
JOURNAL OF X 1

Bounding Memory Access Times in
Multi-Accelerator Architectures on FPGA SoCs

Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo

Abstract—Modern FPGA System-on-Chips (SoCs) embed large FPGA logics capable of hosting multiple hardware accelerators.
Typically, hardware accelerators require direct access to the shared DRAM memory for reaching the high performance demanded by
modern applications. In commercial FPGA SoCs, this goal is achieved by interconnecting the hardware accelerators on an interconnect
based on AMBA AXI, which is the de-facto industrial standard for on-chip communications. The AXI standard provides great flexibility in
the definition of the network topology. Nevertheless, such flexibility generates a significant unpredictability when attempting to bound the
hardware accelerators’ response time when executing under contention. This work focus on bounding the worst-case memory access
time of hardware accelerators deployed on commercial FPGA SoCs. We propose a modeling and analysis technique to bound the
response time of the hardware accelerators and evaluate the schedulability of a system applicable to arbitrary AXI-based bus structures
deployed on FPGA SoCs. Our results are validated on real execution traces collected on two popular FPGA SoCs belonging to the Xilinx
ZYNQ-7000 and Zynq-Ultrascale+ families and by simulated results.

Index Terms—on-chip communications, cyber-physical systems, timing analysis, real-time systems, safety-critical systems.

F

1 INTRODUCTION

Embedded computing platforms evolved toward heteroge-
neous architectures to support the increasing computational
workload generated by modern cyber-physical systems (CPS),
as self-driving cars, autonomous robots, smart production
plants. Such systems must process a huge amount of sen-
sory data in real-time to meet stringent timing constraints
imposed by the interaction with the physical environment.
A significant amount of processing is performed by deep
learning algorithms, which can be efficiently accelerated
in Field Programmable Gate Arrays platforms (FPGAs) or
General Purpose Graphical Processing Unit platforms (GPG-
PUs). Today, such hardware accelerators (HAs) are available
in commercial heterogeneous computing platforms, as the
Zynq Ultrascale+ by Xilinx, which integrates in the same chip
different types of multicore processors and a large FPGA
fabric, or the Xavier from Nvidia, which includes a GPGPU
and specialized accelerators for machine learning algorithms.

When developing safety-critical software for CPS, a
crucial issue is to guarantee timing constraints for the ap-
plication tasks. This problem is particularly challenging
when hardware acceleration is involved, especially when
no internal architecture details are publicly available, as for
Nvidia GPU platforms. This is particularly relevant when
multiple HAs perform memory-intensive operations that
cause several contentions in accessing shared resources, as
buses and memory controllers.

FPGA-based acceleration represents a promising solution
for coping with these problems since it provides a powerful
and energy-efficient computation with a very regular clock-

Francesco Restuccia is with the University of California San Diego; Marco
Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo are
with the Scuola Superiore Sant’Anna Pisa.
E-mail: frestuccia@ucsd.edu, {marco.pagani, alessandro.biondi,
mauro.marinoni, giorgio.buttazzo}@sssup.it

�� ������

�2

�1

�1

�2

�3

Fig. 1: A typical bus architecture with three HAs connected
by two interconnects.

level timing behavior [3], [20]. As a result, the execution
time of a HA that runs in isolation has very low fluctuations
and hence is quite predictable. One of the major threats to
predictability for hardware accelerators deployed on FPGA
SoC platforms is due to contentions that may occur while
accessing the bus and the memory controller. This issue can
properly be addressed since FPGAs expose a precise control
on the bus structure to the system integrator designers, which
can organize the bus hierarchy to match timing constraints
and deploy custom arbitration modules to dispatch memory
transactions to the memory controller [1].

A common approach used for FPGA accelerators in
COTS SoCs consists of having a set of HAs that act as
managers in accessing the bus during transactions to the
principal DRAM off-chip memory shared with the multiple
processors [27] [10] [33]. Since the number of ports to
access the shared memory is limited, a common solution
is to multiplex multiple managers on a single port using
the interconnect available in the IP library offered by the
FPGA vendor. Multiple interconnects can be interconnected
to create a hierarchical bus network. Figure 1 illustrates a
sample network of interconnects including three hardware
accelerators (τ1, τ2, and τ3) and two interconnects (I1 and
I2).

It is worth observing that the frequency at which the

JOURNAL OF X 2

FPGA fabric operates in commercial FPGA SoCs is much
less than the one used by the on-chip memory controller
(this latter is realized in hard silicon and placed outside
of the FPGA fabric) and the memory itself. To make an
example, the default operating frequency of the FPGA in a
Xilinx Zynq-7000 is 100 MHz. Differently, the frequency of
the Processing System (including the memory controller) is
650 MHz. As a consequence, the delays originating from the
bus infrastructure implemented on the FPGA are comparable
to the ones required by memory accesses, and thus cannot
be neglected when computing the response times of HAs.

Contributions. This work investigates the major sources
of delay in HAs memory access time and presents a worst-
case response time analysis for hardware accelerators de-
ployed on FPGA SoC platforms. We considered the AXI
standard [2] for three main reasons: (1) AXI is the most
widely adopted standard for communication on commercial
FPGA SoCs [31] [13]; (2) AXI is the default option in well-
established design tools for FPGA platforms, as Xilinx
Vivado [30] and Intel Quartus Prime [14]; (3) AXI is the
default interface leveraged by several commercial hardware
accelerator modules for bus communications. The rest of the
paper is organized as following described: Section 2 proposes
a detailed model of the AXI bus and AXI interconnects.
The proposed model accounts for the behavior of commer-
cial AXI interconnects and the delays experienced by bus
transactions. Section 3 proposes a worst-case response-time
analysis bounding the response time of recurrent hardware
accelerators concurrently accessing the shared memory in PS
through hierarchical networks of AXI interconnects. Finally,
Section 4 reports our experimental validation, split into three
sets of experiments. The first set of experiments validates the
proposed model on real hardware waveform tracks obtained
from two modern FPGA SoC platforms from Xilinx. The
second set presents a case study deployed and running on the
same platforms and compares real execution measurements
with two bounds built out of the proposed analysis. At last,
the third set presents the experimental results obtained with
a synthetic workload.

This work extends the results of [25] by providing the
following new contributions: (i) An extended system model
considering the pipelining structure of AXI interconnects
and hierarchical interconnections; (ii) A reformulated worst-
case analysis including new lemmas that copes with the
limits of realistic HW-tasks and the pipelining of AXI
interconnects; (iii) An updated overall recursive bound on
the maximum amount of interfering transactions, computed
by combining the results of the new proposed lemmas; (iv)
A less pessimistic algorithm for bounding the response times
of the HW-tasks and checking the system schedulability,
considering all the proposed improvements; (v) An extended
experimental evaluation, showing the benefits of the pro-
posed improvements. The comparison shows a considerable
reduction of pessimism with respect to [25] thanks to the
novel contributions provided in this paper.

2 SYSTEM MODEL

This work considers systems involving multiple manager
hardware accelerators implemented on an FPGA SoC plat-
form and leveraging the AXI standard for communication.

These hardware accelerators can autonomously access a
shared DRAM memory through a memory controller located
on the PS side of the FPGA SoC platform.

2.1 HW-task model
Each hardware accelerator is supposed to implement a
distinct functionality. In the rest of the paper, the name
hardware tasks (or HW-tasks for short) will also be used
to indicate them. Each HW-task relies on an AXI manager
interface to autonomously read and write from/to the shared
DRAM memory. The generic HW-task τi is periodically
executed every Ti clock cycles. Thus, it generates a periodic
sequence of instances referred to as jobs. For each job, τi:
(1) issues NR

i read transactions and NW
i write transactions.

The transactions have burst length B; (2) has at most φi
outstanding transactions per channel. In other words, at any
time τi have at most φi pending read transactions and φi
pending write transactions; (3) computes for at most Ci clock
cycles; and (4) has a relative deadline equal to Ti. Thus, each
job of τi must complete before the release of the next one. We
assume that read and write transactions are independent of
each other. According to the AXI standard, read transactions
and write transactions are propagated through separated
channels. Thus, they do not influence each other in data
propagation. It is important to note that no assumptions
are made on memory access patterns for the HW-tasks to
keep the paper general and robust regarding the behavior
of HW-tasks. Hence, an arbitrary temporal distribution of
memory transactions across the jobs must be considered. At
the same time, this assumption limits the exploitation of the
parallelism provided by the AXI standard. In the worst-case
scenario, HW-tasks cannot fully exploit parallelism since
transactions can be sufficiently spread far apart.

2.2 AXI interconnect model
The system includes multiple AXI interconnects joined one
on top of the other in a hierarchical fashion, creating a
network of interconnects. The generic interconnect in the
network Ij exports Sj subordinate ports and a single man-
ager port. Since each interconnect exports a single manager
port, the incoming traffic (at the manager port and) directed
to the subordinate ports does not experience any conflict.
Differently, conflicts can be encountered by requests for
transactions of the same kind (read or write) issued by
distinct HW-tasks. Such conflicts are typically solved by
independent, per-channel, arbiters (see [32], [35]). Round-
robin arbiters have a granularity of φI requests, meaning
that the manager port grants at most φI read requests (or
respectively, write requests) to each HW-task at each round-
robin cycle. In this work, all interconnects have the same
parameter φI . This allows easing the notation in the analysis
presented in Section 3 (the case of distinct round-robin
granularities for each interconnect can be easily incorporated
in the analysis).

Each interconnect delays address and data propagation
introducing a propagation delay, denoted as: (i) daddr

Int as
the propagation delay on address requests, (ii) ddata

Int as the
propagation delay of a data word (read or write), and (iii)
d

bresp
Int as the propagation delay of write response. Such delays

are inferred from the documentation of the AXI interconnect

JOURNAL OF X 3

under analysis (whenever such documentation is provided
by the vendor) or by means of specific experimental pro-
filing. Propagation delays are the consequence of multiple
operations operated by the AXI interconnect on requests,
data, and write responses. For each channel, such operations
are performed by a corresponding pipeline composed of a
series of internal stages, such as input buffering, decoding,
optional resizing, routing, output buffering, etc. The sum of
the maximum execution times of all of the stages traversed
by an address request while propagating through the AXI
interconnect is equal to daddr

Int . In a similar way, the sum of
all of the maximum execution times of the stages traversed
by data and write responses are equal to ddata

Int and d
bresp
Int ,

respectively. Each pipeline stage in a chain is managed in
parallel by the AXI interconnect. It is important to note that
this implies that multiple address requests, data, and write
responses can be propagated in parallel along a network
of interconnects. This observation is leveraged in Section 3
to reduce the pessimism of our worst-case analysis. In the
following, we assume that the pipeline of the interconnects
never gets full. Note that the main cause for the pipeline
to get full is the presence of one or multiple HAs stalling
the bus (i.e., hanging on the data phase). In this work, this
situation is considered a misbehavior of HAs and hence
not addressed in the following. Our results can however be
extended to cope with misbehaving HAs by considering the
results of [22]: this is left as future work.

The hold times are the numbers of clock cycles for which
some information must remain on the bus to be correctly
sampled by a module connected to the bus (i.e., interconnect
or HW-task). They are denoted by the following terms: (i)
taddr is the hold time of an address request, (ii) tdata is the
hold time of a word of data, and (iii) tbresp is the hold time
of a write response. The hold times are assumed not to be
lower than the maximum execution time of the stages of the
corresponding interconnect pipeline. According to the AXI
standard, requests, data, and write responses are propagated
on separated channels. Thus, they do not interfere with each
other in propagation.

2.3 Processing System and Memory Controller model
In a typical FPGA SoC architecture, the FPGA fabric is
combined with a Processing System (PS), which generally
includes multiple processors and peripherals. The DRAM
memory controller is placed in PS and is shared among
the HW-tasks deployed in the FPGA fabric and the devices
embedded in the PS. The HW-tasks deployed in the FPGA
fabric access the DRAM memory through the FPGA-PS
interface. In modern FPGA SoC platforms, the FPGA-PS
interface exports a set of secondary ports based on the
ARM Advanced Microcontroller Bus Architecture Advanced
eXtensible Interface (AMBA AXI standard). Each HW-task is
an active entity exporting an AXI manager port through
which it can generate requests for memory transactions.
Such requests are submitted to the shared DRAM memory
controller through the FPGA-PS interface. We assume that
each HW-task has a private memory buffer in DRAM to
load and store data. This is a typical setting for applications
leveraging hardware acceleration.

We consider the scenario in which all hardware acceler-
ators share a single AXI port at the FPGA-PS interface for

accessing their memory buffers in DRAM–this is the scenario
keeping all the contention of the HW-tasks at the FPGA in-
terconnect. We made this choice as leveraging multiple ports
at the FPGA-PS interface moves the contention generated by
the HW-tasks from the FPGA fabric to the PS interconnect
and DRAM memory controller. Our investigation in this
paper is mainly focused on the worst-case effect generated at
the FPGA interconnect rather than the contention generated
at the PS interconnect and DRAM memory controller (which
depends on strategic information typically not released by
the vendor). Investigating the contention in PS goes beyond
the purpose of this paper—we are planning for such an
investigation in future work, aspiring for the provisioning
of more detailed information on the internals of the PS
interconnect and DRAM memory controller from the vendor.

In commercial FPGA SoC platforms, the shared DRAM
memory controller included in the PS is split in two modules:
(1) an AXI interface module and (2) a physical core module,
directly accessing the physical DDR memory [28], [31].
The AXI interface block receives and arbitrates the AXI
transactions from the AXI subordinate ports of the memory
controller. The DDR physical core schedules and issues the
requests to the physical layer and generates control and data
signals for the DRAM memory.

Commonly, the internal architecture of the DDR physical
core is based on multi-level queues, where throughput and
efficiency are maximized by applying dedicated scheduling
policies to reorder transactions [11]. The internals of the
DDR physical core block on many commercial platforms
are not publicly revealed or not well documented, including
the queues structure and the scheduling policies. Hence,
a fine-grained model of the DDR physical core block is
beyond the scope of this paper. Being our focus on analyzing
the system interconnect, a coarse-grained modeling of the
DRAM-related delays is adopted. It is worth mentioning
that our results could be refined if the internals of the DDR
controller are known (e.g., by adopting the results from [11]).

The DRAM Memory Controller AXI Interface block
guarantees that the requests directed to the shared DRAM
are served in order (see [28], p. 297, and [31], p. 440). This
means that, from the point of view of the HW-tasks, the order
of the data read responses follows the order of address read
requests granted at the FPGA-PS interface. Likewise, write
address requests are handled in order. It is worth mentioning
that this feature does not depend on the scheduling policies
implemented by the DDR Physical core block, which may
affect the worst-case service time of a request due to internal
reordering.

From previous considerations, this paper takes into
account the following (cumulative) delays introduced by
the PS and the memory controller:

• dread
PS is the maximum time elapsed between the sam-

ple of a read transaction at the FPGA-PS interface and
the availability of the first word of the corresponding
data at the FPGA-PS interface; and

• dwrite
PS is the maximum time elapsed between the

sample of the last word of data of a write transaction
at the FPGA-PS interface and the availability of
the corresponding write response at the FPGA-PS
interface.

JOURNAL OF X 4

By definition, these delays incorporate the propagation
times due to the PS internal logic and the overall service
time at the memory controller. Such parameters derive
from the internals of the PS and can be obtained from the
official documentation furnished by the vendor (if publicly
available) or quantified through experimental profiling and
over-provisioning. Accurate bounds on the delays introduced
by the memory controller can be computed with state-of-the-
art techniques [4], [11] provided that its internal architectural
details are available.

2.4 Overall architecture

The system under analysis is formally composed of a set
Γ = {τ1, . . . , τn} of n HW-tasks, a set H = {I1, . . . , Is} of s
AXI interconnects, and a shared DRAM memory controller
M in PS. The HW-tasks ∈ Γ are deployed on a network of
AXI interconnects (in the set H) and organized as follows.
Each subordinate port of an interconnect is connected to
the manager port of a HW-task or to the manager port
of another interconnect (in a hierarchical manner). The
set of the HW-tasks connected to the interconnect Ij is
denoted by Γ(Ij). In a similar way, the set of interconnects
connected to the subordinate ports of Ij (i.e., in input) is
denoted with H(Ij). The set of HW-tasks that are directly
or transitively connected to Ij is denoted by Γ+(Ij) (i.e.,
whose transactions traverse Ij). The manager port of the
interconnect placed at the very bottom of such a hierarchy is
connected to the subordinate port of the FPGA-PS interface.
We referred to this latter interconnect as the root interconnect
Iroot – the transactions released by all of the HW-tasks pass
through this interconnect to reach the memory controller in
PS. Each interconnect has one manager port. The manager
port of the generic interconnect Ij 6= Iroot is connected to a
subordinate port of another interconnect, denoted by β(Ij).
For consistency, β(Iroot) = ∅. Overall, the system topology
is a tree where: (i) the root node is represented by Iroot, (ii)
the leaves are represented by the HW-tasks in Γ, and (iii) the
interconnects inH\{Iroot} represents the intermediate nodes
(see Figure 2(b)). We say that an interconnect I is placed at the
hierarchical level LI when a HW-task connected to I must
traverse LI interconnects to reach the FPGA-PS interface
(Iroot is at first level, i.e., LIroot = 1). Table 1 summarizes the
symbols used in this paper.

TABLE 1: Symbols used in this paper.

Ni Number of transactions issued by τi (can have superscript R or W)
φi Number of maximum outstanding transactions for τi
φI Transactions granted per round-robin cycle by interconnects
B Burst length of a transaction

taddr Single address request hold time
tdata Single data word hold time
tbresp Single write response hold time
dread

PS Maximum delay introduced by the PS on a read transaction
dwrite

PS Maximum delay introduced by the PS on a write transaction
ddata

Int Data word interconnect propagation latency
daddr

Int Address request interconnect propagation latency
d

bresp
Int Write response interconnect propagation latency

Γ(Ii) Set of the HW-task connected to Ij
H(Ij) Set of the interconnects connected to subordinate ports of Ij
β(Ij) Interconnect connected to the manager port of Ij

Γ+(Ij) Set of HW-tasks whose transactions pass through Ij

3 RESPONSE-TIME ANALYSIS

This section presents a worst-case analysis bounding the
worst-case response times of HW-tasks deployed on a
hierarchical interconnect network.

We structured the analysis in a set of incremental lemmas:
at first, we bound the worst-case response time of one read or
write transaction assuming no contention at the interconnects
(Section 3.1). Following, we propose three methodologies for
bounding the maximum number of interfering transactions
affecting the execution of a job of a HW-task under analysis
(Section 3.2, Section 3.3, and Section 3.4). The three proposed
bounds are then combined in Section 3.5. Finally, Section 3.7
proposes an algorithm leveraging the results of the preceding
sections to bound the maximum response time of the HW-
tasks and check system schedulability.

The bounds derived in this section can be applied to both
read and write transactions. To keep a compact notation, this
section uses the simplified symbol Ni in place of NR

i or NW
i

to represent the number of transactions issued by τi.

3.1 No contention at the interconnects

The following lemmas bound the memory access time of one
transaction issued by a generic HW-task τi under evaluation
that is connected to the interconnect I placed at an arbitrary
hierarchical level L. The lemmas presented in this section
consider the cases in which no bus contention is generated by
the other HW-tasks in the system1. Two lemmas are provided,
one for read and one for write transactions.

Lemma 1. Let τi ∈ Γ be the HW-task under analysis and
connected to interconnect Ij ∈ H placed at the L-th hierarchical
level. If all the HW-tasks in Γ \ {τi} are not active, i.e., they do
not generate interference to τi, the worst-case response time of a
single read transaction R issued by τi is upper bounded by

dNoCont,read(Ij) = taddr + L · daddr
Int + dread

PS +

+L · ddata
Int +B · tdata.

Proof. As from the official AXI standard documentation [2], a
read transaction R begins with the issue of the address read
request Raddr, which is then sampled by Ij . The address
time is constant and equal to taddr. The latency cost for
Raddr to traverse the interconnect Ij is bounded by daddr

Int . At
this point, Raddr goes through the interconnect network tree,
traversing the remaining L− 1 interconnects. As argue for
Ij , each of such interconnects introduces a latency bounded
by daddr

Int . Therefore, Raddr is available at the manager port of
the root interconnect Iroot after a total propagation delay of
taddr +L ·daddr

Int , where it is sampled from the subordinate port
of the FPGA-PS interface. The PS routes Raddr to the Memory
Controller and provides to the FPGA-PS interface the first
word of data after at most dread

PS time units (see Section 2.3). At
this point, the data words Rdata corresponding to R traverse
the L levels of the network of interconnects, in reverse
order with respect to Raddr, until finally reaching τi. Due

1. Note that the contention-free bounds provided by the two lemmas
do not pertain to the cases in which the transaction is served in
isolation, but rather to cases in which no contention is experienced
at the interconnects. This is because the delays introduced in Section 2.3
already cope with conditions of maximum contention at the PS and the
memory controller.

JOURNAL OF X 5

to pipelining, being the data words propagated in sequence
within the network of interconnects, the propagation latency
experienced during the data phase is paid just once for the
whole data burst. Hence, given tdata as the data time for each
word and that ddata

Int is the maximum latency introduced by
any interconnect on data words, the overall latency paid to
propagate the data burst along the interconnect network is
L · ddata

Int +B · tdata. The lemma follows by summing up the
delay contributions mentioned above.

Lemma 2. Under the same hypotheses of Lemma 1, the response
time for a write transaction W issued by HW-task τi is bounded
by

dNoCont,write(Ij) = taddr + L ·max{daddr
Int , d

data
Int }+B · tdata+

+dwrite
PS + tbresp + L · dbresp

Int .

Proof. As from the official AXI standard documentation [2],
the write transaction W begins with the issue of the address
write request Waddr by τi, which lasts taddr time units. As
mandated by the AXI standard, once Waddr is granted at
the interconnect Ij , the HW-task τi is granted to provide
the corresponding data words Wdata on the write channel.
Waddr and Wdata are propagated through the interconnect
network tree on the two corresponding channels, eventually
reaching the FPGA-PS interface. Note that data can be
propagated only after the corresponding address. Therefore,
the latency experienced by Waddr and Wdata when traversing
an interconnect is no larger than the maximum between daddr

Int
and ddata

Int . Overall, considering all the interconnects up to the
FPGA-PS interface, the latency introduced on Waddr and the
entire burst Wdata is given by taddr + L · max{daddr

Int , d
data
Int },

which must be summed to the time to transmit the data
themselves, i.e.,B·tdata. At this point, the PS routesWaddr and
Wdata to the memory controller. Following Section 2.3, after at
most dwrite

PS time units the write response Wresp is available at
the FPGA-PS interface. Finally, Wresp is propagated through
the interconnect tree, until reaching τi, experiencing a latency
of tbresp + L · dbresp

Int . The lemma follows by summing up the
delay contributions mentioned above.

Observe that the bounds provided by the two lemmas
above just depend on the hierarchical level L at which
interconnect Ij is placed, i.e., the one to which the HW-task
under analysis is directly connected.

3.2 First bound on the number of interfering transac-
tions

In this lemma, we proceed incrementally starting con-
sidering the interference generated at a single interconnect,
for instance Iroot in the most simple case (see Figure 2(a)).
The lemma bounds the maximum number of interfering
transactions that a transaction issued by the HW-task under
analysis can suffer.

Lemma 3. Consider the interconnect Iroot and let τi ∈ Γ(Iroot) be
the HW-task under analysis. In the worst-case, each address request
for transaction issued by τi grants the access to the manager port
of Iroot after at most ∑

τj∈Γ(Iroot)\{τi}

min(φj , φI) (1)

transactions.

Proof. By the model presented in Section 2, the interconnects
solve conflicts on address requests issued by different HW-
tasks by round-robin. In the worst-case scenario, τi is the last
HW-task to be served in the round-robin arbitration cycle,
i.e., after all the other HW-tasks in Γ(Iroot). By Section 2.1, the
maximum number of transactions issued by each HW-task τj
that can be pending at the same time is φj . At the same time,
by Section 2.2, the maximum number of transactions that
an interconnect can grant to each HW-task for each round-
robin cycle is φI . Therefore, Iroot grants at most min(φj , φI)
transactions for each interfering HW-task τj ∈ Γ \ {τi} per
round-robin cycle. The lemma follows by summing up this
contribution for each interfering HW-tasks.

Once defined Lemma 3, it is possible to proceed with
bounding the maximum number of interfering requests
in a generic interconnects network. We first observe that
a HW-task τi can suffer two types of interference: (1)
direct interference, which is the interference suffered by the
transactions issued by τi at the interconnect to which τi is
directly connected to; and (2) indirect interference, being the
interference suffered by the transactions issued by τi, or
other transactions that generate direct interference to τi, in
other interconnects at shallower hierarchical levels on their
way towards the FPGA-PS interface. Following, we provide
further details on both kinds of interference.

Direct interference. The reasoning introduced in
Lemma 3 can be extended to consider a hierarchical network
of interconnects, as the one illustrated in Figure 2(b). It is
worth noting that, in this case, a HW-task can also experience
contention at an interconnect due to transactions issued by
HW-tasks connected at higher hierarchical levels. To make
an example, τi in Figure 2(b) (directly connected to Iroot)
can be interfered by transactions issued by the HW-task τz
connected to I1.

���1

�����

��

�����

��

��

�1

�� ��

��

(a) (b)

Fig. 2: (a) A set of HW-tasks directly connected to Iroot. (b) A
sample hierarchical network of interconnects and HW-tasks
with two hierarchical levels. Circles are HW-tasks (only the
ones mentioned in the text are assigned a name).

Lemma 4. Consider an arbitrary interconnect Ij . Also, let τi ∈
Γ(Ij) be the HW-task under analysis. In the worst-case, each
address request for transaction issued by τi reaches the manager
port of Ij after at most

Y direct(τi, Ij) =
∑

τj∈Γ(Ij)\{τi}

min(φj , φI) + |H(Ij)| × φI (2)

JOURNAL OF X 6

transactions.

Proof. Following the model presented in Section 2.2, at each
round-robin cycle, Ij serves at most φI transactions per its
subordinate port. Note that this also holds when another
interconnect Ih is connected to a subordinate port of Ij .
Therefore, from the perspective of τi, any bus traffic coming
from Ih can interfere by at most φI transactions per round-
robin cycle, independently of the actual configuration of the
sub-network connected to Ih. Overall, this means that all
interconnects that are directly connected to Ij can interfere
with each transaction issued by τi with at most |H(Ij)| × φI
transactions. Finally, the first term of Equation (2) follows due
to the same considerations done in the proofs of Lemma 3.
Hence the lemma follows.

Indirect interference. A request issued by the HW-task
under analysis can also incur contention at shallower hierar-
chical levels while it is propagated through the network of in-
terconnects. To make an example, in Figure 2(b) a transaction
issued by τz can incur contention at Iroot due to transactions
issued by τi or τx. Moreover, indirect interference can also
affect transactions generating direct interference to a request
issued by a HW-task under analysis. This effect leads to
a transitive interference phenomenon. Making an example, in
Figure 2(b) a transaction issued by τk delaying τz in I1 can
experience contention at Iroot due to a transaction issued
by τx, hence in turn delaying τz too. In such scenario, the
transaction of τx is transitively delaying τz .

Following, we introduce a set of lemmas to account for
indirect interference. As done previously, we proceed incre-
mentally, starting considering just two adjacent hierarchical
levels.

Lemma 5. Consider an arbitrary interconnect Ij , placed at
hierarchical level L ≥ 2, that issues ∆ transactions in output
to its manager port. The ∆ transactions can be indirectly interfered
by at most

Y indirect
2-level (∆, Ij) = ∆×

×

 ∑
τi∈Γ(β(Ij))

min(φi, φI) + |H(β(Ij)) \ {Ij}| × φI

 (3)

transactions at β(Ij) (i.e., at hierarchical level L− 1).

Proof. Let r one of the ∆ transactions issued by Ij . As
addressed by Lemma 4, r can incur direct interference at
β(Ij), i.e., the only interconnect directly connected to Ij at
the lower hierarchical level L − 1. Hence, the interference
at β(Ij) can be bounded as done for Lemma 4. The only
differences here are the following ones: (i) Being r coming
from another interconnect Ij , the transaction is not originated
by a HW-task that is directly connected to β(Ij). Therefore,
no HW-task needs to be excluded from those that generate
interfering transactions (first term in the sum of Eq. (2)). (ii)
Interconnect Ij , being the one from which the transaction r
under analysis is coming from, has instead to be excluded
from the set of interconnects that can generate interfering
transactions (second term in the sum Eq. (2)). hence the
actual set of interconnects to consider isH(β(Ij)) \ {Ij}. The
lemma follows by accounting for the bound implied by the

above reasoning for each of the ∆ transactions issued by
Ij .

After introducing the above lemma, we can generalize
the bound on the contribution of indirect interference for an
arbitrary hierarchical structure having L > 2 levels.

Lemma 6. Let τz be the HW-task under analysis directly
connected to interconnect Ij at the hierarchical level L ≥ 2.
The total number of transactions that interfere with those issued
by τz up to the l-th hierarchical level, with l ∈ [1, L], is bounded
by Y lz , which is recursively defined as follows for l < L:{

Y lz = Y indirect
2-level (Nz + Y l+1

z , I l+1) + Y l+1
z

I l = β(I l+1),

and as follows for l = L (base case):{
Y Lz = Nz × Y direct(τz, Ij)

IL = Ij .

Proof. The proof is by induction on the hierarchical level l ∈
[1, L]. The proof also shows that the interconnect traversed
by τz’s transactions at the l-th hierarchical level is I l, which
is defined as in the above equations.

Base case: HW-task τz is directly connected to Ij at the L-
th hierarchical level: hence, IL = Ij and, at this interconnect,
τz suffers direct interference only. By Lemma 4, for each of
the Nz transactions issued by τz , the number of interfering
transactions up to the L-th hierarchical level is bounded by
Y direct(τz, Ij).

Inductive case: The induction hypotheses are that Y l+1
z

safely bounds the number of transactions that interfere with
τz up to the (l + 1)-th hierarchical level and that I l+1 is the
interconnect traversed by τz’s transactions at the (l + 1)-th
level. We proceed by showing that Y lz is a safe bound for
the l-th hierarchical level. First of all, by definition, observe
that I l = β(I l+1) is the only interconnect traversed by the
τz’s transactions at the l-th hierarchical level. Second, note
that the transactions that enter in I l and that impact on
the execution of τz must be (i) those issued by τz itself
and (ii) those interfering with the ones issued by τz at
the interconnects traversed by τz’s transactions at higher
hierarchical levels. By the HW-task model, the ones of case (i)
are no more than Nz . By the induction hypotheses, the ones
of case (ii) are bounded by Y l+1

z . Observe that such requests
are coming from I l+1 and can incur indirect interference at
I l: by Lemma 3, such an interference can be bounded by
Y indirect

2-level (Nz + Y l+1
z , I l+1). Now, it remains to account for all

the interference, either direct or indirect, that τz ’s transactions
can collect at the higher levels to bound the overall number
of interfering requests up to the l-th hierarchical level, Again,
by the induction hypotheses, such interference is bounded
by Y l+1

z . Hence the lemma follows.

3.3 Second bound on the number of interfering trans-
actions
We propose here an alternative approach to bound the
maximum number of interfering transactions. From the
model proposed in Section 2.1, we observe that the HW-tasks
are executed periodically. Thus, the number of transactions
generated by each HW-task in a given time window is limited
and quantifiable.

JOURNAL OF X 7

Lemma 7. Let τi be the HW-task under analysis and let I l the
interconnect traversed by τi’s transactions at the l-th hierarchical
level. In a schedulable2 system, the number of transactions that
can interfere with τi up to I l is bounded by

Y time(τi, I
l) =

∑
τj∈Γ+(Il)\{τi}

ηi,j ,

where ηi,j =

⌈
Ti + Tj
Tj

⌉
×Nj

Proof. Without loss of generality, consider a periodic instance
of τi that starts at time 0. Note that, to generate transactions
that interfere with those issued by τi, a job of another HW-
task τj must be released no earlier than time −Tj . Otherwise,
such a job would be already completed when τi is released.
Similarly, note that a job of τj that generates interfering
transactions must be released before time Ti, otherwise τi
would already be completed and no interference would
hence be possible. It then follows that the time window
of interest to analyze the contention suffered by τi and
generated by τj is (−Tj , Ti]. Its length is clearly Tj + Ti.
Observe that in such a time window τj can release at most
d(Ti + Tj)/Tje jobs. Each of them can issue at most Nj
transactions. Therefore, there are at most d(Ti+Tj)/Tje×Nj
transactions that can interfere with τi. The total number of
transactions that can interfere with τi is hence bounded by
the sum of such terms computed for each HW-task that
can interfere with τi. Note that only the HW-tasks whose
transactions traverse I l can interfere at I l, i.e., those in the
set Γ+(I l). Clearly, τi has to be excluded from Γ+(I l) as it
cannot interfere with itself. Hence the lemma follows.

3.4 Third bound on the number of interfering transac-
tions

This section proposes a third and last bound on the maxi-
mum number of interfering transactions. As introduced in
Section 2.1, each HW-task can issue a limited amount of
outstanding transactions. This means that at any moment
of time the number of interfering transactions issued by an
interfering HW-task in the network is limited.

Lemma 8. Let τi the HW-task under analysis and let I l be the
interconnect traversed by τi’s transactions at the l-th hierarchical
level. The number of transactions that can interfere with the
execution of a job of τi up to I l is bounded by

Y outs(τi, I
l) = Ni ×

∑
τj∈Γ+(Il)\{τi}

φj

Proof. From the model in Section 2.1, each interfering HW-
task τj ∈ Γ+(I l) can have at most φj pending transactions
in the network at any moment in time. By definition of set
Γ+(I l), the transactions issued by HW-tasks τj ∈ Γ+(I l) are
those that pass through interconnect Il. Whenever a transac-
tion issued by τi reaches I l, each HW-task τj ∈ Γ+(I l) \ {τi}
can have at most φj pending transactions, each of which may

2. When bounding response times of real-time tasks, it is common to
assume that the interfering tasks complete by their deadlines to get rid
of circular dependencies that arise in response-time equations. Please
refer to [19] (Sec. VI.C) for further details about the validity of this
approach.

be propagated before the one of τi. Hence
∑
τj∈Γ+(Il)\{τi} φj

bounds the number of transactions that can interfere with
τi up to I l. The lemma follows by recalling that τi issues at
most Ni transactions per job.

3.5 Combining the bounds
The following lemma combines the three bounds proposed
in Section 3.2, Section 3.3, and Section 3.4 to propose an
improved (less pessimistic) bound for the overall maximum
number of interfering transactions for an arbitrary HW-
task set and interconnect network architecture. The formula
proposed in the lemma is iterative – iterating the formula for
each interconnect in the path between a HW-task under
analysis and until reaching the FPGA-PS interface it is
possible to compute the number of interfering transactions
suffered by a request under analysis.

Lemma 9. In a schedulable system, the same claim of Lemma 6
still holds if Y lz is recursively defined as follows for l < L:

Y lz = min
(
Y indirect

2-level (Nz + Y l+1
z , Il+1) + Y l+1

z , Y time(τz, I
l)

Y outs(τz, I
l)
)

Il = β(Il+1)

and as follows for l = L (base case):{
Y Lz = min

(
Nz × Idirect(τz, Ij), Y

time(τz, I
L), Y outs(τz, I

L)
)

IL = Ij .

Proof. The lemma follows as for Lemma 6 after recalling that
Lemma 6, Lemma 7, and Lemma 8 provide a safe bound on
the number of transactions that can interfere with τz . Hence,
the minimum of the three bounds is still a safe bound.

3.6 Delay introduced by an interfering transaction
As explained in Section 2, when building a network, intercon-
nects and HAs are stacked one on top of the other so that the
whole network behaves as a pipeline that propagates requests
and data. Due to pipelining, the propagation of interfering
transactions through each interconnect of the network does
not affect the service time of a transaction under analysis, i.e.,
the contention delay introduced by an interfering transaction
is limited to its service time and its data propagation time,
as formalized by the following lemma.

Lemma 10. Let τi be the HW-task under analysis connected to
interconnect I at the L-th hierarchical level. Supposing that τi
issues a request for transaction, the worst-case delay contribution
of an interfering transaction issued by HW-task τj placed at an
arbitrary hierarchical level is bounded by:

dPipe,read(I) = taddr + dread
PS +B · tdata,

dPipe,write(I) = taddr +B · tdata + dwrite
PS + tbresp

for read and write transactions, respectively. This result is
independent of the hierarchical level of τj .

Proof. A network of AXI interconnects and HAs manages
addresses, data, and write responses as a pipeline. As the
pipeline is assumed not to get full (see Sec. 2.2), multiple ad-
dress requests can both be issued and propagated in parallel
into the network. Hence, the delay an interfering address

JOURNAL OF X 8

request traversing the corresponding network pipeline (i.e.,
the one composed by all the stages of the interconnects
related to the AR/AW channel) can generate to another
request is bounded by the maximum execution time of the
pipeline stages. By Section 2.2, this delay is bounded by the
hold time taddr. Now, consider read interfering transactions.
It remains to bound the delay they generate to τi’s trans-
actions due to the data in response of address requests. By
Section 2.3, data read responses follow the order of address
read requests: hence, each interfering transaction can delay
τi up to dread

PS time units, waiting for the PS to respond.
The data propagation phase of interfering transactions is
also subject to pipelining. This means that each of the B
words of data can delay a τi’s transaction by at most the
maximum execution time of the data read pipeline stages (R
channel). By Section 2.2, this delay is less then tdata. Hence,
the overall delay is bounded by B · tdata. Finally, consider
write interfering transactions. By Section 2.3, the write data
follow the address requests in order, hence each interfering
transaction can delay τi up to dwrite

PS +B · tdata time units for
the same reason mentioned above for read transactions. Write
responses are then propagated back through the network
of interconnect. Again, analogously to address requests
and data, due to pipelining, for each interconnect they can
contribute to the delay suffered by each τi’s transaction by
at most the maximum execution time of the pipeline stages
for handling write responses (B channel). By Section 2.2,
this delay is bounded by the hold time tbresp. The lemma
follows.

3.7 Response-time analysis algorithm
In this section, we present the proposed algorithm bounding
the response time of a HW-task connected at an arbitrary
hierarchical levels of a generic network of interconnects.
Differently from the lemmas already presented (whose bound
only the number of interfering transactions), the following
algorithm derives the temporal interference assigning a con-
tention cost to interfering transactions. It is worth mentioning
that, set a HW-task τz under analysis, a safe bound can be
derived by computing Y 1

z from Lemma 9, which is able to
bound the total number of interfering transactions across the
entire hierarchical network of interconnects (until reaching
Iroot), and then multiplying Y 1

z by the largest contention cost,
that is, the one related to the highest hierarchical level. Never-
theless, a more accurate bound can be derived accounting for
level-specific contention cost for each interfering transaction,
by identifying the corresponding highest hierarchical level it
can interfere with.

Such strategy is implemented by Algorithm 1. As intro-
duced in Section 3, read and write transactions are managed
and propagated through separated channels by AXI-based
interconnects. Thus, they can be treated separately. As for all
of the lemmas presented in this Section, Algorithm 1 holds
for both read and write transactions. To avoid duplicating
its definition, the algorithm considers a contention cost
generated by an interfering transaction dPipe(Ij) that has
to be replaced with dPipe,read(Ij) or dPipe,write(Ij) depending
on the type of transactions that are studied. Consequently, the
algorithm can be used to produce two outputs, respectively
one of read and one for write transactions, which to keep a
compatible notation are named dinterf,read

z and dinterf,write
z .

Input: HW-task τz ∈ Γ directly connected to Ij at
level L

Output: dinterf
z

IL = Ij
N acc ← 0
for l = L,L− 1, . . . , 1 do

N l ← Y lz from Lemma 9
dinterf
z ← dinterf

z + (N l −N acc)× dPipe(I l)
I l−1 = β(I l)
N acc ← N acc +N l

end
return dinterf

z
Algorithm 1: The proposed algorithm providing a tem-
poral bound on the maximum contention delay experi-
enced by τz and caused by the interfering transactions
propagated across the entire hierarchical network of
interconnects.

Essentially, the algorithm iterates over all hierarchical
levels interested by the HW-task τz under analysis, starting
from l = L down to l = 1, and considers the maximum
number of interfering transactions collected up to each
interconnect traversed by the transactions issued by τz .
At each interconnect I l traversed at the l-th hierarchical
level, it is accounted the contention delay of the interfering
transactions insisting on I l that have not already been
accounted at a higher hierarchical level.

The presented algorithm allows to finally bound the
worst-case response time of each HW-task, which is com-
posed of (i) its worst-case execution time, (ii) the time spent
in performing its transactions (read and write), and (iii) its
maximum experienced contention delay. Hence, the response
time of each HW-task τz connected to interconnect Ij is
bounded by the following:

Rz = Cz +NR
z × dNoCont,read(Ij) +NW

z × dNoCont,write(Ij)+

+dinterf,read
z + dinterf,write

z .
(4)

Finally, a system is deemed schedulable if all HW-tasks
meet their deadlines, i.e., if Rz ≤ Tz,∀τz ∈ Γ.

4 EXPERIMENTAL VALIDATION

This section describes an experimental evaluation performed
to validate the system model and the effectiveness of the
proposed analysis in providing safe timing bounds. All
experiments described in this section have been performed
on two modern, commercial Xilinx FPGA SoC platforms: the
Zynq 7020 (on the PYNQ board) and the Zynq UltraScale+
XCZU9EG (on the ZCU102 board). In the experimental setup,
the system DRAM memory is accessed through the high-
performance (HP) ports of the FPGA-PS interface on both
platforms. This route is used in most real-world designs since
it provides the maximum possible throughput to the DRAM
memory. Our evaluation showed that both platforms (Zynq
7020 and Zynq UltraScale+ XCZU9EG) present a similar
behavior for the scope of this paper. Hence, for the sake of
brevity, only the experiments performed on the more recent
Zynq UltraScale+ XCZU9EG platform are reported. Finally,
this Section concluded by presenting the experimental results
obtained in simulation with a synthetic workload.

JOURNAL OF X 9

4.1 Experimental setup

For this experimental evaluation, we developed two custom
modules in order to perform accurate, clock-level measure-
ments: (i) a traffic generator module, named greedy HW-
task (also called GHW-task), and (ii) a multi-channel timer
module. The GHW-tasks are used to model any possible
bus behavior of HW-tasks in a controllable manner. In
this way, GHW-tasks can mimic any transactions pattern
issued by real-world HW-tasks to stress bus contention.
Each GHW-task can be programmed to generate accurate
patterns of transactions compliant with the AXI standard.
The transactions can have custom burst lengths and offsets.
The multi-channel timer is leveraged to retrieve clock-level
accurate measurements of the response times of the GHW-
tasks, without interfering with their execution. Both of the
modules have been synthesized and implemented leveraging
Xilinx Vivado 2020.2. In this evaluation, we keep the FPGA
clock set to its default value (100 MHz) in both of the
platforms (Zynq 7020 and Zynq UltraScale+ XCZU9EG).

4.2 Platform profiling

This first set of experiments aims at characterizing propagation
delays and hold times introduced in Section 2.2 for the AXI
SmartConnect, a state-of-the-art interconnect developed by
Xilinx. To this end, we developed a test setup composed of
three GHW-tasks connected to the HP0 port of the FPGA-
PS interface through an AXI SmartConnect. The test setup
also includes an Integrated Logic Analyzer (ILA) [34] used
for storing the execution traces of AXI links connecting
the GHW-tasks to the AXI interconnect (AXI SmartConnect
in this evaluation) and the AXI link connecting the AXI
interconnect to the HP0 port. The traces provided by the
ILA have been measured to estimate the delays experienced
by address and data transactions while traversing the AXI
SmartConnect. The propagation delay observed for address
read and write transactions is daddr

Int = 12 clock cycles, while
the delay observed for read and write data transactions is
ddata

Int = 11 clock cycles. Finally, the delay observed for write
response has been observed is dbresp

Int = 9 clock cycles. The
hold times taddr, tdata, and tbresp have been observed to be
constant and equal to one clock cycle. It is worth noting
that such constant delays can be larger in other settings, e.g.,
when the HW-tasks can delay data sampling (this scenario is
not considered in this paper). As introduced in Section 2.3,
the delays experienced by read and write data transactions
(dread
PS and dwrite

PS) while accessing the DRAM memory in
the FPGA-PS interface are highly dependent on the DRAM
memory controller and its internal policies. As the main focus
of this work is on the contention generated at the FPGA
subsystem, in the proposed experimentation no memory-
intensive workload from the processors was stimulated.3

Instead, we estimated experimentally that performing a
read transaction requires dread

PS = 50 clock cycles, while
committing a write transaction takes dwrite

PS = 40 clock cycles.

3. The extension of our analysis to consider diverse workloads
generated from the processors in PS is left as future work to holistically
analyze the PS subsystem.

4.3 Validation of the model

In these experiments, we aim at validating the assumptions
proposed in Section 3 for modeling the maximum interfer-
ence experienced by a HW-task due to transactions issued by
interfering HW-tasks. The outcomes will be used as building
blocks for assembling and simulating complex hierarchies
that are impossible to evaluate on current-generation FPGA
SoCs due to excessive resource requirements. To this end,
we first consider a flat architecture and then proceed by
characterizing the base cases of hierarchical networks.

Interference in a flat network architecture. This experi-
ment evaluates the behavior of the AXI SmartConnect when
arbitrating the transactions concurrently issued by multiple
GHW-tasks in a flat network. In particular, it aims at estimat-
ing the worst-case response time of a transaction, occurring
when the transaction loses the entire arbitration cycle of the
interconnect. To this end, we configured all of the GHW-tasks
for issuing a single request with a burst length of sixteen 4
byte words. The GHW-tasks are activated at the same clock
cycle, using a single start signal. The test setup under analysis
in these experiments includes four GHW-tasks τ0, . . . , τ3.
Each of the GHW-task is connected to one of the subordinate
ports of one AXI interconnect I . The manager port of the
interconnect is connected to the HP0 port of the FPGA-PS
interface (as shown in Figure 2(a)). In this architecture, all
of the transactions issued by the GHW-tasks are subject to a
single arbitration cycle of the AXI interconnect to reach the
HP0 port. We measured the activation and finishing times
of the GHW-tasks using the custom timer module deployed
on the FPGA fabric. The maximum response time observed
for GHW-tasks, compared with two analytical upper-bounds
(Upper Bound A and Upper Bound B) derived from the
analysis proposed in Section 3.7 for the flat architecture
under analysis, are reported in Figure 3. Upper-bound A does
not consider the results on pipelining proposed in Lemma 10,
so that the delay introduced by each interfering transaction
is accounted for as a full transaction cost (i.e., in Algorithm 1,
dPipe(I l) = dNoCont(I l), see Lemmas 1 and 2. This correspond
to the original bound proposed in [25]). Differently, Upper
Bound B leverages the results of Lemma 10 for setting the
terms dPipe(I l) in Algorithm 1, which allow reducing the
delay impact of each interfering transaction by leveraging
pipelining.

0 100 200 300 400

Read

Write

190

160

364

316

291

253

Maximum measured Upper bound A Upper bound B

Fig. 3: Maximum measured response times for read and write
transactions compared with the two upper bounds proposed
in Section 3 (results are reported in clock cycles).

Figure 3 shows that when a HW-task loses an entire
arbitration cycle (i.e., in the worst-case scenario), the ob-
served response times are safely bounded by the analysis
presented in Section 3. The result provided by Lemma 10
allows reducing the pessimism of the analysis considerably.

JOURNAL OF X 10

Indeed, Upper Bound B provides a 20% improvement for
both read and write transactions with respect to Upper
Bound A.

Interference in a hierarchical network. This second
group of experiments validates the assumptions proposed
in Section 3 to characterize the interference caused by the
multiple interfering HW-tasks in a hierarchical network of
interconnects. To this end, the test setup developed for these
experiments comprises four GHW-tasks, τ0, τ1, τ2, and τ3,
and three interconnects, I0, I1, I2, organized as pictured in
Figure 4. The GHW-tasks are configured and released as in
the previous experiment. In this architecture, the address

�0

�0

�1

�1

�2

�2

�3

Fig. 4: Hierarchical network architecture considered in the
model validation.

requests issued by τ0 pass a single arbitration phase, which
occurs at the interconnect I0. Differently, the requests issued
by τ1 must traverse two arbitration phases: the first one
at I1, and then at I0. Finally, the requests issued by the
GHW-tasks τ2 and τ3 must traverse three interconnect steps,
respectively, I2, I1, and I0. The first experiment aims at
validating the model for (i) the interference caused by
interfering HW-tasks connected to the same interconnect
(direct interference), and (ii) the interference generated by
HW-tasks connected to the lower-level interconnects (indirect
interference). In this experiment, τ3 is the HW-task under
investigation. It has been configured for issuing a single
request for transaction AR3 (read and write). At the same
time, the interfering tasks, τ2, τ1, τ0, have been configured
to issue eight consecutive interfering transaction requests
of the same type as AR3. In order to generate maximum
contention at the interconnects, τ1 is released with an offset
equal to the interconnect propagation delay daddr

Int . Differently,
τ0 is released with a delay equal to 2daddr

Int (the reported
offsets are considered with respect to the release time of
AR3 by τ3). Similar to previous experiments, an ILA module
is used to monitor AXI links between the GHW-tasks and
the AXI interconnect, and the single link between the AXI
interconnect and the HP0 port. Likewise, we use our custom
timer to measure the response times of the GHW-tasks.

Figure 5 reports an ILA trace for read transactions issued
by all of the GHW-tasks. It can be observed that all GHW-
tasks are simultaneously released at time 15. Then, τ3 issues
its address read request AR3 (time 16). At the same clock
cycle, τ2 starts issuing its first transaction request, AR0

2,
causing contention at the interconnect I2. The arbitration
round is won by τ2. Thus, I2 propagates first AR0

2 to I1
and then AR3. At this level, the interference is compatible
with the direct interference described by Lemma 4. After the

propagation delay of the interconnect, I2 issues the requests
at the corresponding subordinate port of I1. At the same clock
cycle instant, τ1 releases its first transaction request, AR0

1.
Thus, another contention happens, and the arbitration round
at I1 is won by τ1. Consequently, I1 forwards to I0 the trans-
action requests in the following order: AR0

1, AR
0
2, AR

1
1, AR3,

hence according to round-robin arbitration as assumed in our
model. It is worth noting also that the amount of interfering
requests observed on AR3 at this level is compatible with
the one found in Lemma 5 for indirect interference. When I1
propagates this sequence of requests to I0, τ0 starts issuing
its transaction requests, hence again causing contention.
The arbitration round is won by τ0. Hence, the transaction
requests are issued by I0 to the HP0 port in the following
order: AR0

0, AR
0
1, AR

1
0, AR

0
2, AR

3
0, AR

1
1, AR

3
0, AR3

4.
Thus, in the worst-case scenario, AR3 (issued by the

GHW-task under analysis) is interfered by seven requests
issued by the interfering GHW-tasks, as by the direct and
indirect interference described by the analysis proposed in Section 3.
As the FPGA-PS interface serves the requests in-order, τ3
receives its corresponding data after all of the interfering
requests have been served. At time 274, the first word of
data corresponding to AR3 reaches τ3. At time 292 the
transaction is completed. Figure 5 also confirms that the
AXI SmartConnect complies with the model proposed in
Section 2.2 and is characterized by φI = 1.

Figure 6 reports the maximum measured response times
for read and write transactions for the architecture under
analysis, compared against the two proposed upper bounds
computed using the results of our analysis. As in the previous
experiment, Upper Bound A is the original bound proposed
in [25] while Upper Bound B accounts for the new results
proposed in Lemma 10. Again, such results confirm that
the delay is safely bounded by both the Upper Bounds.
Nevertheless, Upper Bound B shows even more improved
(reduced) pessimism in hierarchical architecture with respect
to Upper Bound A for both read and write (improvement
around 30%).

Propagation pipelining Figure 5 also shows the effect
of pipelining on address requests and data propagation
captured by Lemma 10. Given the arbitration policy of the
interconnects and the corresponding analytical understand-
ing matured in the above sections, the case reported in the
figure leads to the worst-case interference for τ3, which
issues a single transaction AR3 released at time 16. As
explained in the previous example, AR3 can be interfered
at most by seven transactions issued by τ2, τ1, and τ0 at the
three crossed levels of interconnects. To reach the FPGA-PS
interface, the transactions issued by τ2 need to traverse three
interconnects. The ones issued by τ1 have to traverse two
interconnects, while the transactions issued by τ0 traverse
one interconnect. Accounting for the propagation of AR3

and the interfering transactions as sequential operations
(i.e., without considering the results of Lemma 10) would
provide a safe bound for the propagation time equal to
2 · (taddr + 3 · daddr

Int) (i.e., AR3 and AR0
2 traversing three

interconnects) + 2 · (taddr + 2 · daddr
Int) (i.e., AR0

1 and AR1
1

4. We obtained such a result by randomly generating multiple
hardware execution tracks and collecting the one of interest in which
the round-robin arbitration is lost at any traversed interconnect.

JOURNAL OF X 11

Fig. 5: Waveform track captured using the Integrated Logic Analyzer on a Xilinx Zynq Ultrascale+ platform.

0 200 400 600 800

Read

Write

350

280

866

756

605

527

Maximum measured Upper bound A Upper Bound B

Fig. 6: Maximum measured response times for read and write
transactions compared with the upper bounds proposed in
Section 3 (in clock cycles).

traversing two interconnects) + 4 · (taddr + 1 · daddr
Int) (i.e.,

AR0
0, AR1

0, AR2
0, and AR3

0 traversing one interconnect) =
176 clock cycles. However, note that AR3 is available to
be sampled at the FPGA-PS interface at time 60. Indeed,
by the effects of pipelining, its overall propagation time is
only 44 clock cycles. This delay is determined by the time
required to traverse three levels of interconnects and the hold
time. Clearly, considering all such operations as sequential
is way too pessimistic. Thanks to the highly predictable
behavior of the hardware, Lemma 10 allows bounding the
propagation time of the request exactly to 44 clock cycles.
This corresponds to an improvement of 75% with respect to
the previous bound. The same pipelining effect just described
also holds in the propagation of data and write responses.

A considerable amount of the remaining pessimism is
ascribable to the coarse-grained model assumed for the DDR
controller, whose internal details are mostly not publicly
available. However, where a more fine-grained model is
provided, the proposed algorithm could exploit it to diminish
pessimism and provide a tighter bound.

4.4 Synthetic workload experiments

This section presents an experimental study aimed at eval-
uating the analysis presented in Section 3 with synthetic
workloads. Moreover, this study aims at assessing the impact
of the outstanding transactions limit (Lemma 8) and the
effects of transaction pipelining (Lemma 10) on the timing
feasibility of the system. To this end, this evaluation compares
two implementations of the analysis presented in Section 3.
The first implementation, named (A), was originally pre-
sented in [25] and considers the interference bounds of
Sections 3.2 and 3.3 only. The second implementation, named
(B), extends the first implementation (A) by incorporating

the interference bound based on the number of outstanding
transactions (Section 3.4) and the effects of transactions
pipelining (Section 3.6). As such, implementation (B) is a
refinement of (A).

The AXI system considered in this experiment includes
N HW-tasks (τ1, . . . , τN) connected through a binary tree of
M interconnects (I1, . . . , IM). The following methodology
has been used for generating the task sets: the period Ti
and the computation time Ci of the generic HW-task τi
have been generated using the fixedrandsum algorithm [7]
(Tmin = 10ms <= Ti <= Tmax = 100ms, using log-
normal distribution). As a reference, the task set utilization
has been kept equal to 1. Please note that execution times
of the HW-tasks are not relevant for bus contention. The
number of transactions issued by the HW-tasks have been
generated by first computing the maximum number of trans-
actions that the generic HW-task τi can perform in isolation
(Nmax

i = (Ti −Ci)/max (dNoCont,read, dNoCont,write)). Fol-
lowing, the total number of transactionsNR+W

i = NR
i +NW

i

is computed by multiplying Nmax
i with a transaction density

factor ρ ∈ (0, 1] such thatNR+W
i = ρ·Nmax

i . The transaction
density factor ρ regulates the transaction load that HW-task
generates on the system. Finally, the NR+W

i transactions are
split in reads and writes using a random uniformly-generated
ratio (range ν ∈ [0.4, 0.6]), such that NR

i = ν · NR+W
i

and NW
i = (1 − ν) · NR+W

i . All of the HW-tasks have
been configured with φi = 6 (a typical value we found
from experimental profiling of HAs in the Xilinx IP library)
and Bi = 16, while all interconnects have φI = 1. For the
purpose of testing realistic configurations, we assume that
each interconnect cannot have more than 16 input ports (as
in the case of the Xilinx SmartConnect [35]).

This evaluation considers 16 topological configurations
generated by varying combinations of parameters N and
M such that N ∈ {4, 8, 16, 24} and M ∈ {1, 2, 4, 8}.
Configurations where at least one interconnect hosts only
a single HW-task are discarded since the interconnect
would only increase the latency without performing any
arbitration. For each valid configuration (N,M), 100 random
values for the bus load factor ρ are uniformly chosen in
the range [0.1, 1.0). Then, for each value of bus load ρ,
K = 50000 synthetic task sets have been generated. Each
task set comprises N HW-tasks evenly distributed over M
interconnects (i.e., each generic interconnect can connect at
most dN/MeHW-tasks). We distributed the HW-tasks on the

JOURNAL OF X 12

network of interconnects in accordance with their slack times
Si = Ti − Ci – the tasks having shorter slacks are collocated
closer to the root interconnect. Figure 7 reports the results
of such an experimental study. It is worth remembering that
each interconnect cannot connect more than 16 tasks – the
topologically unfeasible configurations are not considered
in the experimentation. The experimental results show that
analysis (B) outperforms analysis (A) by a significant margin.
The gap between the two approaches becomes larger as the
bus load factor ρ increases. These results confirm that the
analysis presented in [25] can be significantly improved by
considering the effects of transactions pipelining (Lemma 10)
and the bound on the number of outstanding transactions
(Lemma 8). Moreover, it is still worth noting that increas-
ing the number of interconnects enables connecting more
HW-tasks. Also, it can improve the system schedulability
ratio by moving HW-tasks showing longer slack time at
higher hierarchical levels of the network. Following this
methodology, it is possible to reduce the interference on time-
constrained HW-tasks (i.e., the ones showing shorter slack
times). Nevertheless, it is worth mentioning that moving HW-
tasks to higher hierarchical levels increases the worst-case
contention experienced by its transactions. Exploring such
trade-off requires the investigation of allocation strategies for
HW-tasks – we leave this task as future works.

5 RELATED WORK

The issue of improving the predictability of response times in
SoCs has been deeply addressed, examining different aspects.
HW prefetch and arbitration received novel mechanisms
and policies to bring improvements from the architectural
side [12], [15], [26]. Some authors presented solutions for task
allocation that include the memory interface [16], [17].

Enhancing schedulability analysis with the integration
of memory interference has been widely investigated, ex-
ploiting COTS solutions and proposing ad-hoc ones. Each
contribution typically focused on a defined element of the
memory tree, such as caches [9], [18], busses [6], [8], and mem-
ory controllers [4], [11]. Some authors [5] investigated the
effect that memory interference produces on the performance
of control applications. The possibility of allotting multiple
independent HW-tasks has favorably increased interest in
FPGA-based SoCs. However, the access to a shared buffer
to perform such allocations implies that these platforms
also suffer the effect of memory interference. The de-facto
standard in this architecture is the AXI bus [2] whose design
focused on performance and flexibility, overlooking time
predicability. It allows only the evaluation of the interference
exploiting through hardware monitors [29] provided to
observe the performance of HW-tasks. A critical aspect for
time predictability consists in the decision of excluding
several design details from the standard [32] with the
implicit assumption that the specific implementations adhere
to the guidelines in the standard. Recently, some authors
addressed increasing predictability by presenting several
novel mechanisms. A bandwidth reservation technique for
memory access of HW-tasks has been proposed by Pagani et
al. [21]. Restuccia et al. presented several solutions to enforce
a fair bandwidth distribution among HW-tasks [25] and
avoid that bus transaction suffers an unbounded delay [24].

They also designed a predictable AXI interconnect handled
at hypervisor-level [23]. However, the focus of these works
is limited to a single interconnect. Thus, they do not address
the need for fine-grained timing analysis of bus transactions
traversing multiple interconnects.

6 CONCLUSIONS

This paper focused on multi-accelerators architectures de-
ployed on FPGA SoC platforms and proposed a detailed
model and analysis for interconnects based on the AXI
standard. The pessimism of the analysis is reduced by
proposing an accurate model capturing the effects of the
pipelining in AXI-based interconnects and the features of
commercial hardware accelerators. We validated our model
and analysis with experimental results involving real designs
running on commercial FPGA SoCs from the ZYNQ-7000
and the ZYNQ-Ultrascale+ families from Xilinx. Future work
should focus on providing advanced allocation strategies
and bus network synthesis tools leveraging the proposed
analysis to allocate a given set of hardware accelerators in a
bus structure.

REFERENCES

[1] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator:
a predictable SDRAM memory controller. In Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign and
system synthesis, pages 251–256. ACM, 2007.

[2] ARM. AMBA AXI and ACE Protocol Specification, 2011.
[3] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and

G. Buttazzo. A framework for supporting real-time applications
on dynamic reconfigurable fpgas. In 2016 IEEE Real-Time Systems
Symposium (RTSS), pages 1–12, 2016.

[4] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. A holistic
memory contention analysis for parallel real-time tasks under
partitioned scheduling. In Proceedings of the 26th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2020), 2020.

[5] W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J.
Xue, and S. Andalam. Memory-aware embedded con-
trol systems design. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36(4):586–
599, April 2017. https://doi.org/10.1109/TCAD.2016.2613933
doi:10.1109/TCAD.2016.2613933.

[6] Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury,
Timon Kelter, Peter Marwedel, and Heiko Falk. A unified WCET
analysis framework for multicore platforms. ACM Transactions on
Embedded Computing Systems (TECS), 13(4s):124, 2014.

[7] Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for
the synthesis of multiprocessor tasksets. In proceedings 1st Interna-
tional Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS 2010), pages 6–11, 2010.

[8] Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quiñones,
Tullio Vardanega, and Francisco J. Cazorla. Increasing confidence
on measurement-based contention bounds for real-time round-
robin buses. In Proceedings of the 52nd Annual Design Automation
Conference, DAC ’15, New York, NY, USA, 2015. Association for
Computing Machinery. https://doi.org/10.1145/2744769.2744858
doi:10.1145/2744769.2744858.

[9] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware
scheduling and analysis for multicores. In Proceedings of the seventh
ACM international conference on Embedded software, pages 245–254.
ACM, 2009.

[10] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong
Yang. A Survey of FPGA-based Neural Network Inference
Accelerators. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 12(1):2, 2019.

[11] Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM
interference in COTS heterogeneous MPSoCs for mixed criticality
systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2323–2336, 2018.

JOURNAL OF X 13

0 0.2 0.4 0.6 0.8 1

0

0.5

1

ρ (bus load)

Sc
he

d.
ra

ti
o

4 HW-tasks

0 0.2 0.4 0.6 0.8 1

0

0.5

1

ρ (bus load)

Sc
he

d.
ra

ti
o

8 HW-tasks

0 0.2 0.4 0.6 0.8 1

0

0.5

1

ρ (bus load)

Sc
he

d.
ra

ti
o

16 HW-tasks

1 Interconnect (A) 1 Interconnect (B) 2 Interconnects (A) 2 Interconnects (B)
4 Interconnects (A) 4 Interconnects (B) 8 Interconnects (A) 8 Interconnects (B)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

ρ (bus load)

Sc
he

d.
ra

ti
o

24 HW-tasks

Fig. 7: Experimental results with synthetic workload (each interconnect cannot connect more than 16 tasks).

[12] Farouk Hebbache, Florian Brandner, Mathieu Jan, and Laurent
Pautet. Work-conserving dynamic time-division multiplexing
for multi-criticality systems. Real-Time Systems, 56, 04 2020.
https://doi.org/10.1007/s11241-019-09336-w doi:10.1007/s11241-
019-09336-w.

[13] Intel. Stratix 10 GX/SX Device Overview, 10 2017.
[14] Intel FPGA. Custom IP Development Using Avalon® and Arm AMBA

AXI Interfaces. OQSYS3000.
[15] J. Jalle, L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla.

Bus designs for time-probabilistic multicore processors. In 2014
Design, Automation Test in Europe Conference Exhibition (DATE),
pages 1–6, March 2014. https://doi.org/10.7873/DATE.2014.063
doi:10.7873/DATE.2014.063.

[16] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and
R. Rajkumar. Bounding memory interference delay in COTS-based
multi-core systems. In 2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2014.

[17] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein,
Onur Mutlu, and Ragunathan Rajkumar. Bounding and reducing
memory interference in COTS-based multi-core systems. Real-Time
Systems, 52(3):356–395, May 2016.

[18] Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and
Wang Yi. A survey on static cache analysis for real-time systems.
Leibniz Transactions on Embedded Systems, 3(1):05–1–05:48, 2016. URL:
https://ojs.dagstuhl.de/index.php/lites/article/view/LITES-
v003-i001-a005, https://doi.org/10.4230/LITES-v003-i001-a005
doi:10.4230/LITES-v003-i001-a005.

[19] Geoffrey Nelissen and Alessandro Biondi. The SRP Resource
Sharing Protocol for Self-Suspending Tasks. In 2018 IEEE Real-Time
Systems Symposium (RTSS), pages 361–372. IEEE, 2018.

[20] Marco Pagani, Alessio Balsini, Alessandro Biondi, Mauro Marinoni,
and Giorgio Buttazzo. A linux-based support for developing real-
time applications on heterogeneous platforms with dynamic fpga
reconfiguration. In 2017 30th IEEE International System-on-Chip
Conference (SOCC), pages 96–101. IEEE, 2017.

[21] Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni,
Giuseppe Lipari, and Giorgio Buttazzo. A Bandwidth Reservation
Mechanism for AXI-Based Hardware Accelerators on FPGAs.
In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019),
volume 133 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 24:1–24:24, Dagstuhl, Germany, 2019. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[22] Francesco Restuccia, Alessandro Biondi, Mauro Marinoni, and
Giorgio Buttazzo. Safely Preventing Unbounded Delays During
Bus Transactions in FPGA-based SoC. In 2020 IEEE 28th Annual

International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2020.

[23] Francesco Restuccia, Alessandro Biondi, Mauro Marinoni, Gior-
giomaria Cicero, and Giorgio Buttazzo. AXI HyperConnect:
A Predictable, Hypervisor-level AXI Interconnect for Hardware
Accelerators in FPGA SoC. In Proceedings of the 57th ACM/IEEE
Design Automation Conference (DAC 2020), 2020.

[24] Francesco Restuccia and Ryan Kastner. Cut and forward: Safe and
secure communication for fpga system on chips. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
pages 1–1, 2022. https://doi.org/10.1109/TCAD.2022.3197343
doi:10.1109/TCAD.2022.3197343.

[25] Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro
Marinoni, and Giorgio Buttazzo. Modeling and analysis of bus
contention for hardware accelerators in fpga socs. In 32nd Euromicro
Conference on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[26] M. Slijepcevic, C. Hernandez, J. Abella, and F. J. Cazorla.
Design and implementation of a fair credit-based band-
width sharing scheme for buses. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2017, pages 926–
929, March 2017. https://doi.org/10.23919/DATE.2017.7927122
doi:10.23919/DATE.2017.7927122.

[27] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. Finn: A
framework for fast, scalable binarized neural network inference.
In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 65–74. ACM, 2017.

[28] Xilinx. Zynq-7000 All Programmable SoC - Reference Manual, 9 2016.
UG585.

[29] Xilinx. AXI Performance Monitor v5.0, 2017. PG037.
[30] Xilinx. Vivado Design Suite: AXI Reference Guide, 7 2017. UG1037.
[31] Xilinx. Zynq UltraScale+ Device - Reference Manual, 12 2017. UG1085.
[32] Xilinx. AXI Interconnect, LogiCORE IP Product Guide, 2018. PG059.
[33] Xilinx Inc. The CHaiDNN official github website.

https://github.com/Xilinx/chaidnn.
[34] Xilinx Inc. Integrated Logic Analyzer, LogiCORE IP Product Guide,

2016. PG172.
[35] Xilinx Inc. SmartConnect, LogiCORE IP Product Guide, 2018. PG247.

JOURNAL OF X 14

Francesco Restuccia is a postdoctoral re-
searcher at the University of California, San
Diego. He received his Ph.D. in Computer En-
gineering (cum laude) from Scuola Superiore
Sant’Anna Pisa in 2021. His main research in-
terests include hardware security, on-chip com-
munications, timing analysis for heterogeneous
platforms, cyber-physical systems, and time pre-
dictable hardware acceleration of deep neural
networks on commercial FPGA SoC platforms.

Marco Pagani is a postdoctoral researcher at
the Real-Time Systems (ReTiS) Laboratory of
Scuola Superiore Sant’Anna. In 2016, he re-
ceived an M.Sc. in Embedded Computing Sys-
tems at the University of Pisa and Scuola Su-
periore Sant’Anna. In 2020, he received a Ph.D.
in computer engineering in a cotutelle program
between Scuola Superiore Sant’Anna and Univer-
sité de Lille, under the supervision of Prof. Giorgio
Buttazzo and Prof. Giuseppe Lipari. His main
research interests include predictable hardware

acceleration on heterogeneous platforms and system-level software for
real-time systems.

Alessandro Biondi is associate professor at the
Real-Time Systems (ReTiS) Laboratory of the
Scuola Superiore Sant’Anna. He graduated (cum
laude) in Computer Engineering at the University
of Pisa, Italy, within the excellence program, and
received a Ph.D. in computer engineering at the
Scuola Superiore Sant’Anna under the supervi-
sion of Prof. Giorgio Buttazzo and Prof. Marco
Di Natale. In 2016, he has been visiting scholar
at the Max Planck Institute for Software Systems
(Germany). His research interests include design

and implementation of real-time operating systems and hypervisors,
schedulability analysis, cyber-physical systems, synchronization proto-
cols, and safe and secure machine learning. He was recipient of six Best
Paper Awards, one Outstanding Paper Award, the ACM SIGBED Early
Career Award 2019, and the EDAA Dissertation Award 2017.

Mauro Marinoni received his M.S. in Computer
Engineering at the University of Pavia (Italy)
in 2003, where he also obtained his Ph.D. in
Computer Engineering in 2007. He is working
since 2007 at the Real-Time Systems Laboratory
(ReTiS), where he has been an Assistant Profes-
sor from 2009 to 2020. He has been local coordi-
nator of the FP7 JUNIPER project, the Eurostars
RETINA project, and several industrial projects
exploiting the ReTiS Lab research outcomes in
different application fields, from e-Health devices

to autonomous and distributed systems.

Giorgio Buttazzo is full professor of computer
engineering at the Scuola Superiore Sant’Anna
of Pisa. He graduated in Electronic Engineering
at the University of Pisa, received a M.S. degree
in Computer Science at the University of Penn-
sylvania, and a Ph.D. in Computer Engineering
at the Scuola Superiore Sant’Anna of Pisa. He
is Editor-in-Chief of Real-Time Systems, Asso-
ciate Editor of the ACM Transactions on Cyber-
Physical Systems, and IEEE fellow since 2012.
He has authored 7 books on real-time systems

and more than 300 papers in the field of real-time systems, robotics, and
neural networks, receiving 13 best paper awards.

