is the time the message is available to the consumer.
The output jitter was normalized to the task’s period, while
the input jitter was normalized to tr.
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TM-AP-LET.
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Fig. 10: Brake Assistant application in APD.

Figure 9 show that the HP-AP-LET implementation re-
moves both input and output jitter by design. Differently, the
TM-AP-LET implementation still ensures that invariant AP6
is satisfied, guaranteeing data-flow determinism and removing
the input jitter, while it does not guarantee time-determinism
as it is affected by output jitter. The vanilla system without
AP-LET shows both input and output jitter.

B. Evaluation based on the Brake Assistant APD

The evaluation test-bed consists of the Brake Assistant
application demostrator of APD. As highlighted in [31], it
exhibits how non-determinism can potentially have conse-
quences when executing safety-critical applications in AP. The
hardware platform is the same as in the previous evaluation.
Test-bed Application. As shown in Fig. 10, the Brake Assis-
tant application includes five tasks distributed on two ECUs.
VideoProvider captures a video frame every 50ms and sends
it to VideoAdapter, which has 25ms period. Preprocessing
recognizes the lane and sends its bounding box, along with the
frame, to ComputerVision, which detects vehicles in the lane
and eventually sends the list of detected vehicles to Emergency
Brake Assist (EBA). Periods of Preprocessing, ComputerVi-
sion, and EBA are 50ms, 50ms, and 25ms, respectively.

S Frame Error Percentage on total frames processed (%)
VideoAd PreProc ComputerVision EBA

ND Dropped 0.4 19.5 28.3 19.9
Mismatch 0 0 18.4 0

D Dropped 0 0 0 0
Mismatch 0 0 0 0

TABLE III: Evaluation of non-deterministic execution
(vanilla) measuring dropped frames and input mismatch (in
percentage) of brake assistant communication pipeline exe-
cuted in ECU2. Legend: S = Scenario, ND = Non Determin-
istic, D = Deterministic.

Determinism vs Non-Determinism. Two metrics are consid-
ered: (1) Dropped Frames: Since each producer-consumer
pair is based on a single buffer, frames overwritten by the
producer before the consumer can read them are considered
dropped. (2) Input Mismatch: Original frame and lane
bounding boxes received by ComputerVision that are not
related are considered an input mismatch. Each experiment
considered 100k frames. Table III shows both dropped frame
and input mismatch in percentage w.r.t. the total amount of
frames processed and non-deterministic (Vanilla) scenarios.
The communication pipeline under non-deterministic execu-
tion suffers from a high rate of dropped frames between
the four tasks executed in the second ECU, as well as the
input mismatch between PreProcessing and ComputerVision.
VideoProvider is not reported in the results, as its purpose
is to provide video frames to the communication pipeline.
Due to the oversampling, the dropped frames on VideoAdapter
are quite low compared to the other tasks in the same ECU.
The same behavior is present in the communication between
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ComputerVision and EBA. However, dropped frames error
is propagated through the entire pipeline, causing a higher
dropped frame rate in the last task even in the presence of over-
sampling. The results may vary between executions, as input
and output operations occur at scheduling-dependent times.
Under the deterministic scenario (HP-AP-LET and TM-AP-
LET), the communication pipelines do not suffer from packet
loss or input mismatch since data-determinism is preserved in
both HP-AP-LET and TM-AP-LET implementations.

CPUs usage. A further evaluation has been performed to
measure the CPU utilization overhead under the HP-AP-LET
implementation for the Brake Assistant application.

Figure 11 shows the CPU utilization of each HP-LET task
computed considering each HP-LET task’s overall execution
time w.r.t. the whole duration of the experiment. Note that
the higher CPU usage is reached in core 1 of both ECUs
where HP-LET tasks perform more inter-ECU input/output
operations. Nevertheless, the overall overhead, in terms of
CPU utilization, is never more than 0.05.

VII. RELATED WORK

Communication mechanisms and middleware for distributed
embedded real-time systems received considerable attention in
recent years, with works focusing on AUTOSAR Adaptive [31,
32], ROS 2 [12, 33], the DDS [34], and MQTT [35]. Service-
oriented communication mechanisms such as those provided
by AUTOSAR Adaptive were also studied at the OS level: for
example, the message passing mechanism of QNX provides a
similar client-server communication infrastructure [36].

Gemlau et al. [37, 38] addressed the challenge of adopting
the System-Level LET on high-performance architectures with
high data rates, providing a proof-of-concept to optimize the
efficiency of the communication stack of the RTE.

The lack of deterministic execution on Adaptive was first
highlighted by Menard et al. [31], which also reports a series
of inconsistencies occurring in the brake-assistant use-case
shipped with the official AUTOSAR Adaptive Demonstrator
(APD). Similarly, Köhler et al. [39] proposed the usage of
the SL-LET model in Adaptive for determinism. However, it
does not discuss AUTOSAR-Adaptive specific protocols for
SL-LET and the implementation details. This paper, instead,

provides and elaborates design decisions, provides specialized
protocols for AUTOSAR Adaptive, and discusses the technical
details of the implementation. No other work in the literature
proposed protocols for adopting System-Level LET in AU-
TOSAR Adaptive. Another branch of related papers focuses on
the LET paradigm. Many works have been published on this
topic: in the following, only those mostly related to this paper
are summarized. Partial support for LET was implemented in
the rclc Executor from the Micro-ROS project [40]. ROS 2 is a
framework being used by about 80% of the automotive OEMs
and Tier-1s developing autonomous vehicles [15]. However,
its design is too ROS-specific to be applied to the AUTOSAR
Adaptive framework, and does not consider SL-LET.

The design of LET on a general-purpose operating system
has been investigated in [26]. However, it does not consider
SL-LET and AUTOSAR Adaptive, but only POSIX systems.

VIII. CONCLUSION

This paper presented the design and implementation of
the AP-LET meta-protocol, the first protocol tailored to AU-
TOSAR Adaptive to allow SL-LET communications between
tasks in distributed ECUs, providing two different instantia-
tions with different features. An extensive evaluation compared
the protocols showing that none of the two dominates the other.

Future work will target the derivation of new protocols
for LET-aware message-driven task chains [41] and the de-
velopment of design-time analysis techniques to estimate the
minimal buffer sizes to guarantee no message loss under SL-
LET communications.
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