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Abstract—As system designers are transitioning to the usage
of pre-existing software architectural elements to reduce time-
to-market and costs, they face challenges in safety-critical ap-
plications. Pre-existing software may have been implemented
without following any safety and/or quality standard, and its
documentation may be incomplete or unclear. As recommended
by part 6 of the functional safety standard ISO 26262 (product
development at the software level), stringent rules and guidelines
must be followed during the implementation of a new software.
The qualification of a pre-existing software according to ISO
26262 may hence be very time consuming and expensive if not
addressed in a structured way. This work presents STPA for
Pre-existing Software (STPA-PES), a new software hazardous
behavior analysis approach designed to identify criticalities or
abnormal conditions in complex pre-existing software to be
mitigated with adequate safety measures. The major challenge in
such a process consists in the definition of a model that correctly
represents the system under analysis when the architectural
design of pre-existing software is not available. As a relevant
example, the proposed approach is finally applied to dynamic
memory allocator (DynMA) in Linux kernel to show how STPA-
PES is able to derive safety requirements of this software
architectural element.

Index Terms—System design and analysis, Software and Sys-
tem Safety, Operating Systems, Systems and Software, Reusable
Software, Control structures

I. INTRODUCTION

MANY safety standards have been defined over the
years to drive software suitability for safety-critical

purposes. Their goal is typically to regulate the safety life cycle
and functional safety aspects of products in different fields.
A relevant example is the ISO 26262 [1], the international
functional safety standard for addressing field-specific needs of
electrical and/or electronic (E/E) systems within road vehicles.
The recommendation provided by safety standards is to apply
safety guidelines with a stepwise approach during the product
lifecycle, thus reducing the presence of critical issues in the
final product.

Software reuse is increasingly becoming common practice
for designing safety-critical systems to reduce development
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time and cost. However, the integration of pre-existing soft-
ware for safety-critical purposes should be carefully con-
trolled, as it may have been implemented without following
any safety standard. Its analysis for suitability for usage
in safety-critical applications may be complex and time-
consuming, especially in the case of software systems with
a large code base such as an operating system (OS). In this
context, several companies are currently working together on
international projects such as ELISA [2], which has the goal
of defining strategies and implementing tools to qualify Linux-
based safety-critical applications according to ISO 26262. The
challenges of such projects are many also because, as pointed
out by Israeli and Feitelson [3], Linux is an open-source
operating system in continuous evolution. Moreover, it has
a huge number of possible configurations that contribute in
exacerbating its complexity.

System design weaknesses or criticalities can be found
by applying different failure analysis techniques [4], which
typically represent the system as a combination of events
or controllers. One of the most recent approaches is system-
theoretic process analysis (STPA) [5], a control-oriented tech-
nique aimed at identifying hazards of complex systems using
a systematic process based on the interactions between system
controllers. STPA is particularly suitable for driving the design
of control systems. However, it was not conceived to be
applied on software architectural designs, and, in particular,
its original definition does not fit with middleware structure
or low-level software whose design is not control-oriented.

Contribution. This paper proposes STPA for pre-existing
software (STPA-PES), a methodology intended to drive the
generation of safety requirements starting from hazardous
behavior analysis of complex pre-existing software. STPA-PES
extends the STPA to enable the analysis of generic software
systems (i.e., not only control systems), particularly focusing
on software abstraction modeling. The produced software
model aims at representing the system without oversimplifi-
cations or over-complexities. As a case study, STPA-PES has
been applied to the Linux Kernel dynamic memory allocator
(DynMA)—a complex low-level architectural element that
may compromise the integrity of the intended functionality in
safety-related applications. The choice of Linux DynMA is due
to the fact that many safety standards and software guidelines
suggest to avoid the usage of such a feature, thus requesting
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TABLE I
RELATED WORK COMPARISON

Paper Applicable scope Approach Referenced in ISO 26262-9.8

Vesely et al. [6] HW Top-down Yes (FTA)

Towhidnejad et al. [7] SW Top-down Yes (FTA)

Reifer [8] SW and HW Bottom-up Yes (FMEA)

Takahashi et al. [9] SW and HW Hybrid Yes (FTA and FMEA)

Leveson et al. [10] SW and HW Bottom-up or top-down No

Cherfi et al. [11] SW and HW Top-down Yes (Markov models)

Papazoglou [12] SW and HW Top-down Yes (ETA)

Čepin [13] Component-based systems Bottom-up Yes (Reliability block diagram)

Lawley [14] Control systems Top-down Yes (HAZOP)

Leveson [15] Control systems Top-down No

Leveson and Thomas [5] Control systems Top-down No

Friedberg et al. [16] Security-based systems Top-down No

Yu et al. [17] Security-based systems Top-down No

Abdulkhaleq et al. [18] SW-intensive systems Top-down No

This paper Pre-existing SW Hybrid No

adequate software measures to allow its usage in safety related
products. An example can be found in ISO 26262-6 where the
dynamic allocation of objects and variables is allowed only in
the presence of a safety mechanism responsible for minimizing
possible faults.

Paper structure. The rest of the paper is organized as follows.
Section II reports current approaches to address functional
safety in software, highlighting the uncovered challenges that
our work expects to overcome, while Section II-A briefly
recaps the STPA technique. Section III presents the STPA-
PES. Section IV shows how to apply it, step by step, to Linux
DynMA. The results are then reported in Section V. Section
VI concludes the paper and discusses future work.

II. RELATED WORK

Starting from some classic failure analysis methods, this
section reviews techniques available in the literature to address
safety issues in software systems.

One of the most famous approaches is fault tree analysis
(FTA) [6], which is a top-down technique that uses boolean
logic to represent the system failures by representing each unit
as a boolean operator. The approach was originally used to
model hardware failures and has later been adapted by Towhid-
nejad et al. [7] for software design. While being particularly
useful during the software development phase, it is not suitable
for the analysis of pre-existing software, since it requires a
deep knowledge of the architecture under analysis. Indeed, in
the case of complex pre-existing architectural components, the
integrator might not fully understand the design of the com-
ponents by relying on their source code only. Failure modes
and effect analysis (FMEA) [8] is a bottom-up technique that
aims at identifying potential causes of failure inside each
component and the related produced effect. Takahashi et al.
[9] combined FTA with FMEA to improve the safety level

of control software. Leveson et al. [10] described a way to
model safety-critical, real-time systems failures and faults by
using Petri nets for their design and analysis. Such a technique
is useful to represent the system by also taking into account
timing event relations, but the resulting model is hard to be
analyzed, especially for software with a large code-base. Cherfi
et al. [11] presented an approach based on Markov chains
to model the behavior of E/E systems to fill uncovered gaps
of ISO 26262. The goal of event tree analysis (ETA) [12] is
instead to find chains of events that may move the system to a
fault. Such techniques are referenced in ISO 26262 as analysis
methods to address random hardware failures, but they are not
suitable to be applied to software.

With reliability block diagrams [13] the system is repre-
sented as a composition of components placed in series or
parallel. Such a model allows the analysis of the probability
of system failure, but it does not apply to large monolithic
software. A systematic way to analyze the entire system is
the hazards and operability analysis (HAZOP) [14]. With this
approach, the overall design is decomposed into simpler units
to be reviewed separately. System-theoretic accident model
and processes (STAMP) [15] proposes a model about how
accidents occur, which put the basis to define the STPA,
suitable to analyze very complex systems. However, the first
steps are not guided systematically, thus basing the analysis
on the analyzer’s capacity to manage trade-offs. Leveson [19]
better analyzes the cause of flaws identified during the STPA,
highlighting that software is one of them.

During the years, STPA has been used as a base to build
suitable methods for different applications. An example is
STPA-SafeSec [16], which has been proposed as a methodol-
ogy to analyze the system from both safety and security points
of view. Another example is STPA-DFSec [17], an approach
based on a data-flow structure that considers each component
as a composition of a set of functions. However, these methods
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focus on both system-level safety and security during the
development phase, and do not hence trivially transfer to the
analysis of pre-existing, general-purpose software.

Table I reports a comparison of the related work, where
each paper is classified depending on: (i) the scope for which
the method is applicable (i.e., SW, HW and control system),
(ii) the strategy followed by the method (top-down, bottom-up
or hybrid), and (iii) if it is referenced or not in ISO 26262-9.8.

Abdulkhaleq et al. [20] focused on the application of STPA
to systems with high complexity. In their work, the STPA is
applied at different levels such as the vehicular, the system,
and finally the component levels. Such an approach introduces
a systematic way to represent the system control structure in
a hierarchical manner, but it analyzes again the software as
a whole. STPA-based approach for software-intensive systems
(STPA-SwISS) [18] extended the STPA to enable its applica-
tion for software. The approach can be applied either during
the development process or to pre-existing software. However,
it is hard to apply it to complex pre-existing software like
an entire OS. Rejzek et al. [21] managed high-complexity
systems by representing the hierarchical control structure in
different views but, as the STPA, their approach applies to
control-based systems instead of software in general. The
system analyzer freedom is confined in the work proposed
by Zhong et al. [22], where UML views are used to enforce
the STPA framework. Abdulkhaleq et al. [23] proposed a
safety engineering approach based on STPA to develop safe
software. Both are interesting approaches that enable engineers
to develop safe software, but their application to a pre-existing
general-purpose software is not straightforward.

Thieme et al. [24] presented a way to decompose a software
system into its functions. However, the level of decomposition
should be carefully selected to extrapolate a model that repre-
sents sufficiently the software under analysis without providing
more details than needed.

A. Background on STPA
This section introduces the basics of STPA, on which the

approach proposed in this work is based. As described by the
STPA guidelines [5], STPA is composed of four phases.

The first one involves the definition of the purpose of the
analysis, identifying system boundaries, losses, and hazards.
With loss the STPA defines something that must be prevented,
like a mishap or an adverse event, while an hazard is defined
as the system state or a set of conditions that may lead to a
loss. In this phase, each hazard should be analyzed to find the
worst-case conditions that may produce the identified losses.

In the second phase, the analysis builds the system control
structure. Such a model represents the system as a group
of controllers interacting with each other by sending control
actions and feedback. The STPA handbook [5] highlights the
importance of this phase by reporting some guidelines and
examples to prevent common mistakes. In particular, important
details should not be omitted if the system is already imple-
mented, but the final model complexity should be manageable
by the next steps of the analysis.

The control structure is taken as input for the third phase,
which consists of the identification of the unsafe control

actions (UCAs). In this phase, each control action in the
control structure should be analyzed in order to define how
and when it may lead to a hazard. Not providing, providing
with the wrong parameter, and providing in the wrong order
the control actions are classical examples of conditions that
characterize a UCA. The identified UCAs should finally be
written in the cells of a table that reports the control actions
in the rows and the type of UCA (not provided, provided, too
early to late or out of order and stopped too soon or applied
too long) in the columns.

The last phase of the STPA consists of the identification
of the loss scenarios, which represent the situations where a
control action may lead the system to a hazard. This phase
consists of two sub-phases. The first one drives the generation
of a table that maps each UCA to the related loss scenario,
which has to describe, by means of natural language, how
the UCA may produce the related hazard. The second one
identifies scenarios that lead control actions to be improperly
executed or not executed at all.

III. PROPOSED APPROACH

A. Motivation

STPA is a very powerful technique that enables software
hazardous behavior analysis of complex systems. Its applica-
tion mainly involves control-based products and is typically
applied at the system level. This is highlighted by the second
phase of STPA, where the model to be built is a control
structure. Such a model describes controllers and controlled
processes as the basic elements composing the entire system.
The approach presented in this work instead intends to be used
also on low-level embedded software, which is not straightfor-
ward to be treated as a composition of controllers. Moreover,
in classic STPA loss scenarios are typically expressed in
natural language, which forces the analyzer to interpret them
in order to produce tests and requirements.

The hierarchical control structure built during the second
phase of STPA may describe the model of complex systems.
However, the controllers granularity is completely managed by
the system analyzer, thus producing a model that represents
the system in a way that is not unique.

In order to overcome such limitations of STPA, this paper
proposes different improvements:

• Huge or useless control structure will be avoided by
moving the last phases of STPA to the component level
instead of considering the entire system as a whole.

• Pre-existing software control structure extrapolation will
be guided systematically.

• Loss scenarios interpretation is enforced to remove am-
biguities and drive the requirements generation phase.

B. STPA-PES approach in detail

The analysis of complex pre-existing software may be
very challenging and time-consuming if not systematically
addressed. System decomposition [25] is a helpful approach
that may produce simpler sub-systems that can be analyzed in
parallel. This work proposes to first, apply STPA SwISS at the
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system level. Then, each complex software component should
be analyzed by splitting STPA into two parts as reported by
Figure 1: global and for each safety-related (SR) feature.

Fig. 1. Once applied STPA-SwISS at system level STPA-PES can be applied
to each software controller. The Figure shows the proposed approach based
on STPA: phase 1 is applied at system level, while other phases are applied
to each SR feature.

In particular, the identification of losses and hazards may
follow the process as described in the STPA handbook [5],
thus referring to the entire pre-existing software architectural
element. Instead, the next steps must be driven for each
decomposed software element, defined here as the block that is
responsible to provide a certain SR feature. A control structure
representing a complex system as a whole may be too intricate
and so error-prone. The result is that the next phases of the
analysis will produce very abstract UCAs and loss scenarios,
which may not help in finding weaknesses in the system.
The proposal is instead to construct a decomposed control
structure by separating the set of SR features from non-SR
(NSR) ones. The separation between SR and NSR features
can be done either through a dependent failure analysis or
by considering all the features as SR. The analysis of each
software feature can be guided by assuming the rest of the
system safe and correctly used. The rationale for this reasoning
is that verifying the integrity of each SR feature is in the scope
of the corresponding safety analysis, while the dependencies
among different SR features are verified with dynamic and
static tests of their interfaces. Under these assumptions, the
STPA-PES can move on with next steps.

The SR element extraction is the phase that enables the
analysis of simpler and smaller blocks of code. As reported
in Figure 2, such a procedure starts with the identification of
functions in scope, which are functions that are usually called
by functionalities that belongs to systems different than the
one under analysis, asking for a specific service through an
application programming interface (API).

Fig. 2. Sub-STPA-PES phase in details: STPA phases 2 to 4 are applied here
to an abstracted software component that represents a SR element providing
a SR feature.

The SR element abstraction phase guides the analyzer in

looking inside the SR feature under analysis. Without this
phase, each software element would be treated as a black
box, thus producing a control structure so general that the
next phase of the STPA-PES will end up with very abstract
loss scenarios.

C. Software element Sub-STPA-PES

1) SR element extraction and control structure modeling:
The main contribution of this work can be found in the
extension of the second phase of the STPA. In the STPA
handbook [5], the detail and the rules about how to define
the control structure are defined with a certain margin of
freedom that is left to the system designer. STPA-SafeSec [16]
tries to restrict this freedom by introducing the concept of
system states, which, for general-purpose software, can be
considered as the combination of global and local contexts.
The first one is represented by the global variables and
flags values, while the second one contains local variables,
the stack, and the function currently executed. This paper
proposes a complementary approach for pre-existing software
architectural elements (that are not control-oriented) aimed at
identifying controllers in the control structure.

Figure 3 highlights the main steps to drive the SR element
abstraction phase.

Fig. 3. SR element abstraction and control structure phases in details: before
building the control structure the code is analyzed to identify controllers and
their interactions.

It is based on the analysis of the global context (global
variables and data structures) accessed by C functions at code
level inside the enforced call graph, which reports depen-
dencies among different subroutines and the global variables
accessed by each function. The proposal is to group together
global variables accessed by the same group of functions.
The rationale is that each controller should be responsible to
manage and update its own group of global variables. A similar
approach has been proposed by Tyszberowicz et al. [25], where
the authors applied a decomposition to a monolithic system
to represent it as a composition of microservices. With this
approach, the creation of a control structure starts with the
identification of such variables and moves to the identification
of functions that are used as interface to manipulate them.
The controller body will be composed of groups of func-
tion calls hidden internally to avoid over-complexities in the
model. At this stage, the controllers have been created and
their interface defined, but no interaction has been modeled
until now. Control actions among different controllers are
modeled in the control structure by taking in consideration
once again the enforced call graph. In particular, a control
action should be added for each function call made from
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one controller to another through its interface. Feedbacks
instead, are identified by taking into account their respective
return values. In classic STPA, parameters are usually hidden
in control actions, thus producing ambiguities that may be
misinterpreted in subsequent phases. The reuse of parameters
found in functions will cause a mismatch in the level of
abstraction currently used to represent the system. This work
proposes to abstract parameters in control actions by exploiting
the system knowledge obtained from the documentation of the
system.

The abstracted model represents at this stage the infras-
tructure of the system, while dynamic aspects such as the
functionality provided by a controller in response to a control
action are still not defined. This work proposes to obtain and
abstract such information by leveraging the documentation of
related functions.

2) Unsafe control actions: Once defined the abstracted
SR software element control structure, the next step is the
identification of UCAs. In the STPA handbook [5] a UCA
is defined as a control action that, in a particular context
and worst-case environment, will lead to a hazard. The STPA
handbook systematically drives this phase to fill a table that
collects all the identified UCAs. The whole table can be reused
here except for the ”stopped too soon or applied for too long”
column, which is not applicable to software modules that are
not control-oriented.

In the context of software, UCAs can be considered as
actions (either functions or low level actions like a read or
a write at some specific memory location) that are either:

• executed in the wrong order;
• not executed when needed; or
• executed with wrong values as parameters.

Such UCAs may produce additional events or chains of
function calls that will end up with an incorrect update of
a global variable, an action that may break the abstracted
software element state. Other consequences that a UCA may
produce are a wrong control action sent to other controllers
or wrong feedback.

3) Loss scenario: The identification of loss scenarios is the
last phase of the STPA-PES and it takes the fourth phase of
the STPA as a base. Here, the aim of this work is to identify
scenarios potentially violating the original safety requirements
allocated to the system under analysis, but also cascading
failures that may compromise the freedom from interference
(FFI) of software elements with different integrity coexisting
in the same system. In ISO 26262-1 [1], FFI is defined as the
absence of cascading failures among different elements in the
system that could lead to a violation of a safety requirement.

The loss table must be generated by thinking about possible
conditions and actions that may put the system in dangerous
situations. The proposal in this case is to define each scenario
as written in the STPA handbook, reporting also a realistic use-
case at code level that may produce it. The STPA handbook
splits this process in two sub-phases: the identification of
scenarios that leads to UCAs and the identification of scenarios
for improperly or not executed control actions.

Starting from the first one, such scenarios should be identi-
fied by considering possible combinations of events that lead

the system to harmful conditions. At this stage, the parameters
abstracted in control actions should be coupled to C function
parameters to produce concrete loss scenarios. In an embedded
software scenario suitable to the STPA-PES approach, events
that may lead to UCAs should be identified by considering
function calls and low-level actions like read or write to a
certain memory location. A first example can be found in a
wrong or unintended controller interface usage. In this context,
such events are function calls not executed when needed,
activated more times than expected or executed with wrong
parameters. In this stage, also cascading failures can come
out by analyzing the dependencies among different software
element. Scenarios identified until here cover the first two
columns of the UCAs table. Instead, UCAs in the third column
are mapped as combinations of function calls, read or write
actions.

A different reasoning should be done for the identification
of scenarios for improperly or not executed control actions.
While in physical systems controllers may be flawed or subject
to failure, the software may contain weaknesses resulting
in control actions that are not or improperly executed. By
considering lower levels of the SR feature under analysis (for
instance, the hardware level or other SR software elements) as
correct, such a condition may produce either wrong feedback
in the control action or a wrong data structure update. In every
case, the condition to be controlled is very general, and the
analyzer may not be able to generate the requirement to cover
it. A control action that is not or improperly executed may
also be generated due to a corrupted global context. However,
these conditions should be avoided by protecting the memory
data structure from other parts of the system and by testing and
verifying the code in order to remove possible bugs internal
to each controller. For this reason, such scenarios for control
actions improperly executed are not considered in STPA-PES.
Instead, not executed control actions may be produced for
instance by resource contention. The proposal is to add one
loss scenario for each control action present in the control
structure in order to capture the hazard that may produce its
missed execution.

This phase may also be helpful to generate some tests for the
later verification of the effectiveness of mitigation strategies
resulting from the analysis to control the weaknesses. For this
purpose, a third column ”code example” has been added in
the loss scenarios sheet. It explains the scenario that should be
managed with some code instructions, thus reducing possible
incomprehension produced by scenarios described through
natural language.

The sheet produced by the fourth phase lists possible scenar-
ios that may lead to hazards, scenarios that should be managed
by introducing one or more safety requirements. In particular,
each scenario should be covered by at least one requirement.
However, the procedure to derive safety requirement from
loss scenario is case-dependent, and for this reason cannot
be generalized.

D. Proposed approach in summary
The proposed approach can be summarized in the following

operations.
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Step0 - STPA at system level: STPA-SwISS should be
applied first at the system level. In this step, each software
controller is seen as a single component as a black box. Each
complex software controller has to be analyzed by following
the next steps.

Step1 - Documentation analysis: for a complex pre-
existing software this is a crucial phase since it helps the
analyzer in the comprehension of the code. The documentation
is leveraged to understand the general behavior of the code
under analysis and to spot, if present, a first model of the
software. This phase provides help for step3 and step4.

Step2 - Identify losses and hazards: this phase coincides
with the first phase of the STPA and it identifies critical
conditions that the system must avoid. In particular, this phase
produces the lists of losses and hazards as output to be used
for next steps.

Step3 - SR element extraction: with this phase the analysis
moves from the entire pre-existing software to SR elements
inside. In particular, all the features provided by the software
must be identified here. The documentation analyzed in step1
may help here in the identification of APIs related to each
feature. For each API of a certain feature, static code analysis
techniques should be leveraged to report the relative call graph,
enforced to display also accesses to global variables.

Step4 - Build the control structure: once collected all
the information, the analyzer must exploit the output of
step1 and step3 to extrapolate a control structure abstracting
the element that provides a SR feature. Each enforced call
graph is abstracted here and merged to generate a structure
that represent each SR feature provided by the pre-existing
software. The behavior of each controller in such a structure
is identified by exploiting the documentation. The final result
of this phase is the control structure.

Step5 - Identify unsafe control actions: for each control
action in the control structure built in step4 the analyzer must
identify UCAs. This phase systematically generates a table that
links each UCA to one or more hazard identified in step2.

Step6 - Identify loss scenarios: the final step is to identify
loss scenarios that leads to UCAs or to control actions in-
correctly or not executed. The UCAs table generated in step5
is the input for this phase together with hazards identified
in step2. This phase generates the loss table, which links
each UCA or control action incorrectly or not executed to
the corresponding loss scenario that may produce it.

IV. ILLUSTRATIVE EXAMPLE: STPA-PES APPLIED TO
LINUX DYNAMIC MEMORY ALLOCATION

Linux is an open-source complex monolithic kernel for
general-purpose applications. Its large code base makes Linux
a very good case to apply the proposed approach as an
example. The following Guideline for applying the proposed
approach to other software components are then reported in
Section III-D.

A. Step0 - STPA SwISS applied to ELISA telltale example
In this work, we analyzed the ELISA telltale use-case [26],

an example of an automotive scenario where the main appli-
cation runs upon Linux. It focuses on the warning messages

displayed in the Dashboard of the vehicle and the main actors
in this scenario are the Safety App, the Watchdog, and the
Safety signal source. The Safety signal source periodically
sends signals to the Safety App. The Safety App is in charge
of checking the signals received by the Safety signal source
and resetting the watchdog if everything goes well. Whenever
a signal is not received in time or is corrupted, the Safety App
does not reset the watchdog and the safe state is triggered.

The identified losses are general and suitable for the whole
system:

• L-1: Loss of life or injury to people.
• L-2: Loss of or damage to vehicle.
• L-3: Loss of or damage to objects outside the vehicle.

The identified hazards are instead:
• H-1: Driver is not informed about a system condition,

leading to a collision or other harmful event.
• H-2: Driver is distracted by the display, leading to a

collision or other harmful event.
• H-3: Driver becomes desensitized to a warning because

it is incorrectly repeated, leading to a collision or other
harmful event.

• H-4: Content on display compromises the driver (e.g.
flickering image triggers epileptic fit), leading to a colli-
sion or other harmful event.

Every hazard may lead to either L-1, L-2 or L-3 under different
conditions.

Fig. 4. Control structure representing ELISA Telltale example. Linux kernel
is considered at this stage as a single component.

The control structure of the telltale use-case is reported
in Figure 4. The main software components involved in this
scenario are the user-space applications and the Linux kernel,
which is seen as a whole at this stage.

The analysis helps us to define the following controller
constraints for the Linux kernel:

• C-1: Linux kernel should handle properly requests from
user space.

• C-2: Linux kernel should isolate controllers address space
from each other.

At this stage, the Linux kernel is seen as a single component.
The next step will be to look inside it to analyze each part
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with a finer grain. A first look at the internals of the Linux
kernel is reported in Figure 5. This structure has been obtained
following the mapping proposed by Shulyupin [27].

Fig. 5. Linux control structure obtained by following the mapping in [27].
Three separation levels are identified: hardware, kernel space, and user space.
Arrows in red identify the interactions that are analyzed in the following
sections.

In the ELISA telltale example, dynamic memory alloca-
tions are requested in indirect ways. For instance, the reset of
the Watchdog is performed by writing some values into a file.
This operation, as well as the open system call, will trigger
an allocation in kernel space. Next sections will focus on the
analysis of Linux kernel DynMA. In this paper we decided to
apply STPA-PES to this component since ISO 26262 does not
provide guidelines for its integration. In particular, it cannot be
addressed with part 6 of the standard because that part copes
with the development of a new software product. Furthermore,
ISO 26262-8.12 covers the qualification of simple software
components, which again is not the case of Linux kernel due to
its large code-base. Finally, the proven-in-use argument of ISO
26262 cannot be made in our case because it requires that the
code under analysis and its configurations are never changed.
This does not hold for the Linux kernel, which is continuously
evolving and provides a large number of configurations that
make it difficult to find configurations similar to the system
under analysis. For these reasons, we apply STPA-PES to
Linux kernel DynMA to enable safety analysis for complex
pre-existing software architectural elements.

B. Step1 - Linux dynamic memory allocation background

In this work, we applied the steps presented in Section III-D
to Linux dynamic memory allocation as an example. The same
approach can be applied to other parts of the Linux kernel,
such as, for instance, the Processing sub-system (see Fig. 5).

DynMA is a Linux feature that is heavily used by many
different processes and devices. In general, for a general-
purpose OS it is very difficult to avoid the usage of dynamic
memory. However, as reported in software safety standards
[1] and software guidelines [28], it the usage of dynamic
memory is not recommended in safety-critical applications.
This is usually true unless the related failure modes have been
exhaustively identified and the corresponding safety mecha-
nisms are in place for fault mitigation. The safety analysis
of this feature is therefore mandatory in order to understand

potential criticisms that may harm the entire OS when used in
safety-related applications.

In our work, knowledge about the internals of Linux’s
DynMA has been obtained by analyzing both the official Linux
documentation [29] and other academic documentation [30].
In Linux, processes may run in two different contexts, which
are named user space and kernel space. Different capabilities
assigned in such spaces result in different handling strategies
for dynamically allocated memory.

In user space, DynMA is responsible for managing the
process heap, which is typically handled by functions within
a library. Taking into consideration the glibc library, which
is one of the most widely used in current applications, such
functions are for example malloc , calloc, and realloc
for dynamic memory allocation, while free is used for
dynamic memory de-allocation. When the heap space is not
sufficient to satisfy an allocation request, such functions may
use a function called sbrk in order to adjust the heap size.
sbrk is a system call provided by Linux. Other system calls
that might be called by the user-space DynMA are mmap and
munmap to add/create or remove, respectively, a new mapping
in the virtual space of the process.

In kernel space, instead, DynMA makes use of virtual
and physical memory allocators. On the lower level, physical
memory is handled through an algorithm called binary buddy
allocator [31], which manages memory blocks of power of
two pages each. SLAB, SLUB, and SLOB allocators [32],
[33] are instead three different algorithms implemented above
the buddy allocator in order to allocate an arbitrary amount
of memory. The selection of the allocator is done when
Linux is built. SLAB and SLUB manage slabs, which are
objects grouped in data structure called kernel caches. As
a high-level level interface, the functions that are generally
called to dynamically allocate memory in the kernel space
are vmalloc and kmalloc. Both allocate virtually contigu-
ous pages, but vmalloc allocates physically non-contiguous
pages (by modifying the page tables). The corresponding
functions for dynamic memory de-allocation are vfree and
kfree.

C. STPA-PES applied to Linux’s DynMA
The application of STPA-PES to Linux’s DynMA starts

from the identification of system-level losses and hazards,
while the next phases involve the analysis of the decomposed
SR-element.

1) Step2 - Losses and hazards: In this analysis, the Linux
Kernel interactions with user space and hardware have been
considered as the system boundaries. Interactions with the user
space considered in this work are the system call while read,
write, and interrupts are instead interactions between Linux
and the hardware.

Losses in this stage have been derived from constraints C-
1 and C-2. Therefore, the identified losses and hazards are
general and suitable for the whole Kernel:

• L-1: Loss or damage to elements outside the system (SW
elements).

• L-2: Loss of mission (the kernel does not correctly
provide it services).
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Fig. 6. Part of the graph produced by leveraging the code visualization tool for the function vfree. In particular, this section is related to the buddy page
allocator.

The identified hazards are instead:
• H-1: The kernel does not respond to external input.
• H-2: The kernel does not maintain the integrity of the

user space.
• H-3: The kernel does not maintain the integrity of kernel

data.
Every hazard may lead to either L-1 or L-2 under different
condition.

2) Step3 - DynMA element extraction: static analysis: The
next phase of the STPA-PES is the SR element extraction.
This work applies such a phase of the proposed approach to
Linux DynMA as an example for driving the analysis to the
rest of the system. Other SR features like mutual exclusion
and scheduling are in the scope of sub-STPA analysis for other
software elements: for this reason, such features are considered
safe and correctly used in the following. In other words, once
the system is defined, the context outside the boundary of
the SR feature (but within the system) is assumed to be safe
and correctly used. The correct use of each feature should
be checked against the output of the related sub-STPA-PES.
In particular, each sub-analysis provides wrong utilization
patterns for each feature as output. Further details will be
shown on Section IV-C5. Here, the information reported in
Section IV-B is crucial for carefully selecting the functions
that provide the core DynMA functionality.

This phase starts with the generation of a call graph
produced by the functions mentioned in Section IV-B. A
code visualization [34] tool can be used to obtain a graph
of the dependencies among functions (and subroutines) as
well as the accessed to the global context. These tools are
generally capable of representing the code under analysis as a
diagram (or a map) that evidences the internal dependencies
and can then be used as a support for code comprehension.
In this work, Sourcetrail [35] has been used for this purpose
since it is free and open source. The tool has been used to
analyze DynMA of Linux-5.17. In order to manage the graph
complexity, the files analyzed by the tools have been carefully
selected based on the knowledge of the system reported in
Section IV-B. Once indexed all the symbols, the tool can
be used to extract dependencies information starting from
a certain function. Such an information has been obtained
by using the custom trail feature of Sourcetrail and using
nodes to represent global variables, fields, and functions and
using edges to denote use and call relationships among them.
The graph produced by the tool is a dependency graph that
represents functions, global variables and data structure as
nodes, while function call and data access are represented

as edges. Such a graph contains the information of a call
graph and it shows also accesses from functions to global
variables and data structures. In order to reduce excessive
complexity, some nodes should be hidden in the graph, starting
from variables out of scope. In this work, the variables to
be hidden are essentially spinlocks, which are SR variables
to be considered in the scope of another SR feature analysis
(e.g., mutual exclusion services). Other nodes to be hidden in
the graph are edge functions that do not modify any global
variable. This pruning activity allows obtaining a simplified
and more readable graph that can be leveraged to abstract
the control structure. Even after pruning, the whole graph
obtained in this work was still too big to be displayed in
this paper. Figure 6 is an excerpt of the graph focused on
its part related to the chain of functions responsible to de-
allocate buddy pages. Such a figure was obtained starting
from the function vfree(). Similar dependencies were found
for functions interacting with slab objects, with caches data
structure, and with page tables. A dual graph has been obtained
from vmalloc() function call, where the function acts on
global data structures to allocate extra memory.

The analysis identified four groups of data structures, thus
generating four controllers as the basis for the DynMA control
structure. The graphs obtained by means of the code visual-
ization tool are then used to build controller abstractions.

Fig. 7. Buddy controller with its interface and relative data structure to handle.

An example is reported in Figure 7, where the depicted
controller is responsible for handling the buddy data structure.
The figure contains other details like interfaces and relative
data structure usage, while the complex call graph is hidden
inside the controller. ”Allocate buddy” and ”deallocate buddy”
in the interface represent respectively the access point for
alloc_pages() and free_pages() function calls, and
they can be used by other controllers through a control action.
The buddy data structure instead offers two functions as the
interface, which are read and write. The same procedure can
be followed to abstract the other three controllers.

3) Step4 - Control structure: By leveraging the call graph
obtained in Section IV-C2 and information obtained in Section
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IV-B, this phase of STPA-PES focuses on building the control
structure that abstracts each SR feature provided by the system.

By leveraging the information obtained from enforced call
graphs, it is possible to draw relations among different con-
trollers inside the control structure as shown in Figure 8,
which represents the Linux DynMA abstraction. The model is
coherent with the kernel structure explained in Section IV-B,
where the whole address space is split between kernel and
user. In the user space, ”Safety element” and ”Non-safety app”
represent processes or code that may interact with the system
under analysis. The first one has safety requirements allocated
on it, while the second one is not involved in safety related
functionalities. In the kernel space instead, software elements
with different integrity might coexist in the same context.
Since kernel space has not yet been partitioned currently into
SR and NSR parts according to the state of the art, in our
example we have considered a generic ”kernel DynMA client”
as the starting point of the DynMA request.

The control structure built until this moment represents the
DynMA infrastructure that reports possible interaction among
controllers. However, the model does not specify the internal
behavior of each controller and possible parameters exchanged
in control actions. In other words, each controller present in
the model is useless. As written in step4 of Section III-D,
missing information should be filled exploiting once again
the system knowledge obtained in the Section IV-B. The
internal behavior (process model) of SLAB / SLUB / SLOB
controller (SLAB controller) has been extrapolated based on
the above-mentioned related work [32], [33]. Specifically, such
an allocator handles slab objects in carefully organized lists.
When the Cache controller requests a slab to the SLAB
controller, it searches within its data structure to find a suitable
slab. If a free slab is available in the list, it is allocated and
provided to the Cache controller. If no free slabs are available,
the SLAB controller requests free memory to the Buddy
controller. Instead, upon receiving a request to release a slab
from the Cache controller, the SLAB controller updates its data

structure and, under certain conditions, returns the memory to
the Buddy controller. Allocate buddy and de-allocate buddy
control actions are responsible for allocating and de-allocating
a buddy, respectively, where each buddy consists of a certain
number of contiguous pages. For this reason, the first control
action does not require any parameter, while the second one
takes as input of the buddy to be de-allocated. A similar
reasoning applies for the rest of the controllers involved in
the model. Note that the parameters present in the code for
the function free_pages() are the page address and the
number of pages to be de-allocated, which is different and
more general with respect to a buddy. Such a decision will
be better discussed in Section V-A. Next sections will move
to the next step of the STPA-PES by focusing on the SLAB
controller and on the buddy controller introduced here.

With this phase, we understand how each abstracted
DynMA component interacts with each other. However, static
analysis cannot catch calls performed through function point-
ers, which might hide important information in the call graph.
To overcome this problem, we traced kernel functions called
during the execution of the telltale use-case with the help of
Linux Ftrace [36]. The trace revealed that no functions other
than those included in the static call graph are actually called.
This allowed for validating the obtained control structure.

4) Step5 - UCAs: Once built the DynMA control structure,
the next phase of STPA-PES can be applied. The systematic
approach starts by considering how each control action present
in the model may lead to an hazard. Considering as an
example control actions from the SLAB controller to the buddy
controller, this section shows how to identify UCAs involved
in the control structure.

The first way that classifies a control action as unsafe is
in the case in which it is not provided when needed. The
missing request to allocate a buddy may lead the process in
execution with a wild pointer, which is a pointer that refers to
memory at an arbitrary location. The usage of this pointer may
write wrong values in system data structures, thus breaking the

Fig. 8. DynMA control structure obtained by following the proposed approach. The DynMA controller has been further analyzed and decomposed in four
controllers.
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TABLE II
ALLOCATE AND DEALLOCATE BUDDY UCAS

Control action Not provided Provided Too early, too late or wrong order

Allocate buddy
Not Applicable Not Applicable

UCA-1: The Slab controller writes on the mem-
ory to be allocated before providing the alloc
buddy control action [H-1, H-2, H-3]

UCA-2: The Slab controller de-allocates a buddy
before providing the alloc buddy control action
[H-1, H-2, H-3]

Deallocate buddy

UCA-3: The Slab controller
does not provide the dealloc
request control action when the
memory needs to be freed
[H-1]

UCA-4: The Slab controller provides the dealloc
buddy control action with wrong parameter (memory
space outside of the memory boundaries) [H-2, H-3]

Not Applicable

UCA-5: The Slab controller provides the dealloc
buddy control action twice on the same address [H-
1, H-2, H-3]

UCA-6: The Slab controller provides the dealloc
buddy control action with a wrong parameter (buddy
allocated for another process) [H-3]

global context and causing an unknown behavior. However,
missing allocation request alone is not a source of criticality,
and for this reason, it should be considered in the ”wrong
order” column. Not providing the de-allocate buddy control
action once the memory is no more needed results in memory
leakage, a memory space that will not be used anymore. In a
system with small memory, the frequent occurrence of such
an event may exhaust this resource quickly, thus blocking the
entire OS.

The second case in which a control action may be unsafe is
when it is provided with a wrong parameter or it is requested
too many times. For the allocate buddy control action there
is no parameter to check, and multiple allocations do not
warn the system. For this reason, there is no way for such
a control action to become unsafe in this context. Instead, in
the deallocate buddy control action the buddy to be deallocated
may be either inside or outside the system boundaries. In
the first case, the parameter may be a buddy allocated to the
process that is requesting its deallocation or to another one that
still needs data contained inside. Another harmful condition is
produced by the consecutive execution of the deallocate buddy
control action on the same buddy, which may break the system
state and cause undefined behavior.

Finally, UCAs may be categorized as provided too early,
too late, or in the wrong order. For simplicity, in the example
under analysis the order that has been considered as order
to follow is the typical one: request an allocation, write to
and read from the allocated memory, and finally de-allocate
the memory. A write or a de-allocation control action provided
without a previous allocation results in unpredictable behavior
since such actions will use a wild pointer that may break the
global context. A read operation is instead considered safe
in this work since it does not modify the global state of the
system. Table II reports UCAs described in this section linked
together with possible hazards that each UCA may lead to.

This part of the analysis highlights the simplification of
considering abstracted parameters in control actions instead
of function parameters, which could have ended up with an
unmanageable UCAs list. With the proposed approach, the
UCAs table is manageable and understandable for the next

steps.
5) Step6 - Loss scenarios: The last phase of the proposed

approach should identify scenarios that lead to UCAs. For
each UCA in Table II at least one scenario will be described
explaining how it would lead to the specified hazard.

This phase outputs, where possible, the lines of code
sequences that are responsible to generate such scenarios.
Sometimes it cannot be possible for UCAs of the category
”not provided” since there are situations in which a single
missed control action will not lead the system to an hazard.
However, this cannot be generalized and it should be evaluated
case by case. In the case of the example under analysis
alloc_pages() and free_pages() function calls and
read or write actions should be considered to produce such
loss scenarios.

Table III shows loss scenarios produced by applying the
proposed approach to UCAs presented in the previous sub-
section. The third column ”code example” avoids ambiguities
produced by defining loss scenarios in the natural language.
In general this column reports some patterns to be avoided in
the kernel, like an incorrect interface usage from a driver. In
this example instead the focus is in the control action from
the SLAB controller to the Buddy controller, thus reporting
scenarios internal to the implementation of the DynMA. It is
possible to observe that for UCA-3 the third column is empty,
which is due to the fact that a single missed de-allocation
is not able to exhaust the memory thus blocking the system.
In Scenarios 1 and 2, the two lines of codes are executed
in the wrong order, thus causing access or deallocation of
a memory not previously allocated. Scenario 5 modeled a
double subsequent deallocation request, while the rest of the
loss scenarios are related to deallocation called with wrong
parameters.

Finally, this paper analyzes the consequences of control ac-
tions not executed at all. In this work, the missing execution of
an allocation request has been reported as a scenario that leads
to H-1. That is because a wrong or missing data structures
update, or wrong address returned to the caller are the result
of bugs or corrupted data structure, conditions that are out
of the scope of the STPA-PES. Under these assumptions, the
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TABLE III
ALLOCATE AND DEALLOCATE BUDDY LOSS SCENARIOS

UCA Loss scenario Code example Hazard

UCA-1
Scenario 1: The Slab controller assumes that the buddy is already allocated, and it writes
instead on a buddy that is not allocated yet [UCA-1]. As a result, the kernel uses a wild
pointer that may break the system state and causing an unpredictable behavior.

*addr = value;
addr = alloc pages(order, flag);

[H-1, H-2,
H-3]

UCA-2

Scenario 2: The Slab controller assumes that the buddy to be freed is already allocated
while it is not, and it requests the deallocation of an unallocated memory space [UCA-2].
As a result, the kernel uses a wild pointer that may break the system state and causing
an unpredictable behavior.

free pages(addr, order);
addr = alloc pages(order, flag);

[H-1, H-2,
H-3]

UCA-3
Scenario 3: The Slab controller receives a deallocate slab function from the Cache
controller, but it skips the function to be performed [UCA-3]. As a result, the kernel
does not respond to external input.

Not Applicable [H-1]

UCA-4

Scenario 4: The Slab memory controller uses a memory deallocation function with an
address outside the boundaries, causing a deallocation control action provided with wrong
parameter (memory outside the boundary). As a result, the kernel violates the system
boundaries.

high addr = high value;
free pages(high addr, order); [H-2, H-3]

UCA-5
Scenario 5: The Slab controller uses a memory deallocation function twice on the same
address, causing a dealloc buddy control action provided provided twice [UCA-5]. As a
result, the kernel react in an unpredictable way.

free pages(addr, order);
free pages(addr, order);

[H-1, H-2,
H-3]

UCA-6

Scenario 6: The Slab controller client uses a memory deallocation function with an
address that points to a buddy allocated for another process, thus causing a deallocation
control action provided with wrong parameter (buddy allocated for another process). As
a result, the kernel will violate the integrity of kernel data.

Process 1
addr = alloc pages(order, flag);
Process2
free pages(addr, order);

[H-3]

harmful condition happens only when the allocation request
does not return, thus blocking the caller from waiting for
the kernel to allocate a buddy. Similar reasoning brings the
missing execution of a deallocation request to be marked as a
scenario that leads to H-1.

V. DERIVED REQUIREMENTS AND DISCUSSION

Based on the proposed approach, the generation of safety
requirements can be guided by analyzing the loss scenarios.
Code examples highlight possible design criticality or errors
that shall be detected and mitigated in order to fulfill the
allocated safety requirements.

Since STPA-PES can be applied to pre-exixting software,
it is possible that some identified loss scenarios are covered
by mechanisms already present in the software or by some
specific configurations. Moreover, static checks may reduce
some of the remaining harmful conditions eliminating poten-
tial systematic errors. However, it would be not enough or the
software under analysis may be so complex that loss scenarios
cannot be checked statically. In this case, additional safety
requirements can be defined to cover the gap of remaining
loss scenarios with new safety mechanisms (either inside or
outside the pre-existing software).

Table IV shows requirements derived from the analysis
reported in previous sections. The analysis has been completed
but, as mentioned above, some of these requirements may
be already satisfied by features already implemented in the
pre-existing software. To support the identification of safety
requirements already satisfied, the code instructions mapped
in the loss scenario tables could guide the analyst to identify
the ones which still need to be covered. Code instructions
collected in the loss scenarios table should guide the analyst
in the generation of tests useful to identify such mechanisms.

In this way, new mitigation strategies will be implemented to
satisfy only uncovered requirements.

A. Discussion

An important consideration to be done is related to the
software element abstraction phase. In particular, the last
phases of the analysis may produce different results depending
on parameters defined in control actions. By following the
proposed approach, such parameters are carefully selected
thanks to the system knowledge. An alternative is to let control
actions inherit input parameters in functions that compose
each control action. This solution, however, may cause a
mismatch with the control structure. An example can be
represented by free_pages(), a function that takes in input
two parameters which are the page pointer returned from
alloc_pages() and the number of pages allocated. Such
a function is involved in the deallocate buddy control action,
which takes as input the buddy to be deallocated. Figure
9 evidences that the deallocate_buddy control action
manages buddies while the free_pages C function manages
general pages.

In this context, a loss scenario identified by a wrong
parameter takes two very different meanings. In the first case,
wrong parameter conditions may result in several scenarios
that cannot happen inside the DynMA, for instance, the slab
controller asking for the deallocation of an address that is not
a buddy. Instead, the wrong abstracted parameter moves the
analysis to meaningful and manageable loss scenarios.

B. Comparison with other techniques and limitations

Classic safety analysis techniques such as FTA or FMEA
cannot be used for complex software. While such techniques
look at the system with the finest possible grain, STPA
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TABLE IV
ALLOCATE AND DEALLOCATE BUDDY DERIVED REQUIREMENTS

Loss scenario Derived requirement Hazard

Scenario-1 [REQ-1] The Kernel shall avoid dynamic memory usage before the correct allocation. [H-1, H-2, H-3]

Scenario-2 [REQ-2] The Kernel shall avoid unintended deallocation requests by clients without rights. [H-1, H-2, H-3]

Scenario-3 [REQ-3] The Kernel shall detect if Memory Allocator/Deallocator does not handle an allocation/deallocation
request. In case of faults, the Kernel shall notify the requester with fault flag E XXXX. [H-1]

Scenario-4
[REQ-4] The Kernel shall check if all the inputs of the allocation/deallocation requests are inside the acceptable
ranges. In case of inputs exceeding the allowed ranges, the Kernel shall notify the requester with fault flag
E XXXX.

[H-2, H-3]

Scenario-5 [REQ-5] The Kernel shall detect multiple consecutive deallocation requests in the wrong order. In case of
faults, the Kernel shall notify the fault flag E XXXX and shall handle only the first request. [H-1, H-2, H-3]

Scenario-6
[REQ-4] The Kernel shall check if all the inputs of the allocation/deallocation requests are inside the acceptable
ranges. In case of inputs exceeding the allowed ranges, the Kernel shall notify the requester with fault flag
E XXXX.

[H-3]

Fig. 9. Abstracted deallocate_buddy control action compared with
free_pages C function. The abstracted control action shall deal with
abstracted C data structure.

analyzes the system as a whole (hence with too coarse granu-
larity). Starting from the work products obtained by applying
STPA at the system level, STPA-PES looks inside the software
components to understand its internals without analyzing every
function in the code. In this way, STPA-PES provides the basis
to bridge the gap between classic safety analysis techniques
and STPA.

STPA-PES has however some limitations. While the call
graph helps the analyzer in the SR element extraction phase,
the build controller phase is still hard to automate. Some basic
knowledge about the system is required to correctly define the
controller’s behavior. Moreover, the procedure to derive safety
requirements from loss scenarios is case-dependent and, for
this reason, also hard to generalize.

VI. CONCLUSIONS AND NEXT STEPS

This paper presented STPA-PES, an STPA-based technique
suitable to drive software hazardous behavior analysis and
safety requirement generation for complex pre-existing soft-
ware. Concerning other STPA-based frameworks, such an ap-
proach considers the whole system in the earliest stage, while,
in later phases, the decomposed SR elements are analyzed to
carefully manage complexities derived from the large code-
base of the software. The systematic procedure to abstract the
control structure of each SR element is able to describe its

model in a way that reduces the freedom and possible gaps
derived from the analyzer’s knowledge about the system.

The application of STPA-PES to Linux DynMA generated
safety requirements that mitigation strategies should cover. The
use of a code visualization tool helped in the construction of
a control structure that represents the software model without
the availability of the design.

Abstracting the software element control structure helps the
analyst in the extrapolation of a system architecture while
performing the software hazardous behavior analysis. This is
particularly helpful when dealing with software implemented
without following a system development lifecycle like the V-
model, which guides the programmer in the definition of a
clear design before starting to implement it. Moreover, the
abstracted control structure gives an idea to the system analyst
of the software complexity, such as a large model, a huge
number of controller dependencies, or large use of global
variables.

STPA-PES requires however some knowledge about the
system. In particular, the controller’s behavior is not modeled
in the control structure, but it is hidden internally. For this
reason, future refinements of the proposed technique should
cope with this aspect. A way to overcome such a shortcoming
is to integrate STPA-PES with finite state machine (FSM). The
combination of FSM with STPA has been proposed by Xing
et al. [37], but, in the context of pre-existing software, such an
approach should be enforced with a code analysis technique
to extrapolate the software FSM. The result will produce an
approach that is able to fully represent the system without the
need for excessive knowledge, e.g., automatically through the
help of a tool.
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