
11/05/2016

1

Component-Based Software Design – LMES
1

Scheduling tasks on Reconfigurable
FPGA architectures

Mauro Marinoni

ReTiS Lab, TeCIP Institute

Scuola superiore Sant’Anna - Pisa

Component-Based Software Design – LMES
2

Agenda
 The topics that will be addressed are:

 Overview on basic characteristics of the FPGA;

 FPGA reconfiguration capabilities;

 Timing analysis for reconfigurable FPGA platforms;

 Kernel mechanisms to support reconfigurable
systems.

Component-Based Software Design – LMES
3

FPGA

Overview

Component-Based Software Design – LMES
4

Definition

A field-programmable gate array (FPGA) is an
integrated circuit designed to be configured by a
customer or a designer after manufacturing – hence
"field-programmable". The FPGA configuration is
generally specified using a hardware description
language (HDL).

Component-Based Software Design – LMES
5

General structure

 2-D array of logic blocks with electrically programmable
interconnections

 They provide:

 Configurable logic blocks (CLB)

 Connection lines

 Interconnection matrixes

 Custom blocks

 User can configure:

 Intersections between logic blocks

 The function of each block

Component-Based Software Design – LMES
6

Characteristics of the CLB
 These blocks contain the logic for the FPGA. It contains:

 enough logic to create a small state machine

 RAM enough for creating arbitrary combinatorial logic functions,
also known as lookup tables (LUTs)

 flip-flops for clocked storage elements

 multiplexers in order to route the logic within the block and to and
from external resources

11/05/2016

2

Component-Based Software Design – LMES
7

Pros and Cons

 Advantages

 Performance: Online analysis of high-rate data streams

 Reliability: Deterministic hardware dedicated to every task

 Reconfigurability: Nonrecurring engineering expenses

 Durability: Radiation Hardened and Program Integrity

 Time to market: Flexible and rapid prototyping and debugging

 Drawbacks

 Lower working frequencies

 Higher power consumption

 Higher cost

Component-Based Software Design – LMES
8

Performances

 FPGAs excel at computing non-data dependent algorithms in
parallel.

 Customizable data path and ALU allow very large amounts
of data to be transferred and computed within several clock
cycles.

 Despite lower clock frequencies, FPGA’s can outperform
conventional CPU’s on certain data processing tasks

Component-Based Software Design – LMES
9

Integration with microprocessors

 In order to provide an execution environment to those
tasks not fitted for the FPGA execution paradigm

 Soft-core: a microcontroller wholly implemented inside the
FPGA (NIOS II)

 System on Chip (SoC): integrates a microcontroller and an
FPGA inside a single chip (Zynq)

Component-Based Software Design – LMES
10

Programming technologies
 Fuse and anti-fuse:

 fuse makes or breaks link between two wires

 smaller and faster

 one-time programmable

 Flash:

 high density

 dedicated production process (in the past…)

 RAM-based:

 memory bit controls a switch that connects/disconnects two wires

 can be programmed and re-programmed easily (using bitstreams)

 standard technology

 volatile SRAM memory

Component-Based Software Design – LMES
11

RAM-based programming

 Initially seen as a drawback imposing an initialization
phase

 the volatility of SRAM-based FPGAs is not a liability,
but was in fact the key to many new types of
applications.

 the programming of such an FPGA could be changed
by a completely electrical process…

Component-Based Software Design – LMES
12

RECONFIGURABLE
COMPUTING

Characteristics

11/05/2016

3

Component-Based Software Design – LMES
13

FPGA reconfiguration

While the previous uses of FPGAs still treat these

chips purely as methods for implementing digital

logic, the reprogrammability of modern FPGAs allows

to download algorithms onto the FPGAs and change

these algorithms just as general-purpose computers

can change programs.

Component-Based Software Design – LMES
14

Selecting a Target FPGA

Characteristics of the different reconfiguration approaches:

 Granularity

 Dynamic reconfigurability

 Partial vs Full reconfiguration

 Reconfiguration time

“Fine-grain Dynamic Partial Reconfigurable devices”

Component-Based Software Design – LMES
15

Granularity
Two main architectures:

 Course grained: consists of small number of large logic blocks

 Small bitstream is required to configure them (low config. time)

 Faster because of easy routing

 Less complexity and less flexibility

 Fine grained: consists of large number of small logic blocks

 Customization at the bit level => Greater flexibility & more complexity

 Large bitstream is required to configure them (high config. time)

 Easy conversion to ASIC

 Less speedy

Component-Based Software Design – LMES
16

Dynamic reconfigurability

 It is the ability of a FPGA to modify operation during runtime

 The primary advantages of runtime reconfiguration in devices

 Power/Size/Cost Reduction

 Hardware reuse and flexibility

 Application Portability

 The disadvantage of dynamic reconfiguration

 Suffer from the time needed to load the configuration bitstream
before starting its execution

Component-Based Software Design – LMES
17

Partial vs Full reconfiguration

 Partial Reconfiguration (PR) allows the ability to reconfigure a
portion of an FPGA

 It allows for critical parts of the design to continue operating while
loading a partial design into a reconfigurable module

 Reconfiguration time of partial reconfiguration is much smaller
(~4-5 ms) than full reconfiguration(~12 ms)

 Wide variety of dynamically reconfigurable FPGA devices
available in the market offer PR today

 Lattice ORCA Architecture

 Atmel AT40K Architecture

 AItera APEX 20K

 Xilinx Virtex FPGAs

Component-Based Software Design – LMES
18

Partial Reconfiguration
 Partial reconfiguration (PR) allows

the ability to reconfigure a portion
of an FPGA

 Real advantages arise when PR is
done during runtime also know as
dynamic partial reconfiguration

 Dynamic Reconfiguration allows
the reconfiguration of a portion of
an FPGA while the remainder
continues operating without any
loss of data

 Two types of Regions

 Static – Keeps operating

 Reconfigurable – Can be
reconfigured with a new module

C
en

tr
a

l
C

o
n

tr
o

ll
in

g
 A

g
e

n
t

ICAP

M
e

m
 c

o
n

tr
o

ll
er

Module A

Module B

Module C

Static modules Reconfigurable Modules (PRMs)

F
P

G
A PRR 1

PRR 2

S
ta

tic
 r

e
g

io
n

Static
modules

Modules: A & B

Modules: C & D

Module D

11/05/2016

4

Component-Based Software Design – LMES
19

Partial Reconfiguration - Timing

Component-Based Software Design – LMES
20

How to choose the FPGA model?

 Exploitation of Partial Reconfiguration for a design
requires significant knowledge on targeted device

 An evaluation of the performance and limitations of your
selection is required

 Also the support provided by design tools must be
evaluated

 Correct FPGA selection matters!

 Xilinx’s FPGA’s (the Virtex Family is a widespread
solution) is chosen as the example FPGA

Component-Based Software Design – LMES
21

Xilinx Virtex-II/Pro Architecture

 Composed of a fine-grain 2D heterogeneous array that
includes

 Configurable logic blocks (CLBs)

 Memory blocks (BRAMs)

 DSP units (MULTs)

 I/O blocks (IOBs)

 FIFOs buffers

 Each CLB contains LUTs, FFs, Gates & Multiplexers that
can be configured to implement any design efficiently.

 This 2D array can configured either externally or internally.

Component-Based Software Design – LMES
22

Basic Xilinx FPGA Layout

Processor Local Bus

On-Chip Peripheral Bus

Embedded Processor
(PowerPC/MicroBlaze)

Internal Configuration Acces Port

Component-Based Software Design – LMES
23

Xilinx FPGA Layout – Inside CLBs

bit bit_b

word

6T SRAM CELL

Component-Based Software Design – LMES
24

Xilinx Virtex – Reconfiguration

 FPGA is reconfigured by writing bits into Configuration
Memory (CM).

 CM is arranged in vertical frames (1bit wide) stretching from
top to bottom.

 So Configuration data is organized into frames that target
specific areas of the FPGA through frame addresses.

 To reconfigure any portion of that frame the partial bitstream
contain configuration data for a whole frame.

11/05/2016

5

Component-Based Software Design – LMES
25

 The (device) array can be configured:

 Externally
 Serial Peripheral Interface (SPI) port

 JTAG (Boundary Scan) port (serial)

 SelectMap port (parallel)

 Internally

 Internal configuration access port (ICAP) which allows for (internal) partial
configuration only.

*Table: The configuration speeds of 4 input ports.

Xilinx Virtex – Reconfiguration (2)

Component-Based Software Design – LMES
26

 ICAP details:

 Operational Frequency:

 100 MHz

 Width Size:

 8 bits (Virtex-II Pro)
 16/32 bits (Virtex-4 and Virtex-5)

 ICAP BRAM

 Caches the configuration bits before being loaded into the config. Memory.

 Connection with the bus:

 OPBHWICAP (IP Core in Virtex II/Pro)

 XPSHWICAP (IP Core in V-4 and V-5) (Lower latency due to connection to
the PLB bus)

Xilinx Virtex – Reconfiguration (3)

Component-Based Software Design – LMES
27

PR using an Embedded Microcontroller

 RT Dependencies

 Storage type

 Controller type

 ICAP Premitive

PR design using embedded microcontroller Reconfiguration Steps

 Reconfiguration is triggered within the FPGA

 Processor core loads the desired configuration
data from external non-volatile memory.

 This could be from ROM, PROM, Flash, SPI Flash
loaded at startup or filled up by the FPGA itself

 Processor reconfigures the PR region through the
reconfigurable controller (ICAP primitive)

 OPBHWICAP or XPSHWICAP (v)

 Customized reconfigurable controllers (c)

 Reconfiguration Time (RT):

 Time required to pull the bitstream from
 off-chip memory -> Local memory of processor

 Local memory of processor -> ICAP

 ICAP -> FPGA configuration region (PR Region)

Component-Based Software Design – LMES
28

Partial Reconfiguration (in detail)

 Reconfiguration in detail

 Memory Controller is instructed to load the
partial bitstream.

 Bitstreams is copied from off-chip memory to
On-chip memory buffer.

 Reconfig.Controller loads the bitstream to the
FPGA Config. Memory through Conf.Port.

 These phases occur in succession untill the
entire bitstream is copied.

Non-volatile memory
(repsitory of partial

bitstream)

 Reconfiguration throughput

 To evaluate the system holistically, the overhead added by all the system
components involved in the reconfiguration process should be considered

 The flow of data across different components should also be taken into account for
the said purpose

Component-Based Software Design – LMES
29

A Survey of the Reconfiguration Times (RT)
(with different used technologies)

Component-Based Software Design – LMES
30

PowerPC/Microblaze is currently used as the
embedded processor to controll the reconfiguration.

Reconfiguration Process is
carried out in three distinct

phases.

Partial Reconfiguration Phases (Cost Model)

(Cost Model)

11/05/2016

6

Component-Based Software Design – LMES
31

Parameters affecting PR Performance
 Storage Means

 External memory and memory controllers.

 Configuration Ports

 BandWidth and Operating frequency.

 Reconfiguration Controller

 Type and Configuration

 Optional Processor Features

 Processor array size puts the upper limit on the amount of data transferred from
SM/each processor call.

 Stack of the processor

 Enabling the I-cache/D-cache greatly improve the configuration throughput.

 API on top (provided by Xilinx)

 Allows for the s/w control of the IP core (OPBHWICAP/XPSHWIXAP) for accessing the
ICAP.

 Prefetching the configuration bitream

 On startup

Component-Based Software Design – LMES
32

Open Research Problems in PR

 An intelligent run time OS is needed to ensure that low power is
consumed and that timing constraints are met when using partial
reconfiguration for real time systems (RTOS issues)

 Dynamic Partial Reconfiguration in the domain of Real-Time systems
(timing constraints)

 Besides time overhead, configuration procedure adds up power
overhead as well. PR needs to be studied as a factor affecting the
power of the system (power constraints)

 Algorithms are needed for efficient placement of bitstream into the
Reconfigurable region of FPGAs (placement constraints)

Component-Based Software Design – LMES
33

Scheduling goals
Exploit reconfiguration capabilities to allocate

computation tasks on the FPGA

Use the FPGA as a “core” to execute highly optimized
activities available as HW-tasks

Provide kernel mechanisms for the implementation of
this HW scheduling

Propose a set of model and analysis techniques to
provide guarantees regarding applications timing
constraints

Component-Based Software Design – LMES
34

Taxonomy

 The features used to organize the taxonomy
concern:

 the reconfiguration approach

 the allocation methods

 the type of operating system (OS) support

Component-Based Software Design – LMES
35

Taxonomy – Reconfiguration

 They can be distinguished between static and dynamic.

 In a static approach the allocation of all the HW-tasks is performed
during the initialization phase

 In a dynamic approach HW-tasks can be allocated at runtime
upon specific events.

 Dynamic approaches can be used to support:

 mode-changes in the application (allowing tasks to be added and
removed from the task set)

 trigger of a reconfiguration every time a new job is scheduled (job-
level reconfiguration).

Component-Based Software Design – LMES
36

Taxonomy – Reconfiguration (2)

 A static approach

 has no runtime reconfiguration overhead

 the maximum number of HW-tasks is limited by the physical
size of the FPGA.

 A dynamic approach

 presents extra reconfiguration overhead

 increase the total number of HW-tasks that can be
managed.

11/05/2016

7

Component-Based Software Design – LMES
37

Taxonomy – Allocation

 They can be distinguished between slotted and
slotless.

 In a slotted approach, the FPGA area is partitioned into
slots of given size connected via buses provided inside the
static part of the FPGA. A HW-task can only occupy one or
more slots.

 In a slotless solution, HW-tasks can be arbitrarily positioned
inside the FPGA and data are transferred through the
reconfiguration interface inside of the FPGA.

Component-Based Software Design – LMES
38

Taxonomy – Allocation (2)

Slotted approaches have the advantage of having the
communication channels already in place, but the
FPGA area may be partially wasted due the slot
granularity.

On the other hand, slotless solutions increase the
utilization efficiency of the FPGA area, but penalize the
reconfiguration time due to the instantiation of
communication channels.

Component-Based Software Design – LMES
39

Taxonomy – OS awareness

 If the OS is aware of the presence of HW-tasks, the
kernel can directly manage all the operations needed
to schedule, allocate, and program HW-tasks, along
with those related to SW-tasks.

When no explicit OS support is available, HW-tasks
must be managed at the application level through
proper software stubs that interact with the scheduler
and perform the interaction with the HW-task.

Component-Based Software Design – LMES
40

TIMING ANALYSIS

Component-Based Software Design – LMES
41

Proposed approaches

Few approaches have been proposed to
guarantee timing constraints in FPGA-based
systems

Huge differences among them:

 From static offline partitioning

 To online preemptive reconfiguration

Component-Based Software Design – LMES
42

Danne and Platzner [2005]

They proposed two scheduling algorithms for:

 Fully HW periodic tasks

Scheduled on a slotless homogenous FPGA

HW-tasks can be preempted

Negligible reconfiguration time

11/05/2016

8

Component-Based Software Design – LMES
43

EDF-NF algorithm

Allocate and execute all tasks fitting in the FPGA, sorted by
absolute deadline.

Component-Based Software Design – LMES
44

EDF-NF Example

Scheduling of a small task set composed by 3
periodic tasks.

Component-Based Software Design – LMES
45

Merge Server Distribute Load (MSDL) algorithm

Merge tasks together in servers for parallel execution. Obtained
servers are executed in a sequential way

Component-Based Software Design – LMES
46

MSDL Example

Component-Based Software Design – LMES
47

Di Natale – Bini [2007]

Offline optimization technique for the allocation of
tasks on the FPGA

Each task has both a HW-task implementation and a
SW-task one

 A task can be executed in the SW or HW version

A solution based on an Integer Linear Programming
(ILP) is used to select the HW-tasks and assign the
remaining to a set of softcores.

Component-Based Software Design – LMES
48

Allocation model

11/05/2016

9

Component-Based Software Design – LMES
49

Pellizzoni et. al. [2007]

They proposed an admission control test to
guarantee feasibility for:

 tasks having both a HW-task implementation and a
SW-task one

Scheduled on a slotted FPGA

Negligible reconfiguration time

Relocable at runtime

Component-Based Software Design – LMES
50

Relocation example

Component-Based Software Design – LMES
51

Saha et. at. [2015]

They proposed two scheduling algorithms for:

 Fully HW periodic tasks

Scheduled on a common-size slotted FPGA

HW-tasks can be preempted

 Fixed reconfiguration time

Component-Based Software Design – LMES
52

Saha et. at. [2015]

At every deadline each task is allocated a share
of the next time slice proportional to its utilization

Component-Based Software Design – LMES
53

Main issues

 The more critical issues to be addressed are:

 The FPGA model is too simple

 The reconfiguration time is almost not considered

 Limitations in preemption and relocation are negletted

Component-Based Software Design – LMES
54

KERNEL MECHANISMS

11/05/2016

10

Component-Based Software Design – LMES
55

ROS

Different solutions have been presented to create
kernel level support to Reconfigurble Operating
Systems (ROS).

Available solutions are:

R3TOS

ReconOS

Component-Based Software Design – LMES
56

Questions

Component-Based Software Design – LMES
57

thank you!
Mauro Marinoni - m.marinoni@sssup.it

http://retis.sssup.it/people/nino

