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© Simple application model

Serialization hypothesis

@ Parallel work can be serialized

o Reasonable to assume

o Notice in gang scheduling this is not the case: parallel work
need to be scheduled simultaneously over several CPUs.

o Gang scheduling is used to model parallel computation
with tight interaction among threads

One non-malleable task
Given a non-malleable (sequential) task with:
e computation time C' and
e deadline D
Sequential work can exploit only one machine

e worst-case response time R,,(C') of sequential work C'
over a VM

Ry (C) = sup{t : pslf,(t) < C},

e best-case response time Ry (C') of sequential work C' over

a VM
Ry(C) = inf{t : psuf(t) > C}.

e a sequential task schedulable if

psif,(D) > C
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Linear supply: simplification

Let's consider the simple case with Q1,> Q2 > ... > Qu,
with period P

e The computation of the exact supply is challenging

o A valid lower bound is:

k
psif,(t) > Zmax {0, %(t —2(P— QZ))}
=1

since this bound is computed by considering the worst case
for each budget independently
e Asymptotically the lower bound is

k k k 2
Z‘Z?ta*QZQz+QZ[?Ql

(=1

If, for example, Ele Q¢ is constant, when is the linear
lower bound maximized?

Application model

Definition
The work W is malleable if the time to complete over k
physical machines is W/k, for all k.
Example: a set of many small jobs can be considered malleable
(threads created by web servers to serve clients)
Several application models:
® A malleable task with computation time C and deadline D
(possibly D < C)
® Set of n malleable tasks (C;, T;, D;): T; period, D;
deadline, C; computation time (can be fully parallelized)
© Set of n sequential tasks (C;, T}, D;): T; period, D;
deadline, C; computation time (< D;)
O A pipeline with computation time C, period T' (< C) and
deadline D (> C)

One malleable task
Given a malleable task with:
e computation time C' and
e deadline D (possibly D < C)
Malleable work can exploit any level of parallelism: no
distiction between the two dimensions of resource
o worst-case response time R,,(C') of malleable work C' over
a VM
R (C) = sup{t : pslf 5, (t) < C},
e best-case response time Ry,(C') of malleable work C' over a
VM
Ry(C) = inf{t : psuf;,(t) > C}.
o malleable task schedulable if
psif (D) > C

[Prove that if D < £ then non-schedulable]



Component-
Based
Software
Design

Enrico Bini

Example
Linear supply

Simple
application
model

Richer
application
model

Component-
Based
Software
Design

Enrico Bini

Example
Linear supply

Simple
application
model

Richer
application
model

Component-
Based
Software
Design

Enrico Bini

Example
Linear supply

Simple
application
model

Richer
application
model

Set of malleable tasks

Theorem (EDF of malleable tasks)

A set task of n constrained deadline (with D; < T;) malleable
tasks is EDF-schedulable over a VM with pslf ;, (), if

{0 [ 2}
vt €D max < 0, | —————| » C; < pslf;,(t
; { { T i < pslf (t)

with
D:{d%kdl,k:kn+DZ7 Z:1,7n, k€N7 dz,kSD*}

and D* = lem(Tx, ..., T,) + max;{D;}.

Expression of the W£
o If local sched. algo. £ = FP, then

WiFP: Z W]“
J€hp(i)

where hp(i) denotes the set of indices of tasks with higher
priority than ¢, and Wj; is the amount of interfering
workload caused by j-th task on i-th task, that is

Wji = Nj,‘Cj + min {C]’,Di + Dj — Cj — NjiTj}

with Ny = | P95 |
J

o If local sched. algo. £ = EDF, then

i 3 (5o fen-2]7).

J

Proof sketch of Theorem 2/3

e The work W creates interference when it occupies all the
available procesors

e Amount of interference created by e work running at
parallelism k is ¢/k

e The created interference I; is maximized when the
processors are occupied by W; starting from the lowest
parallelism

== pslf, (D)

0o 1 2 3 4 5 6 7 8 9 10 11

If W; =8 then I, =6
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Set of non-malleable tasks

Theorem (Schedulability of non-malleable tasks)

A set of n constrained deadline non-malleable tasks is
schedulable by the local scheduling algorithm L over the VM
abstracted by {pslf, }7",, if

N\ kCi+WE <pslfy(Dy),

i=1,...n k=1....in

where WE is the maximum interfering workload that can be

experienced by i-th task in the interval [0, D;] with the local
scheduling algorithm L.

Proof sketch of Theorem 1/3

0o 1 2 3 4 5 6 7 8 9 10 11

Let us assume
e D;=11,C; =4, W; =8
o m =4, psif (11) =9, pslfy(11) = 17, pslf5(11) = 23,
pslf,(11) = 26
o |t the i-th task schedulable?

o How can W, create as much interference as possible?
[Explain the intuition starting from TV; small]
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e Only sufficient condition. Sources of pessimism: F::‘
@ in the accounting of the interfering workload W; (the e
assumed scenario may never show up) model
@ the interfering workload is treated as malleable (it is
assumed it can occupy any level of parallelism), while this
is not the case.
Component-
Based
Example of malleable task set Sotvare
e Let us assume to have the following task set (C;, T;, D;) Enrico Bini
o {(1,3,3),(1,4,4),(1,12,12)} S
o Tasks are malleable. Harder or simpler than TR,
non-malleable? St
o Local scheduler is EDF. Cond is LRI
n .
t+T — D, Richer
VteD ) max {o, {%J } C; < pslf; (1) appliction
i=1 ’
o set of deadlines D = {3,4,6,8,9,12}
e pairs are (t,w) € {(3,1),(4,2),(6,3),(8,4),(9,5), (12,8)}
e How many CPUs of speed a?
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Example of non-malleable task set Sotvare
Enrico Bini
o Let us assume to have the following task set (C;, T;, D;) Fenrl
o {(1,3,3),(1,4,4),(1,12,12)} Ve
o Tasks are malleable (can exploit any parallelism) Sl
o Local scheduler is EDF. Cond is F::‘
application
/\ \/ kC; + WiEDF < pSIfk (D1)7 model
i=1,...,nk=1...,m
with
= D; D;
J J

j=1j#i

o [lllustration of the condition over the pslf,(t) plane]

Proof sketch of Theorem 3/3
== psify (D;) === psify(D;) === pslfy(D;) == psif,(D;)

o 1 2 3 4 5 6 7 8 9 10 11

k* be the max # of CPUs occupied by W; (k* = 3 above)
o pslfk* (Dl) - Wl

k* ’
By observing that the evaluation of the RHS for any other
index k # k* is not smaller than I;,

{D,‘ ACAE W}

[next steps on the whiteboard]

I, =D;

I; = min
k=1,...m

Example of malleable task set
e Let us assume to have the following task set (C;, T;, D;)
e {(1,3,3),(1,4,4),(1,12,12)}
o Tasks are malleable. Harder or simpler than
non-malleable?

Example of malleable task set

Let us assume to have the following task set (C;, T}, D;)

o {(1,3,3),(1,4,4),(1,12,12)}
Tasks are malleable. Harder or simpler than
non-malleable?
Local scheduler is EDF. Cond is

n

vt e D ;max {o, {#J } C; < psif (1)
o set of deadlines D = {3,4,6,8,9,12}
e pairs are (t,w) € {(3,1),(4,2),(6,3),(8,4),(9,5), (12,8)}
e How many CPUs of speed a?

pslf; (t) = amt
point (12,8) is dominating

aml2 > 8 = m > [l-‘
3a
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i ] i EDF
Brample e number of minimum CPUs as function of the speed SEMCE G Ti D Wi
Linear supply Linear supply 1 3 3 2
Simple Simple 1 4 4 1+2=3
model [ model 1 12 12 740=7
Soaeatin | Soaeatin e Condition is
model model
ANV kCi+ WEPF <pslfy(Dy) = kaD;
6 i=1,...,nk=1....,m
o First, it must necessarily be
1 Ci Ci
Vi, « > — = a>max§ —
’ D,‘ i {Dz
otherwise, impossible to schedule single tasks with W; = 0.
) ‘ ‘ ‘ e Then
0 05 1 15 2 E> Wl .
max | —— | =
i aD; — C;
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Enrice Bin Enrice Bin o Let us assume that the VM receives a set of m budgets
Eanele Eanele Q1,Q2,...,Qm every period P. We assume
Linear supply Linear supply Ql > QQ > ... 2> Qm
Simple Simple . . i )
h;\:“t /\ \/ ia N kCy+ WE ;:‘:!::m” o To simplify the analysis, we assume that P, Q) — 0, with
Richer ‘= D; Richer constant Q
application i=1,..,n k=1...,m (=1 application o = wk
model model P
C; T, D; Wi e This implies
1 3 3 2 k
1 4 4 1+2=3 pslf,,(t) = <Z a@> ¢
1 12 12 74+0=7 =1

e Then the feasible speeds of the CPUs are

k EC; + WE
ap > AT T
AV Saxtey

i=1,....,n k=1...,m
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By exploiting the lower bound on the pslIf(¢) of
Example
Linear supply k Q
. l

psify,(t) > > max {07 B t=2AP - Qz))}
model /=1
Richer
Cpp i we can find a sufficient on the @; that guarantee a given task

set
ANV kCi+WE <psfl (D)

i=1,...n k=1...,m

C; T, D Wi
1 3 3 2
1 4 4 142=3
1 12 12 740=7




