
AXI HyperConnect: A Predictable, Hypervisor-level
Interconnect for Hardware Accelerators in FPGA SoC

Francesco Restuccia∗†, Alessandro Biondi ∗†, Mauro Marinoni ∗†, Giorgiomaria Cicero ∗, and Giorgio Buttazzo∗†
∗TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy

†Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract—FPGA-based system-on-chips (SoC) are powerful comput-
ing platforms to implement mixed-criticality systems that require both
multiprocessing and hardware acceleration. Virtualization via hypervisor
technologies is, de-facto, an effective technique to allow the co-existence
of multiple execution domains with different criticality levels in isolation
upon the same platform. Implementing such technologies on FPGA-based
SoC poses new challenges: one of such is the isolation of hardware
accelerators deployed on the FPGA fabric that belong to different
domains but share common resources such as a memory bus. This paper
proposes AXI HyperConnect, a hypervisor-level hardware component
that allows interconnecting hardware accelerators to the same bus while
ensuring isolation and predictability features. AXI HyperConnect has
been implemented on modern FPGA-SoC by Xilinx and tested with real-
world accelerators, including one for Deep Neural Network inference.

I. INTRODUCTION

Next-generation cyber-physical systems (CPS) such as au-
tonomous vehicles and advanced robots are characterized by very
complex computing workloads belonging to multiple subsystems with
different criticality levels. Furthermore, they require hardware accel-
eration to accomplish heavy computations in real-time, such as those
demanded by machine learning algorithms. To match these needs,
heterogeneous platforms that integrate both multiprocessors and com-
ponents that can implement hardware acceleration are emerging.
Among such platforms, system-on-chips (SoC) that couple multipro-
cessors with field-programmable gate arrays (FPGA) are particularly
promising as they can provide great flexibility in building CPS. In
particular, they allow deploying reconfigurable energy-efficient, yet
high-performance hardware accelerators (HAs) on the FPGA fabric
while retaining all the advantages of classical software-programmable
multiprocessors.

Many CPS are safety-critical and must undertake a certification
process, at least for their critical subsystems. A key requirement
for certifying safety-critical systems is timing predictability: critical
functionality must complete within predetermined deadlines, and
it is necessary to cope with worst-case behaviors of the system
at design time to ensure so. This is particularly challenging for
heterogeneous platforms, especially when considering that HAs can
experience bus/memory contention that can severely affect their
timing performance [1] — as a matter of fact, many HAs are
memory-intensive (e.g., think of accelerators for machine learning
in real-time video processing). Furthermore, isolation capabilities are
required to avoid propagating faults across subsystems and to bound
contention delays generated by low-criticality untrusted subsystems.
Virtualization via hypervisor technologies is an established industrial
practice for the co-existence of subsystems with mixed-criticality
on the same platform while enforcing isolation [2]. However, new
challenges arise when virtualization is applied to FPGA SoC. Indeed,
isolation must not only be ensured for software components running
on the processors (as done by most hypervisors) but also for HAs
belonging to different subsystems that are jointly deployed on the
same FPGA fabric. Just to name a possible issue, consider a HA of a

low-criticality subsystem sharing a memory bus with another HA of a
high-criticality subsystem. If no proper supervision is employed, the
former HA is free to delay the latter in an unpredictable manner via
bus contention [3]. Furthermore, bus arbitration and the corresponding
latency must be known and predictable.

This paper. In this work, a new hypervisor-level hardware
component named AXI HyperConnect is proposed. It allows intercon-
necting hardware accelerators to the same bus while ensuring isolation
and predictability. The AXI HyperConnect has been developed in
HDL language, allowing to achieve high performance in latency,
while keeping comparable throughput and resource consumption with
respect to state-of-the-art AXI interconnects for FPGA SoC. The AXI
HyperConnect has been exported following the IP-XACT standard,
which makes it compatible with other several commercial platforms,
such as Intel FPGA [4]. Furthermore, it has been implemented on two
modern FPGA SoC by Xilinx belonging to the Zynq-7000 and Zynq-
Ultrascale+ families, and has been tested with real-world accelerators,
including the one provided with the CHaiDNN framework by Xilinx
to handle real-time inference of deep neural networks. The AXI
HyperConnect has been integrated within a type-1 hypervisor under
development in our laboratory.

II. BACKGROUND

A typical FPGA SoC platform combines a processing system
(PS), which includes one or more processors, with a Field Pro-
grammable Gate Array (FPGA) subsystem. Both the subsystems
access a DRAM controller to reach a shared DRAM memory as illus-
trated in Figure 1. The de-facto standard interface for interconnections
is the ARM Advanced Microcontroller Bus Architecture Advanced
eXtensible Interface (AMBA AXI) — also referred to as just AXI.

����

�� − ����

���������

���� − ��

���������

����

����������

��

������������

��

���

���

�����

��1

���

������������

���

�

�

������� ���

�

�

�

� �

Fig. 1: Illustration of a typical FPGA SoC architecture and a sample
multi-master architecture in the FPGA fabric.

The AXI bus. The AXI standard defines a master-slave interface
to allow for simultaneous, bi-directional data exchange. All the
transactions are initiated by a master, which requests to read/write data
from/to a slave interface through AR or AW channels, respectively.
Following address requests, data are transmitted back to the master on
the R channel (data read) or provided to the W channel (data write)
in the same order as requests have been routed to the corresponding
address channel. Hence, data channels depend on address channels,
and the access to the output data channels R and W depends on the
routing order to the address channels. Even though the AXI standard



does not define this feature, many commercial devices [5], [6] follow
this implementation choice, as reported in their documentation. The
B channel is used by the destination device of a write request to
acknowledge the master that its request has been correctly served.

FPGA-PS and PS-FPGA interfaces. The communication between
the FPGA and the PS is allowed by two different types of interfaces:
the PS-FPGA interface and the FPGA-PS interface (Figure 1). The
first one offers a slave interface to the FPGA and is used by the
processors to control the hardware devices or access data in the
FPGA. In a dual manner, the second one offers a slave interface
to the PS and is used by devices deployed on the FPGA to access
the central DRAM memory or the on-chip memory in the PS.

Hardware accelerators. A hardware accelerator (HA) is a component
developed in programmable logic and deployed on the FPGA fabric
to perform a specific task. Each HA is associated to a software tasks
(SW-task) running in the PS that controls it by issuing a request
for acceleration. In typical FPGA SoC designs based on shared-
memory communication, HAs communicate with the PS via two AXI
interfaces: an AXI master interface and an AXI slave interface. When
a request for acceleration has to be issued, SW-tasks use AXI slave
interfaces to setup the configuration of HAs (acting on memory-
mapped registers). When running, HAs leverage AXI master ports
to read/write data from/to the central DRAM memory in the PS.
Following this paradigm, once activated, the execution of HAs is
asynchronous with respect to the execution of SW-tasks running on
the PS. HAs signal their completion to the PS by means of interrupts.

Multi-Master architecture. Whenever multiple AXI masters want
to access the same output port, an AXI interconnect is in charge
of arbitrating conflicting requests. This work is focused on AXI
interconnects that have a set of slave input ports, to which HAs can
be connected to, and one output master port, connected to a slave
port in the FPGA-PS Interface. In FPGA SoCs by Xilinx, the state-
of-the art AXI interconnect is called AXI SmartConnect. Even though
the AXI standard defines specific signals to implement mechanisms
for controlling the quality-of-service (QoS) of transactions, the AXI
SmartConnect ignores such signals and implements a round-robin
arbitration to solve the conflicts among the hardware accelerators in
the access of the output master port (see [7], p.6 and p.8). A sample
multi-master architecture is illustrated in Figure 1.

III. RELATED WORK

Virtualization is becoming a crucial enabling technology in a
growing number of application scenarios, including those related to
safety-critical systems. Several open-source and commercial solutions
support FPGA SoC but are mostly concerned with virtualization and
isolation for software systems running on the processors in the PS.
Virtuosity Xen Zynq Distribution (XZD) is a version of the popular
Xen hypervisor customized for the Zynq SoC family by Xilinx.
Its support for FPGA virtualization and isolation is limited to the
management of address translations to handle data communication be-
tween the FPGA and software domains on the PS. Other hypervisor-
based solutions have been proposed to virtualize the FPGA area
by exploiting dynamic partial reconfiguration [8], [9], but still not
supervising the data traffic generated on shared buses deployed on
the FPGA fabric. To the best of our records, and according to public
information, no hypervisor-level support is available to control AXI
transactions on the FPGA. Concerning the AXI bus, a few hardware
components have been recently proposed to increase isolation and
predictability of AXI transactions while relying on state-of-the-art

interconnects such as the AXI SmartConnect by Xilinx. Pagani et
al. [10] proposed a solution to reserve a given bus bandwidth to
each AXI master, while Restuccia et al. [11] presented a solution
to guarantee a fair bandwidth distribution among HAs that issue
transactions with heterogeneous burst sizes. However, both solutions
require a dedicated unit to be placed between each AXI port of HAs
and a port of the AXI SmartConnect, hence increasing the design
complexity and the overall resource consumption on the FPGA fabric.
It is worth mentioning that modern FPGA SoC platforms integrate
specific blocks to manage the QoS in AXI, such as the ARM QoS-
400 block implemented in the Xilinx UltraScale+ platform (see [6],
p.375). These modules are implemented in the PS of the SoC, hence
allowing to manage the QoS of transactions in the PS only. Note that,
after request for transactions issued by different HAs in the FPGA
enter the PS through the FPGA-PS interface, there are no signals to
distinguish them. Therefore, the QoS-400 does not allow controlling
the bus bandwidth provided to each individual HA. However, this is
essential in a virtualized mixed-criticality system in which isolation
between different applications must be ensured.

Research efforts have also been spent to propose arbitration poli-
cies for on-chip interconnects to improve throughput and predictabil-
ity [12]–[15] but not focusing on the AXI standard. Application-
dependent reconfigurable arbiters have been presented by Yuan et
al. [16] and Sousa et al. [17] to exploit different arbitration schemes.
We do not exclude that our research findings may benefit of them.
However, we believe that their integration requires a far more complex
logic than the one required by the approach proposed in this paper,
also increasing area consumption and possibly latency.

IV. CONSIDERED FRAMEWORK

This work is focused on supporting mixed-criticality applications
upon the same FPGA SoC. Each application comprises a software
system running on the PS and a set of HAs. Applications can be
independently developed and are finally subject to an integration
phase before deployment, which is performed by a system integra-
tor. Isolation between the applications must be ensured. Standard
hypervisor technology is considered to support the isolation of the
software parts of the applications (which can even rely on different
operating systems). A new component, named AXI HyperConnect
and conceived as a hypervisor-level hardware component (i.e., a
hardware extension of the hypervisor), is proposed in this paper to
supervise the bus traffic generated by all the HAs.

For the sake of completeness, it is crucial to discuss how the
integration phase is performed. Although HAs can be provided to
the system integrator in different forms (e.g., open-source, purchased
with closed-source), standardized solutions are available to simplify
integration: we assume that the IP description is provided in an XML
format such as the popular IP-XACT. Following several standard
practices, each HA implements an interface composed of an AXI
control slave interface and an AXI master interface, as discussed
in the previous section. The system integrator is then in charge of
embedding all the HAs provided by the various applications into an
FPGA design. Note that this also requires connecting them to the PS
using a system integration tool (e.g., Xilinx Vivado, Intel Platform
Designer). Each AXI master port provided by the HAs is connected
to an input slave port of a AXI HyperConnect. The master port of the
AXI HyperConnect is connected to the FPGA-PS interface, while the
AXI slave ports of the HAs are connected to the PS-FPGA interface.
Once all the HAs have been connected, the system integrator uses a
synthesis tool (e.g., Xilinx Vivado, Intel Quartus Prime) to synthesize



the overall design for the target platform. Finally, the synthesis tool
produces a bitstream file that contains the configuration of the FPGA
fabric. The bitstream file can be programmed on the FPGA fabric by
either the boot loader or the hypervisor, i.e., it is not under the control
of the applications, which are also denied in configuring the FPGA.
The hypervisor is in charge of granting access from each application
to the corresponding HAs only (via standard memory virtualization),
as well as routing their interrupts. Furthermore, the hypervisor is in
charge of configuring the AXI HyperConnect — this aspect is novel
and discussed next.

V. THE AXI HYPERCONNECT

This section presents the AXI HyperConnect. Its key features and
the corresponding motivations are first presented in Sec. V-A. Then,
its internal hardware architecture is discussed in Sec. V-B.

A. Key features

Openness. Typically, state-of-the-art AXI interconnects for
commercial-off-the-shelf (COTS) platforms are provided as
closed-source IPs. For instance, this is the case of the AXI
SmartConnect by Xilinx. The documentation provided with such
interconnects usually defines their functionality but not their internal
hardware structure and the corresponding logic with a high level of
detail. Unfortunately, this information is generally not sufficient to
understand the worst-case timing behavior of the AXI interconnect,
which can only be inferred with profiling techniques. As a matter of
fact, their adoption is not advisable in safety-critical applications that
require strict temporal guarantees, where predictability is mandatory
to certify the system. The AXI HyperConnect addresses this issue by
coming with a slim and open architecture (see Section V-B), making
it amenable to low-level inspection to extract worst-case timing
bounds, as well as to the corresponding validation. Furthermore, the
AXI HyperConnect comes with an open-source driver to control it.

Low latency and resource consumption. A large worst-case prop-
agation latency can be hazardous for safety-critical applications.
Furthermore, if an interconnect leaves room for rare pathological
cases in which the maximum latency occurs, the pessimism in worst-
case analysis for critical systems is increased. One of the significant
advantages of developing AXI HyperConnect from scratch has been
the possibility of defining its internal architecture with a high degree
of freedom. Indeed, a key design principle for the AXI HyperConnect
has been to keep a low fixed latency. The experimental results reported
in Section VI show that it improves the propagation latency with
respect to the state-of-the-art AXI interconnects while maintaining the
same throughput. Its development in the HDL language also allows
obtaining low resource consumption on the FPGA fabric with respect
to the state-of-the-art AXI interconnects (see Section VI).

Bandwidth reservation. State-of-the-art AXI interconnects lack of
mechanisms to reserve a portion of the bus/memory bandwidth to
a given HA independently of the behavior of the others. However,
bandwidth reservation for each individual HA is a crucial feature for
mixed-criticality applications, as it is essential to guarantee isolation.
For instance, if not present, a misbehaving HA of a low-criticality
application is free to flood the bus and inject large delays on a HA
of a high-criticality application. AXI HyperConnect implements the
bandwidth reservation mechanism proposed in [10], which works by
limiting the number of transactions to a given budget within periodic
time windows. This mechanism is configured by the hypervisor,
which allows reserving a given bus bandwidth to each HA and

also controlling the overall memory traffic coming from the FPGA
fabric directed to the shared memory subsystem (which can delay the
execution of software running on the processors of the PS).

Fair bandwidth distribution. As introduced in Section II, state-of-
the-art AXI interconnects solve conflicts via round-robin arbitration.
However, recent research [11] demonstrated that round-robin arbi-
tration applied to AXI may lead to a complete unfair bandwidth
distribution among HAs in the presence of heterogeneous burst sizes
(the Xilinx SmartConnect is affected by this issue). This problem is
particularly relevant in the considered framework as bandwidth-stealer
HA could be deployed to jeopardize the entire FPGA subsystem
(including HAs of critical applications). To overcome this issue,
AXI HyperConnect implements the mechanisms proposed in [11]
to equalize bus transactions to a nominal burst size and liming
the number of outstanding transactions. Combined with bandwidth
reservation, this mechanism guarantees a very predictable bus access
as both the number of transactions (i.e., the reservation budget) and
the corresponding data size (i.e., the nominal burst) are implicitly
bounded in any time window under analysis.

Runtime reconfiguration. State-of-the-art AXI interconnects are not
conceived to change their configuration at run-time. Indeed, they
are designed for being configured at system integration time and
then synthesized and programmed on the FPGA fabric with a static
configuration. This fact determines a strong limitation when the
bus and shared memory subsystems require some form of run-time
management, e.g., to control the bus interference or to dynamically
adapt the bandwidth reserved to a bus master. This limitation has
even a much higher impact in applications that leverage dynamic
partial reconfiguration (in which the implemented HAs can change at
run-time). To overcome this limitation, AXI HyperConnect exports
a control AXI slave interface that allows changing its configuration
from the PS as a standard memory-mapped device. In the considered
framework, this control interface is managed by the hypervisor.

Decoupling from the memory subsystem. AXI HyperConnect
allows to individually enable/disable at runtime the access to the PS
(and hence to the memory subsystem) for each HA connected to
its slave ports. This feature allows isolating misbehaving/malicious
HAs (even due to faulty silicon) detected in the system. It can
be controlled by just acting on a memory-mapped register of the
AXI HyperConnect’s control interface. Note that this feature provides
different capabilities with respect to the use of an I/O MMU because
faulty HAs may generate transactions to any memory address and the
source of such transactions is indistinguishable when the I/O MMU
is reached, i.e., after the FPGA-PS interface. Furthermore, even if
assuming that faulty HAs access some given memory addresses only,
the mechanism offered by the AXI HyperConnect is far more simpler
and lightweight as it does not require navigating page tables nor to
invalidate translation buffers. Finally, it is worth mentioning that the
AXI HyperConnect decouples all the signals of a disabled slave port,
which is an useful feature under dynamic partial reconfiguration.

Compatibility. All the features offered by the AXI HyperConnect
have been developed to be compliant with the AXI standard. This
means that the AXI HyperConnect is completely transparent to both
the HAs and the memory subsystem and can hence be installed in
place of state-of-the-art interconnects without any extra effort. The
AXI HyperConnect is compatible with both AXI3 and AXI4 devices.
As today’s FPGA SoC platforms do not implement out-of-order
transactions at the memory controller (i.e. the transactions are served
in-order by the memory controller [5], [6]), AXI HyperConnect does



not currently support out-of-order completion. The implementation of
this feature is left as a future work to make the AXI HyperConnect
compatible with future platforms.

B. Internal architecture

This section describes the hardware architecture of the AXI
HyperConnect and its internal components. The architecture has been
conceived to be as slim as possible and to introduce a predictable
propagation delay on each transaction. The proposed architecture
makes AXI HyperConnect prone to worst-case timing analysis, which
is not addressed here due to lack of space. Figure 2 shows the
hardware architecture of the AXI HyperConnect with N input ports.

������

��� ������������

�������1

���� ����

�������

�����1

������ ��� �������

����

��������

� ����1

�� ����1

�� ����1

� ����1

� ����1

� �����

�� �����

�� �����

� �����

� �����

� ����

����

� �����

�� �����

�� �����

� �����

� �����

����

� ����

�

�

�

�

��1

���

��

���� − ��

��� ����� ������� ���������

�� �� − ����

��� ������������ ������� ������� ����

�

����

� ����

Fig. 2: Architecture of the AXI HyperConnect.

Each of the AXI slave input port of the AXI HyperConnect
is handled by a module named efficient first-in-first-out queuing
(eFIFO). Each eFIFO module is in turn connected to another module
named transaction supervisor (TS), which monitors and acts on the
transactions issued by the HAs to the end of enforcing bandwidth
reservation and fair bandwidth distribution, as well as implementing
the decoupling from the memory subsystem as discussed in the
previous section. All the TS modules are connected to a single
module named efficient crossbar (EXBAR). The EXBAR is connected
to a buffered AXI master interface implemented by another eFIFO
module. The architecture is pipelined. The AXI HyperConnect also
includes a central unit to manage common configurations to multiple
components (details are provided in the following) and resets signals.
A description of the main internal components is provided next.

eFIFO. eFIFO modules represent the external interfaces of the AXI
HyperConnect for the HAs and the FPGA-PS interface. The eFIFO
module is a buffered AXI interface that comes in two variants: a
slave and a master. Precisely, each HA is connected to an eFIFO
module (AXI slave port) while the eFIFO at the AXI master port of
the AXI HyperConnect is connected to the FPGA-PS interface. Each
eFIFO module defines five independent FIFO queues, one for each
AXI channel (see Figure 2), and does not apply any modification on
the incoming addresses or data. Each of such queues is implemented
as a proactive (i.e., always ready to receive) circular buffer. This
allows each FIFO queue to introduce a latency of just one clock
cycle, as well as to improve in terms of latency upon the AXI Stream
data FIFOs available for COTS platforms by 66% (see [18], p. 8). The

eFIFO module also implements a decoupling mechanism. When a HA
is decoupled, the AXI handshake signals on all the AXI channels are
kept low, not allowing the HA connected to them to exchange data
with the AXI HyperConnect. Also, the other signals are set to ground,
hence completely disconnecting the HA from the system.

Transaction supervisor. The TS is the core module of the AXI
HyperConnect concerning bandwidth and memory access manage-
ment. As read and write transactions are independently managed
in AXI (thanks to parallel channels), the TS can be conceptually
split into two independent subsystems named read management and
write management. The TS implements the logic proposed in [11]
to equalize transactions to a nominal burst size (configurable via the
control interface of the AXI HyperConnect). Specifically, the read
management subsystem splits read requests into sub-requests with
nominal burst size and merges incoming data. The write subsystem
splits write requests and, accordingly, splits data and merges write
responses. Furthermore, both the subsystems equalize the number
of outstanding transactions that can be issued by each input port
to a programmable value. Please refer to [11] for further details.
The TS also integrates a reservation mechanism similar to the one
proposed in [10]. Via its control interface, the AXI HyperConnect
allows configuring a budget of transactions reserved to each input
port that is periodically recharged every T time units, with T being
another configurable parameter common to all input ports. The former
are referred to as reservation budgets, while the latter to as reservation
period. The TS is in charge of counting the number of transactions at
run-time and ensuring that the reservation budget is never exceeded.
The reservation period is recharged for all the TS modules by
the central unit in a synchronous manner. The propagation latency
introduced by the TS module is just one clock cycle on each address
request (both on read and write transactions), independently of the
burst size. Read, write, and write response channels are managed
proactively such that no extra latency is introduced on these channels
(the information they carry can be predicted by the corresponding
address request channels).

EXBAR. The EXBAR is a low-latency crossbar in charge of solving
the conflicts experienced by read/write address requests propagated
by the TS modules. To this end, it implements round-robin arbi-
tration with a fixed granularity of one transaction per TS module
in each round-cycle. Note that we experimentally found that state-
of-the-art interconnects, such as the AXI SmartConnect, adopts a
variable round-robin granularity that introduces pessimism in terms
of predictability (in the worst case, a TS module can be interfered
by g × (N − 1) transactions, where g is the maximum round-robin
granularity). The EXBAR is also in charge of keeping track of the
order in which the address requests are granted, referred to as routing
information. Routing information is stored in a temporary internal
memory of the EXBAR implemented as a circular buffer. The EXBAR
introduces a propagation latency of just one clock cycle per address
request. The EXBAR proactively routes the read, write, and write
response channels according to the stored routing information and
hence does not introduce any extra latency on these channels.

VI. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation that has been
conducted to assess the performance of the AXI HyperConnect on
modern FPGA SoC platforms. Section VI-B reports the propagation
latency and the throughput of the AXI HyperConnect, while Sec-
tion VI-C presents a case study focused on the CHaiDNN deep neural
network (DNN) accelerator by Xilinx [19]. Finally, Section VI-D



reports the resource consumption of the AXI HyperConnect. In all
such sections, the performance of the AXI HyperConnect is compared
against the AXI SmartConnect, i.e., the state-of-the-art AXI inter-
connect by Xilinx [7] (note that the AXI Interconnect [20] has been
deprecated by Xilinx). Being the AXI SmartConnect closed-source,
a comparison against its internals is unfortunately not possible.

A. Experimental setup

The experiments have been conducted on both a Xilinx ZYNQ
Z-7020 platform and a Xilinx ZCU102 ZYNQ Ultrascale+ platform,
obtaining similar results. Due to lack of space, we report just the
results for the ZYNQ Ultrascale+ platform. The considered architec-
ture is composed of two HAs connected to the PS (and hence to
the memory subsystem) through an AXI HyperConnect or an AXI
SmartConnect — please refer to Figure 1 assuming N = 2. The
implementation and synthesis of all the considered components has
been performed using Xilinx Vivado 2018.2. In all the experiments,
the configuration of the AXI SmartConnect is left as the default one
auto-tuned by the Xilinx Vivado tool.

B. Propagation latency and response times in isolation

This experiment aims at comparing (i) the propagation latency
introduced on each AXI channel and (ii) the memory access time for
different amount of data, both between the case in which the AXI
HyperConnect is used and the one in which the AXI SmartConnect is
used. Two Xilinx AXI DMAs [21] have been chosen as representative
HAs. This choice has been made because they can mimic the behavior
on the bus of many HAs and because their are capable of saturating
the maximum memory bandwidth provided by both the considered
platforms. As they can stress the bus, note that this choice allows
highlighting possible differences in latency and throughput between
AXI Smartconnect and AXI HyperConnect. To achieve accurate
measurements, latency and throughput have been measured using a
custom-developed timer implemented in the FPGA fabric. Figure 3(a)

dAR dR dAW dW dB

0

5

10

L
at

en
cy

[c
lk

cy
cl

es
]

(a) Propagation latency

Single-word 16-burst 16 KB 128 KB 4 MB

100

102

µ
s

(b) Memory access time

AXI HyperConnect AXI SmartConnect

Fig. 3: Timing performance of the AXI HyperConnect.

reports the measured propagation latency on each AXI channel. The
latency in the propagation of an address request on address read and
address write channels (namely dAR and dAW , respectively) in AXI
HyperConnect is equal to four clock cycles. More specifically, one
clock cycle is spent on the slave interface of the eFIFO, one clock
cycle is spent on the TS module, one clock cycle on the EXBAR,
and one clock cycle in the master interface eFIFO at the output port
of the AXI HyperConnect. The propagation latency on data read,
data write, and write response channels (namely, dR, dW , and dB ,

respectively) is two clock cycles (one for traversing the slave eFIFO
and one for traversing the master eFIFO). Figure 3(a) shows that
AXI HyperConnect improves the propagation latency of the 66%
on AR and AW channels, 82% on R channel, 33% on W channel
with respect to the ones introduced by the AXI SmartConnect, while
keeping the same latency on the B channel. Considering that the
overall propagation latency introduced on a read transaction is equal
to dAR + dR and that the overall propagation latency on a write
transaction is equal to dAW + dW + dB , the AXI HyperConnect
improves the propagation latency by 74% on each read transaction
and by 41% on each write transaction, with respect to the AXI
SmartConnect. Figure 3(b) shows the maximum memory access time
measured to access different amounts of data. Average times differ
by less than 5% with respect to maximum times and are not reported
to improve the readability of the figure. The results show that, thanks
to the improvement in propagation latency of AXI HyperConnect,
the response times for single-word transactions and 16-word burst
transactions are improved by 28% and 25%, respectively, against the
use of the AXI SmartConnect. Note that this improvement in latency
does not come at cost of a reduced throughput. Indeed, the AXI
HyperConnect shows a comparable throughput with respect to the
AXI SmartConnect in accessing 16 KB of data (corresponding to 256
bursts of 16-word transactions) and 4 MB of data (corresponding to
65536 bursts of 16-word transactions).

C. Case study: CHaiDNN + one interfering HA

The performance of the AXI HyperConnect has also been eval-
uated with a state-of-the-art acceleration framework for DNNs on
FPGA SoCs, namely CHaiDNN by Xilinx, which provides function-
alities to accelerate on FPGAs the most common operations required
during the inference phase of DNNs. The inference is managed
by a software task running in the PS, which performs accelera-
tion requests to the CHaiDNN hardware accelerator programmed
on the FPGA fabric, referred to as HACHaiDNN. CHaiDNN works
with a shared-memory communication paradigm with the PS. Once
activated, HACHaiDNN uses its master port to read/write the data
from/to the shared DRAM memory in the PS. In our case study,
HACHaiDNN executes together with a high-throughput HA, named
HADMA, implemented by a Xilinx AXI DMA. HADMA is set to read
4 MB of data from the memory subsystem and write back other 4 MB
of data. For instance, HADMA may mimic the bus traffic generated by
a video or audio processing engine. The CHaiDNN framework has
been configured to accelerate the quantized GoogleNet neural network
provided with the standard CHaiDNN distribution. The architecture of
the case study is still the one reported in Figure 1 with N = 2, where
HA1 is the entire CHaiDNN accelerator subsystem (HACHaiDNN),
and HA2 is HADMA. For the ChaiDNN accelerator, it is useful to
measure the frames per second it is able to process as a performance
index. For HADMA, as a performance index we measured the number
of times the DMA is capable of completing its work (move 4MB
of data) in a second. Note that the two performance indexes are
never compared between each other. To keep a compact notation,
they are both referred to rate per second or just performance in
the following. The performance in isolation (i.e., when one HA at a
time is executing) of the two HAs has been measured by both using
the AXI HyperConnect and the AXI SmartConnect. The results are
reported in Figure 4: as it can be noted from the plot, no performance
degradation is experienced when using the AXI HyperConnect with
respect to the use of the AXI SmartConnect.

Subsequently, we evaluated the performance of the system in the
presence of contention (both CHaiDNN and HADMA are active at



101.8 102 102.2 102.4 102.6

SmartConnect

HyperConnect

Rate per second

ChaiDNN HADMA

Fig. 4: Comparison on AXI HyperConnect and AXI SmartConnect for
CHaiDNN and HADMA in isolation.

Isolation SC HC90-10 HC70-30 HC50-50 HC30-70 HC10-90

101

102

R
at

e
pe

r
se

co
nd

CHaiDNN HADMA

Fig. 5: Performance evaluation.

the same time). The results are reported in Figure 5. The first pair of
bars represent the results in isolation and are reported for comparison
purposes. The second pair of bars reports the performance of the
CHaiDNN and HADMA when using the AXI SmartConnect. Since
HADMA is more greedy in accessing the bus than HACHaiDNN, it can
take most of the bandwidth while HAChaiDNN can dispose of just a
little portion of the bus bandwidth. It is worth noting that, using the
state-of-the-art AXI SmartConnect, there is no way to redistribute
the bandwidth between HADMA and HACHaiDNN in a different way.
However, this is not the case for the AXI HyperConnect. The last
five pairs of bars in Figure 5 report the performance of CHaiDNN
and HADMA when the AXI HyperConnect is used. The bandwidth
reservation mechanism is enabled to distribute a percentage X of
bus bandwidth to HAChaiDNN, and the remaining percentage Y =
100-X to HADMA (referred to as HC-X-Y) in Figure 5). In the
third group of bars in the figure, the AXI HyperConnect has been
configured to assign 90% of the bandwidth to HAChaiDNN (HC-90-
10): this scenario shows a performance for CHaiDNN that is close
to the one in isolation. A similar consideration can be made when
assigning 70% of the bandwidth to HACHaiDNN and 30% to HADMA

(HC-70-30), and the other configurations.

D. Resource consumption

Table I reports the measured resource consumption for the two-
input AXI HyperConnect used in the case study discussed above on
the Xilinx ZCU102 platform. The results confirm that the design of
a slim architecture and the development in VHDL language allows
containing the resource consumption with respect to the state-of-
the-art AXI SmartConnect. Note that, despite being characterized by
lower resource consumption, the AXI HyperConnect also implements
functionalities that are not present in the AXI SmartConnect.

TABLE I: Resource consumption

ZCU102 Resources
LUT (274080) FF (548160) BRAM DSP

HyperConnect 3020 (11%) 1289 (0.3%) 0 0
SmartConnect 3785 (14%) 7137 (1.3%) 0 0

VII. CONCLUSIONS

FPGA-based SoCs are attracting growing interest in the devel-
opment of mixed-criticality systems. However, current virtualiza-
tion support for the FPGA subsystem is not providing sufficient

isolation for critical applications. This paper introduced the AXI
HyperConnect: a hypervisor-level, predictable AXI interconnect for
FPGA SoCs. Its features have been presented and motivated, together
with its slim internal architecture. The AXI HyperConnect has been
implemented for two commercial FPGA SoC platforms, and its
performance has been compared against the ones of the state-of-
the-art AXI interconnect from Xilinx, both on synthetic traffic and
on a popular framework for deep neural network acceleration. The
results show an improvement in propagation latency, while keeping
a comparable throughput and resource consumption.

ACKNOWLEDGMENT

This work has been partially supported by the Italian Ministry
of Education, University and Research (MIUR) under the project
SPHERE: Software Architecture for Predictable Heterogeneous Real-
time systems, grant no. 20172NNB4T.

REFERENCES

[1] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Modeling and Analysis of Bus Contention for Hardware Accelerators
in FPGA SoCs,” in 32st Euromicro Conference on Real-Time Systems
(ECRTS 2020), 2020.

[2] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, “Xtratum: a hyper-
visor for safety critical embedded systems,” in 11th Real-Time Linux
Workshop. Citeseer, 2009, pp. 263–272.

[3] F. Restuccia, A. Biondi, M. Marinoni, and G. Buttazzo, “Safely Pre-
venting Unbounded Delays During Bus Transactions in FPGA-based
SoC,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2020.

[4] Platform Designer System Design Tutorial, Intel Corp., aN 812.
[5] Zynq-7000 - Technical Reference Manual, UG585, Xilinx.
[6] Zynq UltraScale+ - Technical Reference Manual, UG1085, Xilinx.
[7] SmartConnect, LogiCORE IP Product Guide, Xilinx, 2018, pG247.
[8] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell,

“Virtualized execution and management of hardware tasks on a hybrid
ARM-FPGA platform,” Journal of Signal Processing Systems, vol. 77,
pp. 61–76, 2014.

[9] T. Xia, Y. Tian, J.-C. Prévotet, and F. NOUVEL, “Ker-one: A new
hypervisor managing FPGA reconfigurable accelerators,” Journal of
Systems Architecture, 2019.

[10] M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. But-
tazzo, “A bandwidth reservation mechanism for AXI-based hardware
accelerators on FPGAs,” in 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[11] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? restoring fairness in AXI interconnects
for FPGA SoCs,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 5s, p. 51, 2019.

[12] T. D. Richardson, C. Nicopoulos, D. Park, V. Narayanan, Y. Xie, C. Das,
and V. Degalahal, “A hybrid soc interconnect with dynamic tdma-based
transaction-less buses and on-chip networks,” in VLSI Design, 2006.
Held jointly with 5th International Conference on Embedded Systems
and Design., 19th International Conference on. IEEE, 2006, pp. 8–pp.

[13] P. Burgio, M. Ruggiero, F. Esposito, M. Marinoni, G. Buttazzo, and
L. Benini, “Adaptive tdma bus allocation and elastic scheduling: A
unified approach for enhancing robustness in multi-core rt systems,”
in Computer Design (ICCD), 2010 IEEE International Conference on.
IEEE, 2010, pp. 187–194.

[14] H. Shah, A. Raabe, and A. Knoll, “Priority division: A high-speed
shared-memory bus arbitration with bounded latency,” in Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), 2011.
IEEE, 2011, pp. 1–4.

[15] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “The lotterybus
on-chip communication architecture,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 14, no. 6, pp. 596–608, 2006.

[16] C.-C. Yuan, Y.-J. Huang, S.-J. Lin, and K.-h. Huang, “A reconfigurable
arbiter for soc applications,” in Circuits and Systems, 2008. APCCAS
2008. IEEE Asia Pacific Conference on. IEEE, 2008, pp. 713–716.

[17] É. Sousa, D. Gangadharan, F. Hannig, and J. Teich, “Runtime recon-
figurable bus arbitration for concurrent applications on heterogeneous
mpsoc architectures,” in Digital System Design (DSD), 2014 17th
Euromicro Conference on. IEEE, 2014, pp. 74–81.

[18] AXI4-Stream FIFO v4.1 LogiCORE IP Product Guide, Xilinx, pG080.
[19] CHaiDNN official github., Xilinx, https://github.com/Xilinx/chaidnn.
[20] AXI Interconnect, LogiCORE IP Product Guide, PG059, Xilinx.
[21] AXI Central Direct Memory Access, LogiCORE IP Product Guide,

PG034, Xilinx.


