
Reconciling Security with Virtualization:
A Dual-Hypervisor Design for ARM TrustZone

Giorgiomaria Cicero⇤, Alessandro Biondi⇤, Giorgio Buttazzo⇤ and Anup Patel†
⇤Scuola Superiore Sant’Anna, Pisa, Italy
†Individual Researcher, Bangalore, India

Email: {giorgiomaria.cicero, alessandro.biondi, giorgio.buttazzo}@santannapisa.it, anup@brainfault.org

Abstract—This paper proposes a novel design to enable the

virtualization of both secure and non-secure worlds offered by

ARM platforms with TrustZone technology. The design is based

on a dual-hypervisor scheme that allows executing multiple two-

world domains in isolation, where each of them can comprise

both a standard (i.e., non-secure) execution environment, and a

trusted execution environment (TEE). An implementation of the

proposed design is presented and discussed by building upon

Xvisor, a Type-1 open-source hypervisor. Experimental results to

assess the performance of the implementation are finally reported

and discussed.

I. INTRODUCTION

Virtualization and security features are becoming of
paramount importance in the design of modern cyber-physical
systems. For instance, hypervisors (also called virtual machine
monitors) represent a de-facto solution to share a common
platform among multiple virtualized domains, each possibly
executing different operating systems. Hypervisors provide
isolation between independently developed components with
different criticality levels, supporting fault-tolerance require-
ments. They can also achieve a higher system utilization while
ensuring a proper control on temporal and spatial interference.

More recently, virtualization techniques have also been
adopted as basic mechanisms to develop systems with multiple

independent levels of security (MILS), which are designed to
keep a strict separation between secure computing services
that use confidential/sensible data (e.g., cryptographic keys)
and other untrusted software components running on the same
platform. However, due to the increase of software complexity
and the exposure of modern systems to connectivity infrastruc-
tures, security became a crucial design objective, originating
strong functional and reliability requirements that cannot gen-
erally be achieved with standard virtualization or other pure
software techniques. To meet such requirements, chip makers
are moving towards architectures that offer hardware-based
solutions for realizing trusted execution environments (TEEs).
One of the most popular solutions is the TrustZone technology
proposed by ARM. ARM TrustZone provides hardware-based
isolation of the computing resources shared between a secure

and a non-secure world: the former is conceived to support
the execution of a TEE, while the latter corresponds to the
normal operating mode of the processor where rich execution

environments (REE) (e.g., a software system running upon
Linux) can be executed.

State of the art. No much effort has been devoted so far to
develop virtualization infrastructures for the ARM TrustZone.
Pinto et al. [1] proposed a centralized solution based on

Figure 1. Illustration of the functionality provided by the proposed dual-
hypervisor design. The design allows executing multiple domains with mixed
criticality and security levels, where each of them can comprise both a REE
and a TEE. The design also includes a root secure domain that can be used
to host highly-privileged tasks such as fault detection, isolation and recovery
(FDIR), health monitoring, or intrusion detection.

a single hypervisor, denoted as LTZVisor, which runs in
secure world to manage the whole platform. This design
choice implies that all the interactions between the virtual-
ized non-secure domains and the hypervisor (e.g., hypercalls)
require a world switch. Very recently, Cicero [2] presented
some preliminary results on a dual-hypervisor solution in
the context of embedded systems that led the foundations
for the present paper. Later, Hua et al. [3] also evaluated a
similar dual-hypervisor solution to virtualize TrustZone in the
context of cloud computing. However, this solution has not
been considered and implemented by the authors since they
found a centralized approach with a single hypervisor in non-
secure world more suitable for their objectives. To the best
of our knowledge, these are the only solutions that provide
virtualization of ARM TrustZone. Other works support the
execution of a TEE, running in secure world, together with
a virtualized environment executing in non-secure world. In
particular, Paolino et al. [4] proposed a solution, denoted as
T-KVM, in which a hypervisor in non-secure world enables
virtual machines on calling trusted applications (placed in the
secure world) but running upon a single TEE kernel. Lucas et
al. [5] proposed VOSYSmonitor, a low-level software layer
running in secure world to enable predictable execution of
a TEE in the presence of a virtualized T-KVM environment
executing in non-secure world.

Contribution. The work presented in this paper aims at recon-
ciling virtualization and hardware-based security capabilities



by proposing a dual-hypervisor design for ARM platforms
equipped with the TrustZone technology. The proposed design
acts as a virtualization layer for both secure and non-secure
worlds, enabling the execution of multiple isolated domains,
each comprising both a REE and a TEE (or only one of
them), as illustrated in Figure 1. REEs are managed by a
hypervisor that exploits the ARM virtualization extensions

(ARM-VE) in non-secure world, while TEEs are handled with
a minimal hypervisor that relies on para-virtualization in secure
world. The two hypervisors are jointly configured to enable a
transparent communication between REEs and TEEs.

The proposed design carries considerable benefits in terms
of performance, reliability, and security. First, being each
TrustZone world managed by a dedicated hypervisor, the pro-
posed solution does not require to undertake a switch between
secure and non-secure world to handle the virtualization of
REEs, thus limiting the runtime overhead suffered by the
domains. Second, it avoids the presence of a single point of
failure—if the virtualization mechanisms for the non-secure
world crash, the TEEs running in the secure world continue
to operate. Third, it limits hyperjacking by reducing the attack
surface from the non-secure world, because the virtualization
mechanisms for the TEEs are only exposed to the latter, and
because the hypervisor running in secure world is minimal as
it does not have to handle complex REEs.

The proposed dual-hypervisor scheme has been imple-
mented with Xvisor [6], a monolithic Type-1 open-source
hypervisor. The most relevant implementation issues that have
been encountered are discussed together with a set of practical
considerations that emerged during the implementation. Fi-
nally, the paper reports a set of experimental results to evaluate
the impact of the proposed approach in terms of run-time
overhead, latency, and memory footprint.

II. ESSENTIAL BACKGROUND

To make the paper self consistent, this section briefly
describes the main tools and technologies adopted in this work.

a) ARM TrustZone: ARM TrustZone [7] is a hardware-
based technology that aims at providing strong isolation be-
tween two execution environments within the same platform.
The main concept is that the processor is physically split into
two worlds, namely secure and non-secure world, supporting
safe communications between them by introducing a super
privileged mode, called monitor mode, which belongs to the
secure world.1 The architecture includes hardware protection
for isolation of memory, bus transactions, interrupts, and
peripherals. The technology introduces a special instruction,
called Secure Monitor Call (SMC), as a communication prim-
itive between secure a non-secure world. This instruction is
basically a synchronous exception handled by the secure code
running in monitor mode.

b) Xvisor: Xvisor [6] is an open-source Type-1 hy-
pervisor (i.e., native), which aims at providing a monolithic,
light-weight, portable, and flexible virtualization solution. It
provides high performance and low memory footprint virtual-
ization capabilities for various ARM architectures (with and
without virtualization extensions) and for other CPU architec-
tures, including x86. The hypervisor allows executing multiple

1This paper adopts the terminology introduced by ARMv7 platforms. Note
that a different terminology is adopted for new ARMv8 platforms.

domains (also referred to as virtual machines or guests), where
each of them can run a different instance of an OS (e.g., Linux,
which is the primary OS supported by Xvisor). Each domain
disposes of a set of virtual CPUs (VCPU), which are assigned
to physical CPUs by the hypervisor scheduler. Virtualization
of peripheral devices is achieved via emulation. Pass-trough
access is also available for some devices.

c) ARM Fast Models and Cycle Models: ARM Fast
Models [8] is a tool that enables users to build, execute,
and debug a collection of virtual platforms. The tool enables
software development for ARM platforms, such as drivers,
operating systems, and firmware, without disposing of the
actual hardware. ARM Fast Models allows full control over
the simulation, including profiling, fine-grained debug, and
trace. ARM Cycle Models [9] is another tool that can be used
to precisely analyze the software performance as latencies,
bandwidth, cache metrics, and transaction counts, by means
of cycle-accurate simulations of ARM processors. The tool
enables the analysis of many classes of software and provides
software and system debugging features to quickly identify
issues during software development.

III. DUAL-HYPERVISOR DESIGN

As anticipated in the introduction, the proposed design
consists of two jointly-configured hypervisors, providing vir-
tualization in the non-secure and secure worlds, respectively,
as offered by ARM TrustZone. To ease the presentation, the
two hypervisors will also be referred as non-secure hypervisor
(NSH) and secure hypervisors (SH). For the purpose of this
section, no specific hypervisor is taken in consideration, as
the proposed design is general and can be applied to several
proposals. An implementation of the design is later presented
in Section IV.

The NSH handles the execution of a set of domains each
hosting a REE; consequently it must provide a rich set of
functionality that are typical of virtualization mechanisms for
complex operating systems such as Linux or Android. The
NSH can also make use of the ARM virtualization extensions
to realize virtualization. In a dual manner, the SH provides
virtualization for a set of secure domains each hosting a TEE.
Considering the typical limited complexity of the software
infrastructures of TEEs, which at most comprise a small
real-time operating system (e.g., see [10]), the SH provides
a restricted set of functionality with respect to the NSH.
Nevertheless, since today’s TrustZone-enabled processors do
not provide the secure world with virtualization extension, the
SH must implement para-virtualization.

To enable a transparent virtualization of the platform, the
design handles the interactions between secure and non-secure
world with dedicated mechanisms and a joint configuration of
the two hypervisors. Specifically, the hypervisors must support
the communication between the REE and the TEE of the
same domain: to this end, SMC instructions executed by a
REE are intercepted by the NSH to notify the corresponding
TEE in the secure world. The dual case holds for SMC
instructions issued by a TEE. Furthermore, the configuration
of the two hypervisors must also take into account possible
shared memory buffers between a REE and the corresponding
TEE, which are handled with a matching configuration of the
virtual address space of the involved domains.



Finally, the two hypervisors are orchestrated by a bare-
metal firmware, denoted as X Monitor, which handles the
system boot, the switch and the communication between secure
and non-secure world, and is in charge of dispatching interrupt
signals. The X Monitor executes in monitor mode, which is
the highest privileged mode offered by TrustZone.

A. Example of usage

To better explain the practical usage of the proposed design,
consider a set of four domains, denoted as Domain 1, 2, 3 and
4, to be executed upon a TrustZone-enabled platform. Domains
1 and 2 include both a REE and TEE, while Domain 3 consists
of only a REE, and Domain 4 consists of only a TEE. As
it is illustrated in Figure 2, Domains 1 and 2 are split into
two sub-domains to handle their REEs and TEEs with the
corresponding hypervisors. Conversely, Domains 3 and 4 are
not split, and execute upon the NSH and the SH, respectively.

Figure 2. Illustration of the software layers for the proposed dual-hypervisor
design. The figure also illustrates the allocation of four domains. Domain 1
and Domain 2 comprise both a REE and a TEE: the former is deployed as
a domain managed by the non-secure hypervisor, while the latter is deployed
as a domain managed by the secure hypervisor. The red arrow depicts the
communication path between the REE and the TEE of Domain 2.

B. Scheduling the two hypervisors

The coexistence of two hypervisors on the same platform
is favored by the separate hardware contexts offered by Trust-
Zone. Nevertheless, it requires introducing a further scheduling
layer to handle their dispatching, which in the proposed design
is realized by the X Monitor.

Two events may trigger the switch between secure and
non-secure worlds: (i) the execution of SMC instructions, and
(ii) the arrival of asynchronous interrupt signals in non-secure
world. The first event corresponds to an explicit request of
world switch, e.g., similarly to a cooperative preemption. In
this case, one of the two hypervisors invokes the X Monitor
that will undertake the actual world switch. Concerning inter-
rupt signals, the X Monitor implements a fixed-priority scheme:
interrupts belonging to the software running in the secure
world (denoted as secure interrupts) have higher priority with
respect to the ones related to the non-secure world (denoted as
non-secure interrupts). As a result, non-secure interrupts that
arrive in secure world are masked and marked as pending.
Conversely, secure interrupts that arrive when the processor is

in non-secure world result in a preemption to switch to the
secure world. The resulting behavior is illustrated in Figure 3.

Note that, since the secure world cannot be preempted by
the non-secure world, this solution gives higher predictability
to the secure world at the cost of degrading the perfomance of
the non-secure world. Nevertheless, this policy allows shield-
ing the secure world from denial-of-service attacks (e.g., in the
case where the system is flooded with interrupts) and allows
guaranteeing timing requirements for the software running
upon secure world (e.g, a real-time operating system).

Figure 3. Example scheduling of secure and non-secure worlds. SMC
instructions trigger an explicit world switch. Secure interrupts that arrive in
non-secure world trigger a world switch, while non-secure interrupts that arrive
in secure world are masked.

IV. IMPLEMENTATION

This section presents an implementation of the design
introduced in the previous section. The implementation has
been carried out by building upon Xvisor [6]. Among the
limited number of open-source hypervisors, Xvisor has been
selected for its low memory footprint, which represents a
relevant requirement in a design with two hypervisors. In fact,
although some platforms allow reserving a portion of the main
memory for the secure world, which is accomplished by means
of the TrustZone Address Space Controller (TZASC), other
platforms require that the secure world software has to fit in a
dedicated small memory with a typical size of 32 or 64 MB.
Furthermore, the adoption of a small hypervisor also helps in
reducing the attack surface in secure world.

Starting from the release v. 0.2.9 of Xvisor, two new
versions have been developed to support the proposed dual-
hypervisor design, namely Secure Xvisor (S-Xvisor) and Non-
Secure Xvisor (NS-Xvisor), while the X Monitor has been
implemented from scratch. These components are described
in the following sub-sections. The implementation has been
carried out with the ARM Fast Models tool emulating the
FVP ARM Versatile Express platform equipped with a single
Cortex-A15 processor. The current version does not allow
multiple pending interactions between a REE and a TEE at
the same time, i.e., the TEEs that comprise SMC instructions
are passive software components invoked by REEs to provide
on-demand secure services.

A. Secure Xvisor

Due to the lack of the ARM virtualization extensions
in secure world, the S-Xvisor is configured to work with
para-virtualization, implementing a classical trap-and-emulate
paradigm for most instructions, and requiring to patch the
domains for the other sensitive instructions that do not generate
an exception in user mode. Luckily, these features were
already supported by Xvisor. The main modifications that were
required to support our design concern the idling mechanism
of Xvisor, the virtualization of the SMC instruction, and the
hypervisor configuration.



Idling mechanism. Natively, whenever there is no ready
workload to execute, Xvisor executes a wait for interrupt
(WFI) instruction so that the processor can switch to the
sleep mode in order to save energy until it will be awaken
by an interrupt signal. To handle the co-existence of the two
hypervisors, this behavior has been modified by enforcing a
world switch whenever the S-Xvisor goes idle. That is, instead
of executing the WFI instructions, the S-Xvisor executes a
SMC instruction to pass the baton to the NS-Xvisor. This
logic has been implemented in an infinite loop executed by the
Idle Orphan, which is a special VCPU of Xvisor that executes
with the lowest priority. Before calling the SMC instruction,
the loop starts by saving the context of the secure world
with the program counter pointing to the instruction after the
SMC. After the SMC, the loop checks which event resumed
the execution of the secure world, i.e., an SMC executed
from non-secure world or a secure interrupt. In the first case,
the execution of the secure world will restart from the code
following the SMC in the loop of the Idle Orphan, which
is responsible of handling the requests issued by the non-
secure world: further details on this phase will be provided
in Section IV-D.

In the second case, once the execution will be resumed,
the Idle Orphan is immediately preempted by the interrupt
service routine (ISR) to be served. The ISR could trigger the
activation of some secure domains that will also prevent the
Idle Orphan to execute until they terminate to execute. To
distinguish from the case in which the Idle Orphan is awaken
by a SMC instruction, the X Monitor changes the saved context
of the Idle Orphan (by modifying some registers) to notify the
absence of requests issued from the non-secure world.

SMC virtualization. To allow the coexistence of multiple
two-world domains, the SMC instruction must be properly
virtualized. In fact, if SMC instructions are handled with a
pass-through scheme, their execution originates a world switch
independently of the execution state of other secure domains.
This strategy would generate additional temporal interference
to secure domains, contradicting the fixed-priority scheme
introduced in Section III-B. To address this issue, whenever
a TEE executes a SMC, the SMC is trapped by the S-Xvisor
that stores it as pending and deschedules the corresponding
VCPU. The actual SMC will then be executed by the Idle
Orphan when all the secure domains complete their execution.

Configuration. To enable a joint configuration of the two
hypervisors, Xvisor has been enriched with a software mod-
ule that handles the communications between the domains.
The module allows specifying pairs of domains running in
secure and non-secure world, respectively, that are allowed
to communicate by means of SMC instructions, and is in
charge of ensuring that such communications do not violate
the configuration. Furthermore, by building upon the memory
virtualization capabilities offered by Xvisor, it is possible to
specify shared memory buffers that are mapped in the virtual
address space of two communicating sub-domains, e.g., by
automatically generating a symmetrical configuration entry for
both the hypervisors.

B. Non-secure Xvisor

Different from the S-Xvisor, the NS-Xvisor can leverage
the ARM virtualization extensions, and hence do not require
to support para-virtualization. The modifications required for

the NS-Xvisor are analogous to the ones discussed for the
S-Xvisor, with the exception of the idling mechanism that is
not required in non-secure world, i.e., when the non-secure
world is idle, then there is nothing else to execute and the
processor can sleep by means of WFI instruction. Since inter-
world communications are initiated by the non-secure world,
the logic of the SMC virtualization is a bit more complex. This
aspect is discussed in Section IV-D.

C. X Monitor

The X Monitor is a bare-metal firmware that has been
developed from scratch to orchestrate the two hypervisors and
to bootstrap the platform. It executes in monitor mode, which
is the highest privileged mode belonging to the secure world,
and is mainly responsible for handling the world switch by
means of SMC instructions and for dispatching the interrupts.

At the system startup, the X Monitor initializes the Generic
Interrupt Controller (GIC). The GIC is composed of a distrib-
utor and a CPU interface: in the presence of the TrustZone
technology, the distributor allows grouping interrupts in secure
and non-secure, while the CPU interface allows distinguishing
between fast interrupts (FIQ) and standard interrupts (IRQ). As
typical of interrupt controllers, the interrupts have priorities. In
the realized implementation, the GIC is configured to assign
the upper half of the priority values to secure interrupts, and
the remaining ones to non-secure interrupts, thus matching the
fixed-priority scheme introduced in Section III-B.

As a best practice, ARM recommends to handle secure
interrupts as FIQs [11] and non-secure interrupts as IRQs,
consequently disabling FIQ masking from non-secure world
and configuring the processor for catching FIQs in monitor
mode. However, Xvisor is not conceived to handle FIQs,
thus originating a problem for the S-Xvisor. To avoid heavy
modifications of Xvisor, the interrupt routing strategy illus-
trated in Figure 4 has been adopted. As it can be observed
from the figure, while the processor is executing in non-
secure world, secure interrupts are configured as FIQs, and are
hence handled in monitor mode by the X Monitor. Conversely,
while the processor in executing in secure world, secure
interrupts are configured as IRQs and can be directly handled
by the S-Xvisor. In correspondence to each secure interrupt
raised in non-secure world, the X Monitor undertakes a world
switch and sets the secure context for the GIC in which
secure interrupts are configured as IRQs. This reconfiguration
automatically forwards interrupts from FIQs to IRQs. Finally,
non-secure interrupts are always configured as IRQs: when the
processor is executing in non-secure world, they are regularly
handled at hypervisor mode, while they are masked (and stored
as pending) in secure world.

The X Monitor provides two types of world switch de-
pending on the triggering event: a lite world switch, which
is performed in correspondence to the execution of SMC
instructions, and full world switch, which is performed when
the X Monitor handles a secure interrupt. This distinction is
required because SMC instructions are generally used for inter-
world communication purposes, where part of the context of
one world (i.e., some registers) is used for exchanging the
information and must hence be preserved. More specifically,
the ARM SMC Calling Convention [12] specifies that the first
eight general purpose registers (r0-r7) are reserved to enable
communications between the two worlds. As a consequence,



Figure 4. Overview of the interrupt routing strategy.

during a lite world switch, the X Monitor preserves the values
of r0-r7, while it saves and restores the entire context of both
worlds in the presence of a full world switch. To allow the Idle
Orphan of S-Xvisor to identify that it has been resumed by an
interrupt, the full world switch also forces the value of the first
four registers (r0-r3) to zero.

D. Inter-world communication

The domains that include a TEE need to establish com-
munications between secure and non-secure world. The pro-
posed implementation comes with a communication protocol
that follows the ARM SMC Calling Convention [12]. This
convention mainly defines that arguments and return values
are passed in the first eight general purpose registers, while
the immediate value of the SMC instruction shall be kept
to zero. The first register (r0) is reserved for storing the so
called SMC Function ID, which defines the type of request
issued to the TEE, while the remainder seven registers can be
managed by the designer. In the realized protocol, the second
register (r1) is used to identify the TEE service invoked by
non-secure world, and registers r2-r5 are used to identify
two shared-memory buffers for realizing the communication.
Registers r2-r3 contain the address and the size of the source
buffer, respectively, which is populated by non-secure world,
while r4-r5 contain the address and the size of the destination
buffer, which is managed by secure world. As it is illustrated
in Figure 5, these registers are modified at the stage of SMC
virtualization. First, since the dual-hypervisor design allows
the coexistence of multiple virtualized TEE, the TEE identifier
in r1 is modified by the NS-Xvisor to match the proper
secure domain managed by S-Xvisor (which is determined as
a function of the configurations described in Sections IV-A
and IV-B). Second, the addresses of the source and destination
buffers are also modified to cope with the different virtual
address spaces with which the two communicating domains
can be configured. For simplicity, if secure domains do not use
memory virtualization, this phase simply consists in replacing
virtual memory addresses with the corresponding physical
memory addresses. Third, the NS-Xvisor also stores in r7
the identifier of the non-secure domain that issued the SMC.
Finally, when returning to the non-secure world after a secure
execution, the first four registers are reserved to store values
returned from the secure world, and the NS-Xvisor undertakes
a dual address translation to restore the correct virtual address
in r4.

Figure 5. Modification of the general purpose registers due to SMC
virtualization.

When the secure execution is resumed by a SMC instruc-
tion, the Idle Orphan of the S-Xvisor starts parsing the request
and performs sanity checks based on the content of registers
r0-r7, i.e., checking the compliance with the established
convention, or verifying the correctness of the identifiers.

Memory map. Figure 6 illustrates the memory map adopted
for the proposed implementation. The RAM address space is
simply split into a secure and a non-secure part: this split can
be realized with the TZASC or is implicitly adopted whenever
a dedicated RAM is used for the secure world. As it can be
noted from the figure, the secure world is able to access the
entire RAM address space. The code of the X Monitor is
loaded at the beginning of the secure RAM, while a shared
region is reserved at the end of the non-secure RAM to realize
the shared buffers for inter-world communication.

Figure 6. Illustration of the adopted memory map and the memory view
from both secure and non-secure world.

V. EXPERIMENTAL RESULTS

The realized implementation has been evaluated by measur-
ing the memory footprint and the timing latencies introduced
by the dual-hypervisor scheme. The evaluation has been car-
ried out on ARM Fast Models and, whenever possible, on
ARM Cycle Models, thus obtaining cycle-accurate measure-
ments. The Linaro GCC 5.3 compiler has been adopted.

Memory footprint. Table I reports the memory footprint
(in bytes) for the implemented components, which has been
measured by using the GNU size tool. As it can be observed
from the table, the total footprint is considerably limited
and amounts to less than 3.3 MB, although both hypervisors
include the default drivers and emulated devices that come



with Xvisor. Also note that the footprint of the X Monitor is
very minimal (less than 3 KB). It is worth mentioning that,
at run-time, Xvisor frees temporary memory areas (e.g., those
containing initialization procedures), hence the actual steady-
state footprint is even less.

Table I. MEMORY FOOTPRINT

Component Size [bytes]

.text .data .bss Total

S-Xvisor 1570648 139164 188528 1898340
NS-Xvisor 1218872 89164 146460 1454496
X Monitor 2994 0 0 2994
Total (without domains) 3355780

Latencies. The major latencies introduced by the realized im-
plementation are due to the bootstrap phase of the X Monitor,
the world switches, and the crossing of the virtualization layers
of the two hypervisors. At the system startup, before launching
S-Xvisor, the bootstrap phase of the X Monitor initializes
the monitor context (interrupts and memory stacks). After S-
Xvisor is started, the control is passed back to the X Monitor
that enables the virtualization extensions, initializes the GIC
and the timers for NS-Xvisor, and configures the access rights
of the non-secure world. The maximum net execution times to
execute these two phases are reported in the first two rows
of Table II. The table also reports the maximum overhead
introduced by the two world switches (lite and full) discussed
in Section IV-C. As it can be noted from the table, the largest
overhead is introduced by a full world switch from non-secure
to secure world and amounts to about 22 µs. Note that these
results further highlight the advantages in adopting our dual-
hypervisor design with respect to a centralized (i.e., single-
hypervisor) solution, where a much intense world switch ratio
would be present to support the virtualization of REEs.

Table II. CYCLE-ACCURATE LATENCIES

Phase Cycles µs@180MHz
X Monitor initialization 1011 5.6167
X Monitor init. for NS-Xvisor 1512 8.4003
Lite world switch (NS-S) 3186 17.7
Lite world switch (S-NS) 3186 17.7
Full world switch (NS-S) 3893 21.6278
Full world switch (S-NS) 3563 19.794

Another important latency is the duration of the entire chain
triggered by a non-secure domain that performs a request to a
TEE in secure world via SMC, thus involving the virtualization
layers of the two hypervisors (the chain is discussed in
Section IV-D and is illustrated in Figure 5). Due to technical
issues, Cycle Models prevented us to measure this latency,
which instead has been evaluated with Fast Models by means
of an emulated timer. The maximum measured latency over
1000 invocations of the chain resulted equal to 249.74 µs
on an emulated Versatile Express board running at 60 Mhz.
The tested scenario consisted in a single domain with one
REE and one TEE. The time needed by the latter to produce
data in response to a service request is not accounted in
the measurement. Finally, thanks to the fixed-priority scheme
adopted in the configuration of the GIC, note that the latency
with which the system reacts to secure interrupts is always
bounded by the duration of a full world switch from non-
secure to secure world.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a dual-hypervisor design for ARM
TrustZone to handle multiple two-world domains (secure and
non-secure world) in virtualization. An implementation of the
design has been then presented by building upon Xvisor,
an open-source hypervisor. Two modified versions of Xvisor,
namely secure and non-secure Xvisor, have been developed
to realize the dual-hypervisor scheme. A third component,
denoted as X Monitor, has also been developed to orchestrate
the two versions of Xvisor and handle bootstraps, interrupt
dispatching, and world switches. Experimental results showed
that the entire implementation has a limited footprint (about 3.3
MB) and introduces affordable latencies at run-time. Overall,
ARM TrustZone proved to be an excellent candidate to realize
virtualized systems with hardware-based secure capabilities,
with the only limitation residing in the absence of the virtual-
ization extensions in secure world.

This work lefts open a number of interesting and chal-
lenging issues, including the support for multi-core platforms,
the support for ARMv8 architectures, the integration of spatial
and temporal isolation mechanisms in both the worlds [13], the
inclusion of attack mitigation techniques, and the support for
popular TEE kernels (e.g., OP-TEE) upon the secure Xvisor.
Furthermore, it is also planned to apply the proposed design
to different hypervisors.

ACKNOWLEDGEMENTS
The authors like to thank Jason Andrews and Eric Sondhi from

ARM for providing licenses of ARM tools and their valuable support
in setting up the ARM Cycle Models environment. This work has
been partially supported by the RETINA Eurostars Project E10171.

REFERENCES
[1] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “LTZVisor:

Trustzone is the key,” in In Proc. of the 29th Euromicro Conference on

Real-Time Systems (ECRTS 2017), 2017.
[2] G. Cicero, “A dual-hypervisor for platforms supporting hardware-

assisted security and virtualization,” in Master Thesis in Embedded

Computing System, University of Pisa and Scuola Superiore Sant’Anna.
[3] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vTZ:

Virtualizing ARM trustzone,” in In Proc. of the 26th USENIX Security

Symposium, 2017.
[4] M. Paolino, A. Rigo, A. Spyridakis, J. Fangude, P. Lalov, and D. Raho,

“T-KVM: A trusted architecture for KVM ARM v7 and v8 virtual
machines securing virtual machines by means of KVM, trustzone, TEE
and SELinux,” in In Proc. of the Sixth International Conference on

Cloud Computing, GRIDs, and Virtualization, 2015.
[5] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho, “VOSYS-

monitor, a monitor layer for mixed-criticality automotive systems on
armv8 platforms,” in In Proc. of the 29th Euromicro Conference on

Real-Time Systems (ECRTS 2017), 2017.
[6] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, “Embedded

hypervisor Xvisor: A comparative analysis,” in In Proc. of the 23rd Eu-

romicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP 2015), 2015.
[7] Security on ARM trustzone. [Online]. Available: https://www.arm.com/

products/security-on-arm/trustzone/
[8] ARM fast models. [Online]. Available: https://developer.arm.com/

products/system-design/fast-models
[9] ARM cycle models. [Online]. Available: https://developer.arm.com/

products/system-design/cycle-models
[10] Trustonic. Kinibi. [Online]. Available: https://developer.trustonic.com/

discover/technology
[11] ARM. ARM generic interrupt controller. [On-

line]. Available: https://static.docs.arm.com/ihi0048/b/IHI0048B b
gic architecture specification.pdf

[12] ——, “SMC calling convention. system software on ARM platforms,”
2016.

[13] P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting temporal
and spatial isolation in a hypervisor for arm multicore platforms,” in
Proceedings of the 18th IEEE International Conference on Industrial

Technology (ICIT 2018), Feb. 2018.

https://www.arm.com/products/security-on-arm/trustzone/
https://www.arm.com/products/security-on-arm/trustzone/
https://developer.arm.com/products/system-design/fast-models
https://developer.arm.com/products/system-design/fast-models
https://developer.arm.com/products/system-design/cycle-models
https://developer.arm.com/products/system-design/cycle-models
https://developer.trustonic.com/discover/technology
https://developer.trustonic.com/discover/technology
https://static.docs.arm.com/ihi0048/b/IHI0048B_b_gic_architecture_specification.pdf
https://static.docs.arm.com/ihi0048/b/IHI0048B_b_gic_architecture_specification.pdf

