
Modeling and Analysis of Bus Contention for1

Hardware Accelerators in FPGA SoCs2

Francesco Restuccia3

TeCIP Institute and Dept. of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy4

francesco.restuccia@santannapisa.it5

Marco Pagani6

TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy7

Université de Lille, CNRS, Centrale Lille, UMR 9189, CRIStAL, Lille, France8

marco.pagani@santannapisa.it9

Alessandro Biondi10

TeCIP Institute and Dept. of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy11

alessandro.biondi@santannapisa.it12

Mauro Marinoni13

TeCIP Institute and Dept. of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy14

mauro.marinoni@santannapisa.it15

Giorgio Buttazzo16

TeCIP Institute and Dept. of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy17

giorgio.buttazzo@santannapisa.it18

Abstract19

FPGA System-on-Chips (SoCs) are heterogeneous platforms that combine general-purpose pro-20

cessors with a field-programmable gate array (FPGA) fabric. The FPGA fabric is composed of a21

programmable logic in which hardware accelerators can be deployed to accelerate the execution of22

specific functionality. The main source of unpredictability when bounding the execution times of23

hardware accelerators pertains the access to the shared memories via the on-chip bus. This work is24

focused on bounding the worst-case bus contention experienced by the hardware accelerators deployed25

in the FPGA fabric. To this end, this work considers the AMBA AXI bus, which is the de-facto26

standard communication interface used in most the commercial off-the-shelf (COTS) FPGA SoCs,27

and presents an analysis technique to bound the response times of hardware accelerators implemented28

on such platforms. A fine-grained modeling of the AXI bus and AXI interconnects is first provided.29

Then, contention delays are studied under hierarchical bus infrastructures with arbitrary depths.30

Experimental results are finally presented to validate the proposed model with execution traces on31

two modern FPGA-based SoC produced by Xilinx (Zynq-7000 and Zynq-Ultrascale+ families) and32

to assess the performance of the proposed analysis.33

2012 ACM Subject Classification Hardware → Interconnect; Hardware → Hardware accelerators34

Keywords and phrases Heterogeneous computing, Predictable hardware acceleration, FPGA SoCs,35

Multi-Master architectures36

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.1337

1 Introduction38

Next-generation cyber-physical systems (CPS) require the execution of complex computing39

workload such as machine learning algorithms and image/video processing. Representative40

examples include autonomous driving, advanced robotics, and smart manufacturing. In order41

to perform high-performance computations while matching the timing constraints imposed by42

the physical world, these systems require coupling standard processing units with on-board43

hardware accelerators (HAs), which allow speeding up complex computations, especially44

those that are prone to large-scale parallelization. Heterogeneous computing platforms, such45

© Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 13; pp. 13:1–13:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesco.restuccia@santannapisa.it
mailto:marco.pagani@santannapisa.it
mailto:alessandro.biondi@santannapisa.it
mailto:mauro.marinoni@santannapisa.it
mailto:giorgio.buttazzo@santannapisa.it
https://doi.org/10.4230/LIPIcs.ECRTS.2020.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

�� ������

�2

�1

�1

�2

�3

Figure 1 Example bus architecture with three HAs connected using two interconnects.

as system-on-chips (SoC) that integrate a multiprocessor with acceleration-oriented devices46

like field-programmable gate arrays (FPGAs) or general-purpose graphical processing units47

(GPGPUs) are de-facto establishing as the reference solutions to develop next-generation48

CPS. Examples of such platforms are the Zynq Ultrascale+ produced by Xilinx, which49

includes a large FPGA fabric, and the Xavier produced by Nvidia, which includes a GPGPU50

and other accelerators for machine learning algorithms.51

A key issue when developing safety-critical CPS is to guarantee certain timing constraints52

for the control software. When hardware acceleration is used by critical software, the problem53

also extends to the consideration of the worst-case timing properties of HAs. Unfortunately,54

timing analysis for HAs can be particularly challenging, especially if very limited information55

on their internal architecture and resource management logic is publicly available, as it is the56

case for Nvidia platforms. To further complicate this issue, note that HAs are typically very57

memory-intensive. Indeed, they tend to work on a large amount of data (think of real-time58

video processing) and hence generate a consistent memory traffic that can have a paramount59

impact on their timing performance, especially when running together with other accelerators60

that cause contention at some stage on their path towards shared memories (such as buses61

and memory controllers).62

FPGA-based heterogeneous platforms represent very promising solutions to cope with63

these issues. As a matter of fact, they allow deploying energy-efficient, yet powerful HAs64

on the FPGA fabric that have a very regular clock-level behavior [3, 21]. FPGA-based HAs65

are typically implemented as state machines and issue a fairly predictable pattern of bus66

transactions. As such, the execution times of HAs when running in isolation are characterized67

by extremely limited fluctuations, and are hence very predictable. The major phenomenon68

that harms the timing predictability of FPGA-based HAs that are statically programmed on69

the FPGA and access a shared memory, is the corresponding memory contention they can70

experience on the bus or at the memory controller.71

Nevertheless, differently from other platforms, FPGAs expose a fine-grained control of72

the bus infrastructure to designers, which are free to organize the bus hierarchy at their own73

choice in order to match timing constraints, as well as to deploy custom arbitration modules74

to dispatch memory transactions towards the memory controller [1]. At last, designers are75

even free to deploy custom on-chip memories on the FPGA fabric for which they can have76

full control on how contention is regulated [18]. Such strategies can be used to achieve a77

higher degree of predictability for the memory traffic.78

Focusing on most common approaches, FPGA designs for hardware acceleration in COTS79

SoCs typically consist of a set of accelerators that act as masters on the bus to access the80

main DRAM memory (off-chip) shared with the multiprocessor(s), e.g., see [27] [10] [33].81

Being the number of ports to access the shared memory limited, the typical solution consists82

in multiplexing multiple masters on the same port by means of interconnects, which are83

usually available in the standard library of devices offered by FPGA vendors. Interconnects84

can also be hierarchically connected to form a hierarchical bus network: an example of85

F. Restuccia et al. 13:3

such networks comprising three HAs (τ1, τ2, and τ3) and two interconnects (I1 and I2) is86

depicted in Figure 1. Clearly, the topology of the bus hierarchy has a primary impact on how87

the access to memory is regulated, and hence on the corresponding delays due to memory88

contention. For instance, assuming that both I1 and I2 in Figure 1 implement round-robin89

arbitration with the granularity of one memory transaction per HA per round-robin cycle,90

it is possible to note that τ1 is privileged in accessing the memory. Indeed, once every two91

round-robin cycles I1 could grant one memory transaction issued by τ1, while in the other92

cycle transactions from τ2 and τ3 are alternated. At a very high level, τ1 have a privileged93

access to the memory controller.94

It is crucial to note that, in FPGA SoC, the operating frequency of the FPGA fabric95

is much lower than the on-chip memory controller (which is realized in hard silicon, i.e.,96

placed outside the FPGA) and the memory itself. For instance, in a Zynq-7000 by Xilinx,97

the default operating frequency of the FPGA is 100MHz, while the Processing System, which98

includes the memory controller, runs at 650MHz. As such, the delays introduced by a bus99

infrastructure realized on the FPGA by means of interconnects are typically of the same100

order of magnitude of the ones required to access the memory, and hence do not consist of a101

negligible contribution to the response times of HAs.102

Contribution. This paper studies bus contention and proposes a worst-case response103

time analysis for HAs deployed on FPGA-based SoCs. The AXI open bus standard [2] is104

considered because of the following reasons: (i) AXI is the de-facto standard communication105

interface for COTS FPGA SoC platforms [31] [13], (ii) AXI is widely supported by well-106

established FPGA design tools such as Xilinx Vivado [30] and Intel Quartus Prime [14], (iii)107

many commercial (closed-source) HAs use AXI interfaces. To begin, a fine-grained model for108

the AXI bus and AXI interconnects is presented (Sec. 3). The model accounts for several109

kinds of delays experienced by bus transactions and the behavior of commercial interconnects.110

Then, the paper presents a response-time analysis to bound the worst-case response time111

of recurrent HAs that access a shared memory via an arbitrary hierarchical network of112

interconnects (Sec. 4). Finally, three experimental evaluations (Sec. 5) are reported. First,113

a set of experimental results obtained from a state-of-the-art FPGA SoC by Xilinx are114

presented to validate the model proposed in this paper. Second, a case study executed on115

the same platform is discussed by matching measurements extracted from its execution with116

the bounds provided by the proposed analysis. Third, experimental results obtained with117

synthetic workload are presented.118

2 Essential Background119

A typical FPGA SoC architecture combines a Processing System (PS), which includes one or120

more processors, with a FPGA subsystem in a single device. Both subsystems access a shared121

DRAM controller through which they can access a DRAM memory. Figure 2 illustrates a122

typical SoC FPGA architecture in which two interfaces allow the communication between123

the FPGA subsystem and the processing system (PS). The de-facto standard interface124

for interconnections is the ARM Advanced Microcontroller Bus Architecture Advanced125

eXtensible Interface (AMBA AXI) [2].126

The AXI bus. The AMBA AXI standard defines a master-slave interface allowing127

simultaneous, bi-directional data exchange. An AXI interface (also referred to as port)128

is composed of five independent channels: Address Read (AR channel), Address Write129

(AW channel), Data Read (R channel), Data Write (W channel), and Write Response (B130

channel). This paper considers that data are transmitted back to the master on the R131

ECRTS 2020

13:4 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

DRAM
Controller

FPGA-PS
Interface

PS Interconnect

APU

ARM CoresARM Cores

I/O peripherals

Custom logic

FPGA PS

PS-FPGA
Interface

Figure 2 Simplified architecture of a SoC FPGA platform.

channel (for read data) or provided to the W channel (for write data) in the same order with132

which the corresponding requests have been routed to the address channel. In other words,133

address requests are served in-order, that is, the access to the output data channels R and W134

depends on the order in which requests are routed to the address channels. Even though this135

assumption does not directly derive from the standard, it is a popular design choice reported136

in the documentation of many commercial devices such as those produced by Xilinx [28,31].137

The AXI standard allows masters to issue multiple pending requests. This means that,138

in principle, each master is allowed to issue an unlimited number of outstanding transactions139

(typically limited by the designers of devices connected to the bus). AXI offers two methods140

for transmitting data between masters and slaves: single transactions or transaction bursts.141

When operating in burst mode, the requesting device can issue a single address request to142

fetch/write up to 256 data words per request.143

AXI ports. As it is illustrated in Figure 2, The communication between the FPGA144

and the PS is allowed by two different types of interfaces: the PS-FPGA interface and the145

FPGA-PS interface. The first one offers a set of slave interfaces to the FPGA and is used by146

the processors to control the hardware devices or access data in the FPGA. In a dual manner,147

the second one offers a set of slave interfaces to the PS and is used by devices deployed on148

the FPGA (e.g., hardware accelerators) to access the central DRAM memory or the on-chip149

memory in the PS. Being the number of available ports in the FPGA-PS interface limited,150

scenarios in which a port is contended by multiple master devices deployed on the FPGA are151

common in realistic designs. To cope with the case in which bus contention is maximized,152

this paper is focused on the arbitration required to solve conflicts of requests that target153

the same output port. Nevertheless, the results of this work can also be easily extended to154

scenarios in which multiple ports are used.155

AXI interconnects. Whenever multiple AXI masters want to access the same output156

port, an AXI interconnect is in charge of arbitrating conflicting requests to the same port.157

The access to each channel of the output AXI port is managed by a multiplexer. Each158

multiplexer is controlled by an arbiter that decides, at each time, which slave channel is159

granted to the master channel. The arbiters are completely independent from each other.160

Each port (slave or master) of the AXI interconnect is buffered with a FIFO queue (which is161

typically quite large). For instance, in FPGA SoCs by Xilinx, two implementations of the162

interconnect are available: AXI Interconnect (deprecated in the latest platforms) and AXI163

SmartConnect. Both the implementations are multiplexer-based and therefore comply with164

the specification described above.165

Arbitration policy. In this work, each arbiter is assumed to implement a round-robin166

policy. To the best of our records, round-robin is the most common solution in commercial167

off-the-shelf platforms. For instance, the AXI arbiters for FPGA SoCs by Xilinx implement168

round-robin (both the AXI interconnect and the AXI SmartConnect, see [35], p.6 and [32],169

F. Restuccia et al. 13:5

p.7). Note that fixed-priority arbitration has been discontinued in the AXI SmartConnect.170

Furthermore, even though the AXI standard defines QoS signals to regulate the quality-of-171

service of transactions, these signals are ignored by state-of-the-art interconnects (see [35], p.172

8 and [32], p. 9).173

Hierarchical interconnection. State-of-the-art interconnects dispose of a limited174

amount of slave ports. However, AXI interconnects can even be connected between each175

other, creating a network tree of interconnects with multiple hierarchical levels. In such176

a structure, each inner node of the tree represents an interconnect, each leaf represents a177

master device, and the root node represents the sole interconnect connected to the slave port178

of the FPGA-PS interface (i.e., the sink of all the traffic towards the FPGA-PS interface).179

Thanks to such hierarchical structures, it is possible to connect as many devices as desired180

to a single AXI port of the FPGA-PS interface (provided that there is enough area on the181

FPGA to deploy all the modules). Clearly, the address requests (both read and write) and182

the data issued by a device connected at some interconnect I in a hierarchical network must183

traverse all the interconnects encountered on the path from I to the FPGA-PS. In a dual184

manner, write responses and the data read by the same device must traverse the same path185

in reverse order, i.e., from the FPGA-PS interface to I. Note that, due to the intrinsic186

parallelism of the AXI bus, and the fact that each interconnect is an independent engine that187

executes in parallel with the others, a network of interconnects exhibits a pipelined behavior.188

Read transactions. A general read transaction issued by a master device τ starts with189

the issue of the address request Raddr on the AR channel of its master port Mτ , which is190

sampled by the corresponding slave port of the AXI interconnect to which τ is directly191

connected. Raddr is then routed through a network of one or multiple AXI interconnects192

until reaching the FPGA-PS interface (and then the memory controller). After a service193

delay related to the logic in the Processing System, the memory controller, and the DRAM194

memory, the requested data Rdata become available on the R channel of the FPGA-PS195

interface. Hence, data are routed back to τ through the same interconnect network traversed196

by Raddr, but in reverse order. Once available at Mτ , data Rdata are sampled by τ , hence197

completing the read transaction.198

Write transactions. A general write transaction issued by a master device τ starts199

with the issue of the address request Waddr on the AW channel of its master port Mτ , which200

is sampled by the corresponding slave port of the AXI interconnect I to which τ is directly201

connected. Waddr is then routed through a network of one or multiple AXI interconnects until202

reaching the FPGA-PS interface (and eventually the memory controller). In parallel, once203

Waddr is granted by I, the corresponding data Wdata are provided by τ to the W channel of204

its master port and flow through the path reaching the FPGA-PS interface following Waddr205

(i.e., reaching the Processing System and then the memory controller). After a service delay206

(introduced by the PS, the memory controller, and the DRAM memory), the Processing207

System provides a write response Wresp on the B channel of the FPGA-PS interface to208

acknowledge τ . Wresp is routed from the FPGA-PS interface through the same network of209

interconnects traversed by Waddr and Wdata, but in reverse order. Once available at Mτ ,210

Wresp is sampled by τ and the write transaction is completed.211

3 System model212

This section focuses on modeling the components of a system comprising a set of AXI-based213

hardware accelerators, deployed on the FPGA fabric of a FPGA-SoC platform and connected214

to a shared DRAM memory on the Processing System through the FPGA-PS interface.215

ECRTS 2020

13:6 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

3.1 Hardware task model216

Each hardware accelerator implements a specific functionality; therefore, from now on, they217

are referred to as hardware tasks (HW-tasks for short). Each HW-task includes an AXI218

memory-mapped master interface through which it can autonomously load and store data219

from the DRAM memory. Each HW-task τi is periodically executed every Ti clock cycles,220

hence generating an infinite sequence of periodic instances referred to as jobs. Each job of τi221

(i) issues at most NR
i read transactions and NW

i write transactions, both with a fixed burst222

size B; (ii) issues at most φi outstanding transactions per type, i.e., it can have at most φi223

pending read transactions and φi pending write transactions at any time; (iii) computes for224

at most Ci clock cycles; and (iv) has a relative deadline equal to Ti (each job must complete225

before the release of the next one). Read transactions and write transactions are supposed226

to be independent. Furthermore, note that read and write transactions are routed through227

independent AXI channels, that is, they do not influence each other when the corresponding228

data is transmitted.229

It is important to observe that no specific memory access pattern for the HW-tasks is230

assumed, i.e., the requests for memory transactions can be arbitrarily distributed over time231

across the jobs. This assumption makes the results presented in this paper more general232

and robust with respect to the HW-tasks’ behavior. However, at the same time, it limits233

the number of timing properties related to bus pipelining that can be used at the stage of234

analysis as, in the worst-case, transactions can be sufficiently spread far apart such that235

HW-tasks do not fully exploit pipelining.236

3.2 AXI interconnect model237

The system can comprise several interconnects connected in a hierarchical fashion. Each238

interconnect Ij has Sj slave ports and one master port. As each interconnect has a single239

master port, the incoming traffic (at the master port and) directed to the slave ports does not240

experience any conflict. On the other hand, address requests of the same type (read or write)241

issued by different HW-tasks can experience conflicts, which are managed by independent,242

per-channel, arbiters (see Section 2). The granularity of the round-robin arbiters is φI , i.e.,243

at each round-robin cycle the master port grants at most φI read requests (resp., write244

requests) to each HW-task. To ease the notation in the analysis presented in Section 4, it is245

assumed that all the interconnects in the system share the same parameter φI (the analysis246

can be easily extended to the case of different per-interconnect round-robin granularities).247

Finally, it is assumed that the FIFO queues associated with the ports of the interconnects248

are large enough to never saturate during the execution1. Each interconnect introduces a249

propagation delay in address and data propagation. Specifically, we denote by daddrInt the250

latency introduced in the propagation of address requests, by ddataInt the latency introduced251

in the propagation of a word of data (read or write), and by dbrespInt the latency introduced252

in the propagation of a write response. These propagation delays can be derived from the253

specifications in the official documentation of the considered interconnect (when available) or254

by employing experimental profiling. The AXI standard defines hold times as the numbers of255

clock cycles that the address or data must be kept on the corresponding AXI channel while256

both valid and ready signals are asserted. Address and data hold times are modeled with the257

1 Note that ensuring this condition is an orthogonal problem to timing analysis. That is, it is an a-priori
requirement that can be verified independently of the timing performance of the system.

F. Restuccia et al. 13:7

following terms: taddr denotes the hold time of an address request, tdata denotes the hold258

time of a word of data, and tbresp denotes the hold time of a write response.259

3.3 Processing System and Memory Controller model260

The DRAM memory controller is a global system resource shared among all HW-tasks. Being261

part of the Processing System, it is accessed from the FPGA fabric through the FPGA-PS262

interface. Each port of the FPGA-PS interface can be configured to map a contiguous range263

of addresses, which is referred to as a memory region. As typical for hardware acceleration,264

it is assumed that each HW-task loads and stores data from a private memory buffer. To265

address the case in which the maximum contention is experienced, we focus on the case in266

which all the memory buffers are allocated in the same memory region and accessed through267

a single AXI port at the FPGA-PS interference. Note that the results of this work can also268

be extended to the case in which the HW-tasks access the DRAM memory via multiple ports269

at the FPGA-PS interface: this case is left as future work due to lack of space.270

The DRAM memory controller included in the Processing System can be conceptually271

divided into two main blocks: (i) the AXI interface block and (ii) the DDR physical core272

block. The AXI interface block is in charge of receiving and arbitrating the incoming AXI273

transactions from the AXI slave ports, while the DDR physical core schedules and issues the274

corresponding read and write requests to the controller’s physical layer, which eventually275

drives the DRAM memory by generating control and data signals.276

Typically, the internal architecture of the DDR physical core includes multi-level queues277

structures, managed with dedicated scheduling policies that reorder transactions to maximize278

throughput and efficiency [11]. On many commercial platforms, the internals of the DDR279

physical core block, including the scheduling policies and the queues structure, are not280

publicly disclosed or are not well documented. For this reason, a fine-grained modeling of the281

DDR physical core block goes beyond the scope of this paper and it is not addressed here.282

Rather, being our focus on the conflicts at the interconnects, a coarse-grained modeling of283

the DRAM-related delays is adopted here: if the internals of the DDR controller are known,284

then our results can be refined (e.g., by adopting the results from [11]).285

From the perspective of the FPGA-PS interface, address requests directed to the DDR286

memory controller are served in order (see [28], p. 297, and [31], p. 440). This means287

that the order of the data read responses on the data read channel follows the order of the288

address read requests granted at the address read channel. In the same way, write address289

requests are served and acknowledged in order. These properties are guaranteed by the290

DRAM Memory Controller AXI Interface block. Note that this feature is independent of291

the internal scheduling policies of the DDR Physical core block, which may include internal292

reordering, hence affecting the worst-case service time of a request.293

Following these considerations, this work assumes that the Processing System and the294

memory controller introduce the following (cumulative) delays:295

dreadPS is the maximum time elapsed between the sample of a read transaction at the296

FPGA-PS interface and the availability of the first word of the corresponding data at the297

FPGA-PS interface; and298

dwritePS is the maximum time elapsed between the sample of the last word of data of a299

write transaction at the FPGA-PS interface and the availability of the corresponding300

write response at the FPGA-PS interface.301

Note that, by definition, these delays include the propagation times introduced by the internal302

logic of the Processing System and the overall service time at the memory controller. These303

parameters depend on the internals of the Processing System and can be quantified using304

ECRTS 2020

13:8 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

the documentation provided by the SoC producer (when available) or through experimental305

profiling (and over-provisioning).306

3.4 Overall architecture307

Formally, the system is composed of a set Γ = {τ1, . . . , τn} of n HW-tasks, a set H =308

{I1, . . . , Is} of s AXI interconnects, and a memory controllerM included in the Processing309

System. The HW-tasks in Γ are interconnected through a network of the AXI Interconnects310

in the set H that is organized as follows. Each slave port of the AXI interconnects can be311

directly connected to the master port of a HW-task or, in a hierarchical manner, to the312

master port of another interconnect. The set of HW-tasks directly connected to interconnect313

Ij is denoted by Γ(Ij). Similarly, the set of interconnects directly connected to the slave314

ports of Ij (i.e., in input) is denoted by H(Ij). Furthermore, the set of HW-tasks whose315

transactions traverse Ij is denoted by Γ+(Ij), i.e., those that are directly or transitively316

connected to Ij . The interconnect at the bottom of this hierarchy has its master port directly317

connected to the slave port of the FPGA-PS interface (i.e., to reachM). All the transactions318

issued by the HW-tasks must pass through this latter interconnect, which is referred to as319

the root interconnect Iroot. Note that, as interconnects have a single master port, the master320

port of each interconnect Ij 6= Iroot is connected to a slave port of exactly one interconnect,321

which is denoted by β(Ij). For consistency, β(Iroot) = ∅. The topology of the whole system322

resembles a tree where Iroot is the root node, the HW-tasks in Γ are the leaves, and the323

interconnects in H \ {Iroot} are the intermediate nodes (see Figure 3(b)). An interconnect I324

is said to be placed at the hierarchical level LI if a HW-task directly connected to I has to325

traverse LI interconnects before reaching the FPGA-PS interface (Iroot is at first level, i.e.,326

LIroot = 1). The main symbols used in the paper are summarized in Table 1.327

Table 1 Main symbols used throughout the paper.

Ni Number of transactions issued by τi (can have superscript R or W)
φi Maximum number of outstanding transactions for τi

φI Max. number of trans. granted per round-robin cycle by interconnects
B Burst size of a transaction

taddr Hold time for a single address request on the bus
tdata Hold time for a single data word on the bus
tbresp Hold time for a single write response on the bus
dread

PS Max. latency introduced by the PS on a read transaction
dwrite

PS Max. latency introduced by the PS on a write transaction
ddata

Int Propagation latency of data word through an interconnect
daddr

Int Propagation latency of address request through an interconnect
dbresp

Int Propagation latency of write response through an interconnect
Γ(Ii) Set of the HW-task directly connected to Ij

H(Ij) Set of the interconnects directly connected to slave ports of Ij

β(Ij) Interconnect connected to the master port of Ij

Γ+(Ij) Set of HW-tasks whose transactions pass through Ij

4 Response-time analysis328

This section proposes an analysis to bound the response times of HW-tasks connected to an329

arbitrary hierarchical network of interconnects as presented in the previous section.330

The analysis is structured in incremental lemmas. First, Section 4.1 proposes a bound331

on the worst-case response time for a single transaction assuming no contention at the332

interconnects. Both read and write transactions are considered. Subsequently, Section 4.2333

and Section 4.3 propose two different methods to bound the number of interfering transactions334

F. Restuccia et al. 13:9

that affect a job of a HW-task under analysis. These two bounds are then combined in335

Section 4.4. Finally, Section 4.5 presents an iterative algorithm that uses the results of the336

previous sections to bound the maximum response time of a HW-task of interest.337

As the AXI standard defines the same methods to handle both read and write address338

requests, the bounds derived in this section hold for both read and write transactions. For339

this reason, in order to keep a compact notation, this section uses just the symbol Ni instead340

of NR
i or NW

i to denote the number of transactions issued by τi.341

4.1 No contention at the interconnects342

This first lemma establishes an upper bound on the response time of a single memory343

transaction issued by an arbitrary HW-task under analysis τi, connected to an interconnect344

I placed at an arbitrary hierarchical level L, assuming no bus contention from the other345

HW-tasks in the system2.346

Remember that AXI manages read and write transactions on independent channels: as347

such, they are separately considered by the following two lemmas.348

I Lemma 1. Let τi ∈ {Γ} be the HW-task under analysis, connected to an interconnect349

Ij ∈ H placed at the hierarchical level L. If all the HW-tasks in Γ \ {τi} are not active, i.e.,350

they do not interfere with τi, the worst-case response time for a single read transaction R351

issued by τi is bounded by352

dNoCont,read(Ij) = L · (taddr + daddr
Int) + dread

PS + L · ddata
Int +B · tdata.353

Proof. Following Section 2, a read transaction R begins with the issue of the address read354

request Raddr, which is then sampled by Ij . The address time is constant and equal to taddr.355

The latency cost for Raddr to traverse the interconnect Ij is bounded by daddrInt . At this point,356

Raddr goes through the interconnect network tree, traversing the remaining L−1 interconnects.357

As for Ij , each of them introduces a latency bounded by taddr + daddrInt . Therefore, Raddr is358

available at the master port of the root interconnect Iroot after an overall propagation delay359

of L · (taddr + daddrInt), where it is sampled from the slave port of the FPGA-PS interface. The360

Processing System routes Raddr to the Memory Controller and provides to the FPGA-PS361

interface the first word of data after at most dreadPS time units (see Section 3.3). At this point,362

the data words Rdata corresponding to R traverse the L levels of the interconnect tree, in363

reverse order with respect to Raddr, until reaching τi. Since data words are sequentially364

propagated on the interconnect tree, the propagation latency in the data phase is paid365

just once on all the burst of data due to pipelining. Hence, considering that tdata is the366

data time (for each word) and that ddataInt is the latency introduced by each interconnect on367

data words, the overall latency paid to propagate the data burst on the interconnect tree is368

L · (tdata + ddataInt). The lemma following by summing up these contributions. J369

I Lemma 2. Under the same hypotheses of Lemma 1, the response time for a write transaction370

W issued by HW-task τi is bounded by371

dNoCont,write(Ij) = L · (taddr + max{daddr
Int , ddata

Int }) +B · tdata + dwrite
PS + L · (tbresp + dbresp

Int).372

2 It is worth noting that this contention-free bound does not properly correspond to the case in which the
transaction under analysis is served in isolation, but rather just to the case in which no contention is
experienced at the interconnects. This is because, for the reasons discussed in Section 3.3, the delay
related to the Processing System and the memory controller already copes with conditions of maximum
contention.

ECRTS 2020

13:10 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

Proof. The write transaction W begins with the issue of the address write request Waddr by373

τi, which lasts taddr time units . Following the AXI standard, once Waddr is granted at the374

interconnect Ij , the HW-task τi is granted to provide the corresponding data words Wdata on375

the write channel. Waddr and Wdata are propagated through the interconnect network tree376

on the corresponding (parallel) channels, until reaching the FPGA-PS interface. Data can be377

propagated only after the corresponding address; hence, the latency experienced by Waddr378

and Wdata to traverse an interconnect is no larger than the maximum between daddrInt and379

ddataInt . Overall, considering all the interconnects up to the FPGA-PS interface, the latency380

introduced on Waddr and the entire burst Wdata is given by L · (taddr + max{daddrInt , ddataInt }),381

which must be summed to the time to transmit the data themselves, i.e., B · tdata. At this382

point, the Processing System routes Waddr and Wdata to the memory controller. Following383

Section 3.3, after at most dwritePS time units the write response Wresp is available at the FPGA-384

PS interface. Finally, Wresp is propagated through the interconnect tree, until reaching385

τi, experiencing a latency of L · (tbresp + dbrespInt). The lemma follows by summing up these386

contributions. J387

It is worth noting that the bounds provided by the two above lemmas just depend on388

the hierarchical level L (identified by the interconnect Ij) at which a HW-task is directly389

connected.390

4.2 First bound on the number of interfering transactions391

392

We proceed in an incremental manner by starting from the simple case in which contention393

at a single interconnect is considered, say Iroot for simplicity (see Figure 3(a)). The following394

lemma establishes a bound on the number of interfering transactions (issued by other395

HW-tasks) that a transaction issued by the HW-task under analysis can suffer.396

I Lemma 3. Consider the interconnect Iroot and let τi ∈ Γ(Iroot) be the HW-task under397

analysis. In the worst-case, each address request for transaction issued by τi grants the access398

to the master port of Iroot after at most399 ∑
τj∈Γ(Iroot)\{τi}

min(φj , φI) (1)400

transactions.401

Proof. As mentioned in Section 3, the interconnects implement a round robin arbitration to402

solve conflicts on address requests issued by different HW-tasks. In the worst-case scenario,403

τi is the last HW-task served in the round robin arbitration cycle, i.e., after all the other404

HW-tasks in Γ(Iroot). From the model in Section 3.1, each HW-task τj can have at most405

φj pending transactions. On the other hand, from the model in Section 3.2, the maximum406

number of transactions granted to each HW-task for each round robin cycle by interconnects is407

equal to φI . For these reasons, Iroot grants at most min(φj , φI) for each interfering HW-task408

τj ∈ Γ \ {τi} per round-robin cycle. The lemma follows by summing up the contribution of409

each interfering HW-tasks. J410

With the above lemma in place, we can proceed to bound the number of interfering411

requests under a general hierarchical network of interconnects. We note that a HW-task412

τi can incur two kinds of interference: (i) direct interference, which is the one that τi’s413

transactions experience at the interconnect to which τi is directly connected to; and (ii)414

F. Restuccia et al. 13:11

indirect interference, which is the one that τi’s transactions, or other transactions that415

generate direct interference to τi, experience in other interconnects at shallower hierarchical416

levels on their way towards the FPGA-PS interface. Further details on both kinds of417

interference are provided in the following.418

Direct interference. The same reasoning used for Lemma 3 can be extended when419

considering a hierarchical network of interconnects such as the one illustrated in Figure 3(b).420

Note that, in such a case, a HW-task can also experience contention at an interconnect due421

to transactions coming from other interconnects placed at higher hierarchical levels. For422

instance, in Figure 3(b), τi (directly connected to Iroot) can incur in a contention due to a423

transaction issued by τz, which is directly connected to I1.424

���1

�����

��

�����

��

��

�1

�� ��

��

(a) (b)

Figure 3 (a) A set of HW-tasks directly connected to Iroot. (b) Example hierarchical network
of interconnects and HW-tasks with two hierarchical levels. Each circle corresponds to a HW-task
(only the ones mentioned in the text are assigned a name).

I Lemma 4. Consider an arbitrary interconnect Ij. Also, let τi ∈ Γ(Ij) be the HW-task425

under analysis. In the worst-case, each address request for transaction issued by τi grants the426

access to the master port of Ij after at most427

Y direct(τi, Ij) =
∑

τj∈Γ(Ij)\{τi}

min(φj , φI) + |H(Ij)| × φI (2)428

transactions.429

Proof. Following the model of Section 3.2, at each round-robin cycle Ij grants at most φI430

transactions per its slave port. Clearly, this consideration is true also when an interconnect431

Ih, placed at a higher hierarchical level, is connected to a slave port of Ij . Hence, from the432

perspective of τi, any bus traffic coming from Ih can interfere by at most φI transactions per433

round-robin cycle, i.e., independently of the number of HW-tasks or interconnects connected434

to Ih. Hence, the interconnects directly connected to Ij interfere with at most |H(Ij)| × φI435

transactions. The first term of Eq. (2) follows due to the same considerations done for436

Lemma 3. Hence the lemma follows. J437

Indirect interference. While propagated through a series of interconnects on their way438

towards the FPGA-PS interface, the transactions issued by the HW-task under analysis can439

also incur contention at shallower hierarchical levels. For instance, the transactions issued by440

τz in Figure 3(b) can incur contention at Iroot, e.g., due to other transactions issued by τi441

or τx. Furthermore, note that indirect interference can also affect other transactions that442

ECRTS 2020

13:12 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

generate direct interference to the HW-task under analysis, hence leading to a transitive443

interference phenomenon. For instance, still considering Figure 3(b), a transaction issued by444

τk that delays τz in I1 can experience contention at Iroot due to a transaction issued by τx,445

hence in turn delaying τz too: in this case, we say that a transaction of τx transitively delays446

τz.447

In the following, a set of lemmas are presented to account for indirect interference. We448

proceed in an incremental manner by starting from the consideration of just two adjacent449

hierarchical levels.450

I Lemma 5. Consider an arbitrary interconnect Ij at hierarchical level L ≥ 2 that issues ∆451

transactions in output to its master port. In the worst-case scenario, the ∆ transactions can452

be indirectly interfered by453

Y indirect
2-level (∆, Ij) = ∆×

 ∑
τi∈Γ(β(Ij))

min(φi, φI) + |H(β(Ij)) \ {Ij}| × φI

 (3)454

transactions at β(Ij) (i.e., at hierarchical level L− 1).455

Proof. Consider one of the ∆ transactions, say r. As addressed by Lemma 4, r can incur456

direct interference at the (only) interconnect β(Ij) directly connected to Ij at hierarchical457

level L− 1. As such, the interference at β(Ij) can be bounded as for Lemma 4. The only458

differences here are that (i) as r comes from another interconnect Ij , it means that it has459

not been originated by a HW-task connected to β(Ij) and hence no HW-task has to be460

excluded from those that generate interfering transactions (first term in the sum of Eq. (2));461

and (ii) Ij has to be excluded from the interconnects that generate interfering transactions462

as it is the one from which the interfered transaction is coming from (second term in the463

sum Eq. (2)). Note that the second term in the multiplication of Eq. (3) serves this purpose.464

The lemma follows by accounting for this bound for each of the ∆ transactions. J465

With the above lemma in place, it is possible to generalize the bound of indirect interference466

to an arbitrary hierarchical structure with L > 2 levels.467

I Lemma 6. Let τz be the HW-task under analysis directly connected to interconnect Ij at
the hierarchical level L ≥ 2. The total number of transactions that interfere with those issued
by τz up to the l-th hierarchical level, with l ∈ [1, L], is bounded by Y lz , which is recursively
defined as follows for l < L:{

Y lz = Y indirect
2-level (Nz + Y l+1

z , I l+1) + Y l+1
z

I l = β(I l+1),

and as follows for l = L (base case):{
Y Lz = Nz × Y direct(τz, Ij)
IL = Ij .

Proof. The proof is by induction on the hierarchical level l ∈ [1, L]. We also show that468

I l is the interconnect traversed by τz’s transactions at the l-th hierarchical level. Base469

case: At hierarchical level L, τz is directly connected to Ij : hence, IL = Ij and τz suffers470

direct interference only. Therefore, the number of interfering transactions up to the L-th471

hierarchical level is bounded by accounting for the bound provided by Lemma 4 for each472

of the Nz transactions issued by τz. Inductive case: We proceed by assuming that Y l+1
z473

F. Restuccia et al. 13:13

yields a safe bound for the number of interfering transactions up to the (l+ 1)-th hierarchical474

level and that I l+1 is the interconnect traversed by τz’s transactions at the same level. Now,475

we show that Y lz provides a safe bound for the l-th hierarchical level. First, note that by476

definition, I l = β(I l+1) denotes the (only) interconnect across which τz’s transactions can477

pass at the l-th hierarchical level. Second, observe that the transactions that are received478

in input by I l and that affect τz’s execution are (i) those issued by τz itself and (ii) those479

that generated interference to τz at the interconnects traversed at higher hierarchical levels.480

The former are no more than Nz (by the model), while the latter are Y l+1
z (by inductive481

assumption). Such requests are coming from I l+1 and can incur indirect interference at482

I l, which can be bounded by Lemma 3 as Y indirect
2-level (Nz + Y l+1

z , I l+1). To bound the overall483

number of interfering requests up to the l-th hierarchical level, it then remains to account484

for all the (direct and indirect) interference collected at the higher levels, which is given by485

Y l+1
z (by inductive assumption). Hence the lemma follows. J486

Thanks to the above lemma, the total number of transactions that interfere with τz487

(under analysis) across the entire hierarchical network of interconnects can be bounded by488

looking at the interference collected up to the root interconnect, i.e., Y 1
z .489

4.3 Second bound on the number of interfering transactions490

A different approach can be used to derive an alternative bound on the number of interfering491

transactions by leveraging the observation that the HW-tasks are periodically executed, and492

hence can only generate a limited number of transactions in a given time window.493

I Lemma 7. Let τi be the HW-task under analysis and let I l the interconnect traversed494

by τi’s transactions at the l-th hierarchical level. In a schedulable system, the number of495

transactions that can interfere with τi up to I l is bounded by496

Y time(τi, I l) =
∑

τj∈Γ+(Il)\{τi}

ηi,j , where ηi,j =
⌈
Ti + Tj
Tj

⌉
×Nj .497

Proof. Consider HW-task τi and assume all HW-tasks never execute after their deadlines3.498

Without loss of generality, suppose that a period instance of τi begins at time 0. To interfere499

with τi, a job of another HW-task τj must be released after time −Tj , otherwise, it would be500

completed when τi is released. In the same way, an interfering job of τj must be released501

before time Ti, otherwise τi would already be completed and hence no contention can be502

generated. As a result, the time window of interest to study the contention generated503

by τj to τi is (−Tj , Ti] with length Tj + Ti. In this time window there can be at most504

d(Ti + Tj)/Tje jobs of τj . As each job of τj can issue at most Nj transactions, there are at505

most d(Ti + Tj)/Tje ×Nj transactions that can interfere with τi. The number of interfering506

transactions is hence bounded by the sum of such contributions from each HW-task that can507

interfere with τi. Note that only the HW-tasks whose transactions traverse I l can interfere508

at I l: according to the system model, the set of such tasks is Γ+(I l). Clearly, τi has to be509

excluded from Γ+(I l) as it cannot interfere with itself. Hence the lemma follows. J510

3 Assuming a schedulable system to bound response times is a typical approach when circular dependencies
are present in the response-time equations. The interested reader is invited to refer to [20] (Sec. VI.C)
for an explanation about why this is a sound approach to bound response times.

ECRTS 2020

13:14 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

4.4 Combining the two bounds511

This lemma combines the bounds proposed in Section 4.2 and Section 4.3 to introduce a512

less pessimistic bound on the overall number of interfering transactions for an arbitrary513

interconnect architecture tree and HW-task set. The proposed formula is iterative on514

the interconnect levels. Iterating the formula for each interconnect in the path, from the515

interconnect to which the HW-task under analysis is directly connected to Iroot, it is possible516

to find the overall number of interfering transactions a request under analysis issued by the517

HW-task under analysis suffers.518

I Lemma 8. In a schedulable system, the same claim of Lemma 6 still holds if Y lz is
recursively defined as follows for l < L:{

Y lz = min
(
Y indirect

2-level (Nz + Y l+1
z , I l+1) + Y l+1

z , Y time(τz, I l)
)

I l = β(I l+1),

and as follows for l = L (base case):{
Y Lz = min

(
Nz × Idirect(τz, Ij), Y time(τz, IL)

)
IL = Ij .

Proof. The lemma follows as for Lemma 6 after recalling that both Lemma 6 and Lemma 7519

provide a safe bound on the number of transactions that can interfere with τz. Hence, the520

minimum of the two bounds is still a safe bound. J521

4.5 Response-time analysis algorithm522

Leveraging the results of the previous sections, this section presents an algorithm to bound523

the worst-case response time of HW-tasks connected at arbitrary hierarchical levels. While524

the lemmas presented in the previous sections allow bounding the number of interfering525

transactions, this section is concerned with assigning a contention cost to them in order to526

obtain the corresponding temporal interference.527

To begin, note that the contention cost associated to each interfering transaction is not528

constant: indeed, following the model of Section 3, transactions experience a propagation529

delay each time they traverse an interconnect. Hence, a transaction that interferes at a530

high hierarchical level generates more delay than another one that interferes at a shallower531

hierarchical level.532

Clearly, given a HW-task τz under analysis, a safe bound can be obtained by first com-533

puting Y 1
z from Lemma 8, which provides a bound on the number of interfering transactions534

across the whole hierarchical network of interconnects (i.e., up to Iroot), and then multiplying535

Y 1
z by the largest contention cost, i.e., the one related to the highest hierarchical level.536

However, a more accurate bound can be devised if a level-specific contention cost is accounted537

for each transaction by detecting the highest hierarchical level at which it can interfere.538

This strategy is implemented by Algorithm 1. As mentioned at the beginning of Section 4,539

read and write transactions are independently managed by AXI and hence can be separately540

treated. For this reason, analogously as for the lemmas presented above, Algorithm 1 holds541

for both read and write transactions. To avoid duplicating its definition, the algorithm542

considers a contention cost dNoCont(Ij) that has to be replaced with dNoCont,read(Ij) or543

dNoCont,write(Ij) depending on the type of transactions that are studied. Consequently, the544

algorithm can be used to produce two outputs, which to keep a compatible notation are545

named dinterf,readz and dinterf,writez . In essence, the algorithm iterates over all hierarchical levels546

F. Restuccia et al. 13:15

Algorithm 1 Bounding the worst-case contention delay experienced by τz due to interfering
transactions across the whole hierarchical network of interconnects.

Input: HW-task τz ∈ Γ directly connected to Ij at level L
Output: dinterf

z

dinterf
z ← 0
IL = Ij

Nacc ← 0
for l = L,L− 1, . . . , 1 do

N l ← Y l
z from Lemma 8

dinterf
z ← dinterf

z + (N l −Nacc)× dNoCont(Il)
Il−1 = β(Il)
Nacc ← N l

end
return dinterf

z

interested by the HW-task τz under analysis (from l = L to l = 1) and copes with the number547

of interfering transactions collected up to each interconnect traversed by τz transactions. For548

each interconnect I l traversed at the l-th hierarchical level, the algorithm accounts for the549

contention delay of the interfering transactions that insist on I l but have not been accounted550

at a higher hierarchical level. As said before, this is because the contention cost dNoCont(Ij)551

is monotone with the hierarchical level (the higher the level the larger the cost).552

Thanks to this algorithm, it is finally possible to bound the worst-case response time of553

each HW-task, which is given by (i) its worst-case execution time, (ii) the time required to554

perform its read and write transactions, and (iii) the contention delay experienced by the555

latter. Hence, for each HW-task τz connected to interconnect Ij it is bounded by556

Rz = Cz +NR
z × dNoCont,read(Ij) +NW

z × dNoCont,write(Ij) + dinterf,readz + dinterf,writez . (4)557

A system is then schedulable if all HW-tasks meet their deadlines, i.e., if Rz ≤ Tz,∀τz ∈558

Γ.559

5 Experimental results560

This section first presents an experimental evaluation that has been conducted to validate561

the system model and assess the performance of the proposed analysis (Section 5.3). The562

experiments have been performed on two state-of-the-art Xilinx SoC FPGA platforms,563

namely the Zynq-7020 and the ZCU102 Zynq Ultrascale+. On both platforms, one of the564

high-performance (HP) ports of the Processing System is used in the FPGA-PS interface.565

Due to the lack of space, this section reports only the results of the experiments performed566

on Zynq Ultrascale+, since the Zynq-7000 exhibit comparable behavior. Finally, Section 5.4567

reports other experimental results obtained with the synthetic workload.568

5.1 Experimental setup569

In order to perform a clock-level accurate evaluation, two custom IPs have been developed:570

a programmable traffic generator IP, named greedy HW-task (GHW-task for short), and a571

multichannel timer IP. The purpose of the GHW-task IP is to generate, in a controllable572

way, cycle-accurate patterns of transactions compliant with the AXI standard with arbitrary573

offsets, spacing, burst size, and maximum number of outstanding transactions. GHW-tasks574

have been developed to cope with any possible bus behavior of HW-tasks, i.e., they can mimic575

ECRTS 2020

13:16 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

any kind of pattern of bus transactions issued by real-world, memory-intensive HW-tasks,576

and are hence useful to stress bus contention. On the other hand, the multichannel timer577

IP is used to perform clock-level accurate measurements of the GHW-tasks’ response times578

without perturbating their execution. Both IPs have been synthesized and implemented579

using Xilinx Vivado 2018.2. The FPGA clock is set to the default value (100 MHz), while580

the Processing System runs at the default clock speed of 1.2 GHz.581

5.2 Profiling582

This set of experiments aims at characterizing the propagation delay and the hold times,583

introduced in Section 3.2, for the AXI SmartConnect. To this end, a test setup composed of584

three GHW-tasks connected to the HP0 port in the FPGA-PS interface through an AXI585

SmartConnect has been realized. An Integrated Logic Analyzer (ILA) [34] module has been586

placed to monitor the AXI links that connect each GHW-task to the AXI SmartConnect and587

the AXI link that connects the AXI SmartConnect to the HP0 port. From the waveform588

track provided by the ILA, we measured the delays experienced by addresses and data while589

traversing the AXI SmartConnect (respectively, daddrInt and ddataInt , see Section 3.2) and the590

hold times taddr, tdata, and tbresp introduced in Section 3.2. The propagation delays (in clock591

cycles) observed on both hardware platforms are daddrInt = 12, ddataInt = 11, and dbrespInt = 9,592

while the hold times taddr, tdata, and tbresp have been observed to be all constant and equal593

to one clock cycle. We note that these constant delays may be larger in different settings (not594

considered in this work) in which HW-tasks are not always ready to sample data or write595

responses, or when the FIFO queues of the interconnect or the FPGA-PS interface saturate.596

As mentioned in Section 3.3, the cumulative delays dreadPS and dwritePS in accessing the DRAM597

memory from the FPGA-PS interface depend on several aspects and on the masters that insist598

on the memory controller. In our experiment we did not used memory-intensive workload599

executed on the processors and we experimentally estimated these delays as dreadPS = 50 clock600

cycles and dwritePS = 40 clock cycles.601

5.3 Model validation602

This experiment aims at validating the assumptions made in Section 4 to characterize the603

interference that a HW-task may suffer from other HW-tasks. We distinguish between the604

case of a flat network and the one of a hierarchical network.605

Interference in a flat network. The test setup used for these experiments comprises606

four GHW-tasks τ0, . . . , τ3 directly connected to a single interconnect I, which is in turn607

directly connected to the HP0 port exported by the FPGA-PS interface (e.g., likewise as in608

Fig. 3). The GHW-tasks’ activation and finishing times are measured using one of the custom609

timer IP deployed on the fabric. In this experiment, all the GHW-tasks are simultaneously610

activated (at the same clock cycle) by the Processing System using a single shared logic611

signal generated by an AXI GPIO module. With this experimental setup, all transactions612

issued by the GHW-tasks are subject to a single arbitration step performed by the AXI613

SmartConnect. The purpose of this evaluation is to experimentally evaluate the behavior of614

the AXI SmartConnect in the condition of contention. Furthermore, this experiment aims at615

experimentally measuring the maximum response time of a transaction in the worst-case616

scenario, i.e., when it loses an entire arbitration cycle, and comparing it with the proposed617

upper bound on the response time proposed in Section 4.5. To this end, all the GHW-tasks618

have been programmed to issue a single read (or write) request corresponding to a burst of619

sixteen 32-bit words. The experiment has been repeated for both read and write transactions.620

F. Restuccia et al. 13:17

Figure 4 reports the maximum response time measured among all the GHW-tasks, compared621

with the upper-bound proposed for the flat architecture considered in this experiment.622

0 50 100 150 200 250 300 350 400

Read

Write

190

160

364

316

Clock cyclesMaximum measured Analytical upper bounds

Figure 4 Maximum measured response times for read and write transactions compared with the
upper bound proposed in Section 4 (in clock cycles).

The results reported in Figure 4 confirm that in the worst-case scenario stimulated here,623

i.e., when a HW-task loses an entire arbitration cycle, the measured response times can be624

safely bounded by the upper bound proposed in Section 4.625

Interference in a hierarchical network. This set of experiments aims at validating626

the assumptions made in Section 4 to characterize the interference that a HW-task may suffer627

in a hierarchical network of Interconnects, due to the interfering HW-tasks in the system.628

The test setup used for this set of experiments comprises four GHW-tasks, τ0, . . . , τ3, and629

three interconnects, I0, I1, I2, organized as shown in Figure 5.630

In this configuration, the transaction requests issued by τ0 pass through a single step631

of arbitration occurring at interconnect I0, while the requests issued by τ1 traverse two632

arbitration steps occurring at I1 and then I0. Finally, the transaction requests issued by633

τ2 and τ3 pass through three arbitration steps at I2, I1, and I0. The GHW-tasks are634

programmed and released as for the previous experiment. The first subset of experiments635

aims at validating the direct interference that a HW-task may suffer due to other HW-tasks636

connected to the same interconnect and the indirect interference coming from HW-tasks637

connected to the lower-level Interconnects. In this experiment, τ3 is the HW-task under638

investigation. τ3 is programmed to issue a single request for transaction AR3 (read or write)639

while the interfering tasks, τ2, τ1, τ0, are programmed to issue eight consecutive interfering640

requests for transactions of the same type of AR3. In order to stimulate contention at the641

interconnects, τ1 is released with an offset equal to the interconnect propagation delay daddrInt ,642

while τ0 is released with a delay equal to 2daddrInt (offsets are with respect to the release time of643

AR3 by τ3). Each GHW-task-to-SmartConnect AXI link and the SmartConnect-to-HP0 AXI644

link are monitored by an ILA module deployed on the fabric and the HW-task’s response645

times are measured using the timer module.646

Figure 6 reports the ILA waveform track for read transactions acquired on the Zynq-7020647

SoC using Vivado 2018.2. At time 15, all GHW-tasks are simultaneously released. Soon648

afterwards, at time 16, τ3 issues its address request AR3. At the same time, τ2 starts issuing649

�0

�0

�1

�1

�2

�2

�3

Figure 5 Reference architecture for the model validation in hierarchical network.

ECRTS 2020

13:18 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

Figure 6 Sample waveform track from the Integrated Logic Analyzer on Zynq Ultrascale+.

its first transaction request, say AR0
2, causing a contention at the interconnect I2. The650

arbitration round is won by τ2. Hence I2 first propagates AR0
2 to I1 and then AR3. The651

interference at this level is compatible with the direct interference described in Lemma 4.652

After the propagation delay of the interconnect, I2 issues the requests at the corresponding653

slave port of I1. At the same instant, τ1 releases its first transaction request, AR0
1. Hence654

another contention happens, and the arbitration round at I1 is won by τ1. Consequently, I1655

forwards to I0 the transaction requests in the following order: AR0
1, AR

0
2, AR

1
1, AR3, hence656

according to round-robin arbitration as assumed in our model. Note also that the amount657

of interfering requests on AR3 at this level is compatible with the one found in Lemma 5658

for indirect interference. When I1 propagates this sequence of requests to I0, τ0 starts659

issuing its transaction requests, hence causing contention. τ0 wins the arbitration round,660

hence the transaction requests are issued by I0 to the HP0 port in the following order:661

AR0
0, AR

0
1, AR

1
0, AR

0
2, AR

3
0, AR

1
1, AR

3
0, AR3. Therefore, in the worst case, the request AR3662

issued by the GHW-task under investigation is interfered by seven requests coming from663

interfering GHW-tasks, as considered by direct and indirect interference phenomena captured664

by our analysis in Section 4. Since HP0 serves the incoming requests in order, τ3 receives its665

data response only after all the interfering requests have been served with data. At time 274,666

the first word of data corresponding to AR3 reaches τ3 and at time 292 the transaction is667

completed. It is worth observing that Figure 6 also confirms that the AXI SmartConnect is668

compatible with the model introduced in Section 3.2 and that is characterized by φI = 1.669

0 100 200 300 400 500 600 700 800 900

Read

Write

350

280

866

756

Clock cyclesMaximum measured Analytical upper bounds

Figure 7 Maximum measured response times for read and write transactions compared with the
upper bound proposed in Section 4 (in clock cycles).

Figure 7 compares the maximum measured response times for read/write transactions670

with the upper bounds computed by our analysis for the architecture under evaluation in671

this experiment. Also in this case, the results confirm that the delay incurred by transactions672

can be safely bounded.673

F. Restuccia et al. 13:19

5.4 Experiments with synthetic workload674

This experimental study has been carried out to evaluate the analysis presented in Section 4675

with synthetic workloads. We considered systems with N HW-tasks (τ1, . . . , τN) connected676

over a binary tree of M interconnects (I1, . . . , IM). Task sets have been generated as677

follows. First, the period Ti and computation time Ci of each HW-task τi have been678

generated using the fixedrandsum algorithm [7] (Ti between Tmin = 10ms and Tmax = 100ms,679

using log-normal distribution) by keeping the task set utilization equal to 1 as a reference680

value (note that the tasks’ execution times are not relevant for bus contention in this681

context). Second, the number of transactions have been generated by first computing682

the maximum number of transactions that each HW-task τi can perform in isolation, as683

Nmax
i = (Ti−Ci)/max (dNoCont,read, dNoCont,write). Then, the total number of transactions684

NR+W
i = NR

i + NW
i is computed by multiplying Nmax

i with a transaction density factor685

ρ ∈ (0, 1] such that NR+W
i = ρ ·Nmax

i . Finally, the NR+W
i transactions are split between686

reads and writes using a random uniformly-generated ratio in the range ν ∈ [0.4, 0.6], such687

that NR
i = ν · NR+W

i and NW
i = (1 − ν) · NR+W

i . All HW-tasks have been configured688

with φi = 6 (we found it being a typical value from experimental profiling of HAs in the689

Xilinx IP library) and Bi = 16, while all interconnects have φI = 1. In order to test realistic690

configurations, it has been assumed that each interconnect cannot have more than 16 input691

ports (as it is the case for the Xilinx SmartConnect [35]).692

The study considers 16 possible configurations generated by testing combinations of693

parametersN andM such thatN ∈ {4, 8, 16, 24} andM ∈ {1, 2, 4, 8}. Unuseful configuration,694

in which at least one interconnect hosts just a single HW-task, are discarded. This because,695

in such configurations, that Interconnect(s) would not perform any arbitration, adding696

only additional latency. For each valid configuration (N,M), 100 random values for ρ are697

uniformly chosen in the range [0.1, 1.0). Then, for each value of ρ, K = 50000 synthetic698

task sets have been generated, each comprising N HW-tasks evenly distributed over M699

interconnects (i.e., each interconnect is directly connected to at most dN/Me HW-tasks).700

The HW-tasks have been distributed over the interconnect tree according to their slack times701

Si = Ti − Ci, i.e., tasks with shorter slack times are placed closer to the root interconnect.702

Figure 8 reports the results of the experimental study. Please note that, since each703

interconnect cannot be connected to more than 16 tasks, some configurations are topologically704

unfeasible. Hence, they are not considered and the corresponding data is not reported. The705

experimental results show that increasing the number of interconnects not only allows to706

connect a larger number of HW-tasks, but also can improve the system schedulability ratio707

by moving HW-tasks with larger slack time to interconnects at higher hierarchical levels,708

thus reducing their interference on more time-constrained HW-tasks (i.e., HW-tasks with709

shorter slack times). However, moving HW-tasks to a higher hierarchical level also increases710

the latency and the worst-case contention experienced by its transactions. The exploration711

of this trade off requires investigating on allocation strategies for HW-tasks, which is left as712

future work.713

6 Related work714

Considerable efforts have been spent in bounding and controlling response times in SoCs715

by addressing the problem from several prospectives. From an architectural point of view,716

several mechanisms and policies have been proposed, as support for HW prefetch and new717

arbitration policies [12, 15, 26]. Other works proposed to consider memory inteference in the718

context of task allocation [16, 17]. Significant work has been dedicated to the integration719

ECRTS 2020

13:20 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρ (bus load)

Sc
he

d.
ra
tio

4 HW-tasks

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρ (bus load)

Sc
he

d.
ra
tio

8 HW-tasks

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρ (bus load)

Sc
he

d.
ra
tio

16 HW-tasks

1 Interconnect 2 Interconnects 4 Interconnects 8 Interconnects

0 0.2 0.4 0.6 0.8 1
0

0.5

1

ρ (bus load)

Sc
he

d.
ra
tio

24 HW-tasks

Figure 8 Experimental results with synthetic workload.

of memory interference in the schedulability analysis of both COTS and ad-hoc solutions,720

with a focus on specific elements in the memory tree, like the contribution of caches [9, 19],721

busses [6, 8], and the memory controller [4, 11]. Also, the explicit effect on the performance722

of control applications has been investigated [5]. Recently, FPGA-based SoCs have received723

particular interest, but allocating multiple HW-tasks inside the FPGA requires the use724

of a shared bus to access the off-chip memory. The AXI bus [2] is the de-facto standard725

but has been designed considering flexibility and performance, not time predictability. In726

fact, the evaluation of bus interference is achieved with hardware monitors in charge of727

observing HW-tasks performance [29]. Moreover, the standard entrusts several design details728

to the single implementation and assumes all components behave accordingly [32]. Some729

mechanisms have been proposed to increase predictability. For example, Pagani et al. [22]730

proposed an approach to apply bandwidth reservation techniques to HW-tasks memory731

accesses, while Restuccia et al. designed a mechanism to guarantee fairness among HW-tasks732

transactions [25], a mechanism to prevent unbounded delays during bus transactions [23],733

and proposed a predictable, Hypervisor-level AXI interconnect for FPGA SoC [24]. However,734

these contributions only address single interconnects and are not concerned with a fine-grained735

timing analysis of bus transactions.736

7 Conclusion and future work737

This work focused on FPGA-based SoC and presented a fine-grained model for the AXI738

bus and AXI interconnects. An analysis has been proposed to bound the contention delays739

experienced by HW-tasks under hierarchical networks of interconnects that allow reaching740

the FPGA-PS interface (and hence shared memories connected to the Processing System).741

The model and the effectiveness of the analysis have been validated with experimental results742

on two modern FPGA SoC by Xilinx. Future work should focus on deriving a more accurate743

model and analysis of the AXI bus to capture pipelining effects, and on allocation strategies744

and bus network synthesis for a given set of HAs.745

F. Restuccia et al. 13:21

References746

1 Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable SDRAM747

memory controller. In Proceedings of the 5th IEEE/ACM international conference on Hard-748

ware/software codesign and system synthesis, pages 251–256. ACM, 2007.749

2 ARM. AMBA AXI and ACE Protocol Specification, 2011.750

3 A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo. A framework for751

supporting real-time applications on dynamic reconfigurable fpgas. In 2016 IEEE Real-Time752

Systems Symposium (RTSS), pages 1–12, 2016.753

4 D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. A holistic memory contention analysis754

for parallel real-time tasks under partitioned scheduling. In Proceedings of the 26th IEEE755

Real-Time and Embedded Technology and Applications Symposium (RTAS 2020), 2020.756

5 W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and S. Andalam. Memory-aware757

embedded control systems design. IEEE Transactions on Computer-Aided Design of Integrated758

Circuits and Systems, 36(4):586–599, April 2017. doi:10.1109/TCAD.2016.2613933.759

6 Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter, Peter Mar-760

wedel, and Heiko Falk. A unified WCET analysis framework for multicore platforms. ACM761

Transactions on Embedded Computing Systems (TECS), 13(4s):124, 2014.762

7 Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of multipro-763

cessor tasksets. In proceedings 1st International Workshop on Analysis Tools and Methodologies764

for Embedded and Real-time Systems (WATERS 2010), pages 6–11, 2010.765

8 Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quiñones, Tullio Vardanega, and766

Francisco J. Cazorla. Increasing confidence on measurement-based contention bounds for767

real-time round-robin buses. In Proceedings of the 52nd Annual Design Automation Conference,768

DAC ’15, New York, NY, USA, 2015. Association for Computing Machinery. URL: https:769

//doi.org/10.1145/2744769.2744858, doi:10.1145/2744769.2744858.770

9 Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Cache-aware scheduling and analysis for771

multicores. In Proceedings of the seventh ACM international conference on Embedded software,772

pages 245–254. ACM, 2009.773

10 Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. A Survey of FPGA-774

based Neural Network Inference Accelerators. ACM Transactions on Reconfigurable Technology775

and Systems (TRETS), 12(1):2, 2019.776

11 Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM interference in COTS heteroge-777

neous MPSoCs for mixed criticality systems. IEEE Transactions on Computer-Aided Design778

of Integrated Circuits and Systems, 37(11):2323–2336, 2018.779

12 F. Hebbache, M. Jan, F. Brandner, and L. Pautet. Shedding the shackles of time-division780

multiplexing. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 456–468, Dec 2018.781

doi:10.1109/RTSS.2018.00059.782

13 Intel. Stratix 10 GX/SX Device Overview, 10 2017.783

14 Intel FPGA. Custom IP Development Using Avalon® and Arm AMBA AXI Interfaces.784

OQSYS3000.785

15 J. Jalle, L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. Bus designs for time-786

probabilistic multicore processors. In 2014 Design, Automation Test in Europe Conference787

Exhibition (DATE), pages 1–6, March 2014. doi:10.7873/DATE.2014.063.788

16 H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory789

interference delay in COTS-based multi-core systems. In 2014 IEEE 19th Real-Time and790

Embedded Technology and Applications Symposium (RTAS), April 2014.791

17 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan792

Rajkumar. Bounding and reducing memory interference in COTS-based multi-core systems.793

Real-Time Systems, 52(3):356–395, May 2016.794

18 Jörg Henkel Lars Bauer, Marvin Damschen. Runtime-reconfigurable architectures for WCET795

guarantees and mixed criticality. In Special session at ESWEEK 2019: Analyses and Ar-796

ECRTS 2020

http://dx.doi.org/10.1109/TCAD.2016.2613933
https://doi.org/10.1145/2744769.2744858
https://doi.org/10.1145/2744769.2744858
https://doi.org/10.1145/2744769.2744858
http://dx.doi.org/10.1145/2744769.2744858
http://dx.doi.org/10.1109/RTSS.2018.00059
http://dx.doi.org/10.7873/DATE.2014.063

13:22 Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs

chitectures for Mixed-Critical Systems: Industry Trends and Research Perspective. ACM,797

2019.798

19 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on799

static cache analysis for real-time systems. Leibniz Transactions on Embedded Systems,800

3(1):05–1–05:48, 2016. URL: https://ojs.dagstuhl.de/index.php/lites/article/view/801

LITES-v003-i001-a005, doi:10.4230/LITES-v003-i001-a005.802

20 Geoffrey Nelissen and Alessandro Biondi. The SRP Resource Sharing Protocol for Self-803

Suspending Tasks. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 361–372.804

IEEE, 2018.805

21 Marco Pagani, Alessio Balsini, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo. A806

linux-based support for developing real-time applications on heterogeneous platforms with807

dynamic fpga reconfiguration. In 2017 30th IEEE International System-on-Chip Conference808

(SOCC), pages 96–101. IEEE, 2017.809

22 Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni, Giuseppe Lipari, and Giorgio810

Buttazzo. A Bandwidth Reservation Mechanism for AXI-Based Hardware Accelerators on811

FPGAs. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 133812

of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–24:24, Dagstuhl,813

Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.814

23 Francesco Restuccia, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo. Safely815

Preventing Unbounded Delays During Bus Transactions in FPGA-based SoC. In 2020 IEEE816

28th Annual International Symposium on Field-Programmable Custom Computing Machines817

(FCCM). IEEE, 2020.818

24 Francesco Restuccia, Alessandro Biondi, Mauro Marinoni, Giorgiomaria Cicero, and Giorgio819

Buttazzo. AXI HyperConnect: A Predictable, Hypervisor-level AXI Interconnect for Hardware820

Accelerators in FPGA SoC. In Proceedings of the 57th ACM/IEEE Design Automation821

Conference (DAC 2020), 2020.822

25 Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo.823

Is Your Bus Arbiter Really Fair? Restoring Fairness in AXI Interconnects for FPGA SoCs.824

ACM Trans. Embedded Computing Systems, 18(5s):51:1–51:22, October 2019.825

26 M. Slijepcevic, C. Hernandez, J. Abella, and F. J. Cazorla. Design and implementation of a826

fair credit-based bandwidth sharing scheme for buses. In Design, Automation Test in Europe827

Conference Exhibition (DATE), 2017, pages 926–929, March 2017. doi:10.23919/DATE.2017.828

7927122.829

27 Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,830

Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural831

network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on832

Field-Programmable Gate Arrays, pages 65–74. ACM, 2017.833

28 Xilinx. Zynq-7000 All Programmable SoC - Reference Manual, 9 2016. UG585.834

29 Xilinx. AXI Performance Monitor v5.0, 2017. PG037.835

30 Xilinx. Vivado Design Suite: AXI Reference Guide, 7 2017. UG1037.836

31 Xilinx. Zynq UltraScale+ Device - Reference Manual, 12 2017. UG1085.837

32 Xilinx. AXI Interconnect, LogiCORE IP Product Guide, 2018. PG059.838

33 Xilinx Inc. The CHaiDNN official github website. https://github.com/Xilinx/chaidnn.839

34 Xilinx Inc. Integrated Logic Analyzer, LogiCORE IP Product Guide, 2016. PG172.840

35 Xilinx Inc. SmartConnect, LogiCORE IP Product Guide, 2018. PG247.841

https://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v003-i001-a005
https://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v003-i001-a005
https://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v003-i001-a005
http://dx.doi.org/10.4230/LITES-v003-i001-a005
http://dx.doi.org/10.23919/DATE.2017.7927122
http://dx.doi.org/10.23919/DATE.2017.7927122
http://dx.doi.org/10.23919/DATE.2017.7927122

	Introduction
	Essential Background
	System model
	Hardware task model
	AXI interconnect model
	Processing System and Memory Controller model
	Overall architecture

	Response-time analysis
	No contention at the interconnects
	First bound on the number of interfering transactions
	Second bound on the number of interfering transactions
	Combining the two bounds
	Response-time analysis algorithm

	Experimental results
	Experimental setup
	Profiling
	Model validation
	Experiments with synthetic workload

	Related work
	Conclusion and future work

