04/06/2016

Agenda

— ﬁetis O RTSIM

ant’ Anna [Fiesal-Tiree: Sysheris: Lalnsalory

» MetaSim ‘
RTSIM > RTLib RT% M

Real-Time system SIMulator
[Examples

Mauro Marinoni 0 Project proposals

ReTiS Lab, TeCIP Institute
Scuola superiore Sant’Anna - Pisa

Real-Time system SIMulator

Scuola Superiore ;em L RTSIM is a collection of programming libraries written in C++

pnt Anna . . .
) Fiai-Ties Sstonss Lokostory for simulating real-time control systems.

[1t has been developed for experimenting with new scheduling
algorithms and solutions.

RTSIM O It already contains some classic real-time scheduling
algorithms.

[It consists of 2 components:

» MetaSim: it is a generic library for simulation of discrete event

H systems.

Overview

» RTLib: based on MetaSim, it is a library for simulating scheduling
algorithms and real-time tasks.

RTSIM - Installation MetaSim

1 Both MetaSim and RTLib are available on GitHub:) MetaSim is a framework that allows to develop customized
simulation entities.

U https://github.com/glipari/metasim

[Each entity that can post discrete events in time.
U https://github.com/glipari/rtlib2.0

[The framework also provides some useful classes in order to:
Niake » handle random variables;

U Can be compiled under Unix, Mac and Windows » collect statistical values;

. . .) > write t d deb tput.
[l Testing support written using the Catch library ke fraces and debug outpd

[The user can analyze the behavior of a system without
1 Documentation can be generated using the Doxygen tool actually having it.

04/06/2016

MetaSim — Simulations

1 The model can run under different conditions and with
different inputs, deterministic or randomly distributed.

» In a deterministic simulation the user is interested in
analyzing the temporal evolution of the system state (trace)
under certain conditions.

» If the input is randomly distributed, the user is interested
in obtaining statistics on certain system variables, like
average, variance, maximum and minimum value,
confidence intervals, etc.

MetaSim — Classes
[The main classes of the framework are:

~ Entities: they are the bricks with which is possible to model a system.
Every component of the system must be derived from this class. This
class provides basic functionalities for initialization and provides a
naming system.

» Events: simulations are based on the discrete event model. Events
are the basic objects for describing the temporal evolution of the
system.

» RandomVar: the basic class to generate random variables from
different distributions.

» Simulation: this is the main engine of the library.

» BaseStat: the basic class to collect statistics.

» Trace: the basic class to trace the behavior of a system

MetaSim — Classes
[The main classes of the framework are:

» Entities: they are the bricks with which is possible to model a system.
Every component of the system must be derived from this class. This
class provides basic functionalities for initialization and provides a
naming system.

» Events: simulations are based on the discrete event model. Events
are the basic objects for describing the temporal evolution of the
system.

» RandomVar: the basic class to generate random variables from
different distributions.

» Simulation: this is the main engine of the library.

> BaseStat: the basic class to collect statistics. Mutually
exclusive

» Trace: the basic class to trace the system behavior.

MetaSim — Entities
[It is the base class for every simulation object.

O It has an internal status, an interface for modifying the status,
and can contain one or more events.

[It can be referred also by its name (a string of characters) using
the static method find.

O A specific entity class should redefine the find function for
doing type checking.

» Function newRun() resets the entity status at the beginning of every
run. It is called automatically at the beginning of every run, and
initializes the entity status. It can be redefined in order to perform the
desired changes, for example to change the parameters after some
runs. Warning: in newRun() is not permitted to create/destroy new
entity objects.

MetaSim — Events

[It is the basic event class, it models an event in the simulator and
contains all the basic methods for handling it.

[To define a new "type” of events in your system model, you need to
derive a class from this, overriding the virtual doit() method.

[This class also includes a static event queue, where all "active” events
are enqueued.

» To insert an event in the queue, you can call the post() method specifying a
triggering time.

» Events are ordered in the queue by triggering time.

» In case of two events with the same triggering time, events are ordered by
priority. The priority is for the object, and not for the class!

const int MetaSim::Event::_DEFAULT_PRIORITY = 8

» Itis not possible to post an event in the past, but is possible to post an event in
the present.

MetaSim — Events (2)

[If the event is marked as disposable, the main simulation loop
will delete it after it has been processed. Setting disp to true
gives the ownership of the object to the Simulation engine,
which will destroy after using it.

[When an event is "triggered” in the simulation, its doit()
method is invoked.

» In most of the cases, the doit() method simply calls a method
of an entity, which will be informally called "handler” of the
event. In case the doit() method only calls the appropriate
event handler, you can use the template class GEvent< X >
instead of deriving a new class.

04/06/2016

MetaSim — RandomVar

[This class implements a random variable: some derived classes
provide more detailed implementations depending on the type of
random variable.

U The class diagram is...

1

| 1 = g
MetaSim Deflavar | MetaSen Detvar | | MetaSim-Uniformvar |
N L ¥ |

8 i [e I 1B
Mstasm | [Mstasin:

S 1 S 1
| | MetaSim-Paretovar | | MetaSincPoissonVar |

MetaSim — Simulation

[This singleton implements the simulation engine and some debugging
facilities.

1 The main function is run(Ticklenght, size_t runs) that is
responsible for running the simulation for one or more times.

L) After defining all the objects in a simulation, this function should be
invoked for running the simulation.

U Example: Simulation: :run(10000, 10);

) At the beginning and at the end of each run, initialization and finalization
are called. They are named Entity::newRun() and
Entity: :endRun(), respectively.

[The getTime() returns the current globalTime in the simulation.

) The random seed is not initialized at every run, but it is left as it is.

MetaSim — BaseStat

[This class is used to collect statistical values.

O The first two levels of abstraction are implemented, while the third is left to the
programmer, depending on his needs.

O Level 0 (B Stat) i the for doing statistic: it is initialized with the number of
experiments to be done, and has an array to record the data at the end of the simulation.

0 It has two pure virtual function, probe() and record(), so no object of this class can be
instantiated.

1 It has some function to get the final stats, like getMean() and getConflinterval ().

U Level 1 (StatMax) implements the function for collecting statistic; for example, the StatMax class
record the maximum value during an experiment.

1 The user can add his own classes to this level, and he must implement the record() function
and the initvalue() function.

1 Level 2 implements the probe() for a single event. The user must write it depending on the
variable he needs to measure. When implementing a class of this level, the user must write the
probe function, which has to call the record() function with the appropriate value.

MetaSim — Trace

[This class allows programmers to trace variables on a stream.
By default it opens a binary stream.

[The derived class TraceASCIl put the traced values into an
ASCII stream.

ant’ Anna i T St Lot

PERLEFTION
; ﬁ.\

RTLIB

RtLib

URtLib is a library for Real-Time
Kernels Simulation written in C++

[l RtLib provides software modules needed to
simulate a real-time kernel,

11t is based on MetaSim, so all classes are
derived from Entity.

04/06/2016

RtLib — Modules

] Some basic modules are:

[RTKernel: The base module of a real-time operating
system.

[Scheduler, TaskModel: Modules that provide methods to
handle task’ s priority queues and scheduling parameters.

[Task: Base class that implements task functionalities.

Instr : The base class for every pseudo-instruction.

[TextTrace: Module that let each event to be traced in a text
file.

RtLib — Modules (2)
[There are other simulation entities provided by RTLib
that are:
» CPU
» PollingServer
» SporadicServer
» Grub
» Supervisor

» Resource

» ResManager

RtLib — RTKernel
1 An implementation of a real-time single processor kernel. It contains:
» apointer to one CPU;
» apointer to a Scheduler, which implements the scheduling policy;

» a pointer to a Resource Manager, which is responsible for resource access
related operations and thus implements a resource allocation policy;

» the set of task handled by this kernel.

[This implementation is quite general: it lets the user of this class the
freedom to adopt any scheduler derived form Scheduler and a
resource manager derived from ResManager or none.

L Also the implementation for real-time multiprocessor kernel is
available.

RtLib — RTKernel (2)

[Method dispatch() compares currently executing task with the first
in the ready queue. If they are different, it forces a context switch.

» The corresponding schedule() and deschedule() functions of
the two tasks are called.

1 Function onArrival () is invoked from the task onArrival function,
which in turn is invoked when a task arrival event is triggered. It
inserts the task in the ready queue and caiis dispatch();

1 Function onEnd() is invoked from the task onEnd function, which in
turn is invoked when a task completes the execution of the current
instance.

It removes the task from the ready queue, set current executing
pointer to NULL and calls dispatch().

RtLib — Scheduler and TaskModel

[Scheduler is an abstract class and cannot be instantiated. This class models a
generic real-time scheduler and it implements the Scheduler interface.

[0 Basically, this and the derived classes manage a priority queue in a convenient
manner, and offer a clean interface toward the kernel and the resource manager.

[The class keeps internally a repository of all tasks that can be scheduled by this
scheduler.

RtLib — Scheduler and TaskModel (2)

O Every time a task is "added” to the scheduler, an appropriate TaskModel object is built, which
contains the scheduling paramenters of the task.

> In this way, we clearly separate the task parameters (like period, deadline, wcet, etc.) that are
contained in the task class, from the scheduling parameters that are contained in the
TaskModel derived classes.

0 Tipically a scheduler contains a queue of task model’ s instances. The responsibility of this class is
to maintain the queue.

and a nointer to the task. It is used by a
= lass i and a peinter to the task, It is used by a

scheduler to store the pointer to the task and the set of scheduling parameters.

0 Each scheduler has its own task model. So the class inheritance trees of the task models and of

the schedulers are similar.
RTSim-TastModel

[s | I L
RTSim-EDFModel | RTSim FPScheduler. FPModel | | RTSim ARSchaduler. RRMadel RTSim:RTMadel

04/06/2016

RtLib — Task

This class models a cyclic task.

1 A cyclic task is a task that is cyclically activated by a timer (e.g.,
periodic task) or by an external event (e.g., sporadic or aperiodic
task).

) This class models a "run-to-completion” semantic. At every activation
(also called arrival), an instance of the task is executed.

) The task executes all the instructions in the sequence until the last
one, and then the instance is completed (task end).

) At the next activation, the task starts executing a new instance, and
the instruction pointer is reset to the beginning of the sequence.

RtLib — Task (2)

[When ajob arrives (onArrival ()), the corresponding deadline is set
(the class Task has no deadline parameter).

» It adds deadline event to check deadline misses, with the possibility
to abort the simulation in case of deadline miss (depending on the
abort parameter in the constructor).

» In order to create a Task the programmer must provide two
essential parameters:

o Interarrival-time time between consecutive activations. Set it to
NULL if you want just one activation.

0 Relative Deadline Used to calculate the absolute deadline, when
the task arrives.

RtLib — Task (3)

0 Another important feature is to provide pseudo-code to the created task:
function insertCode(const string)

It parses and inserts instructions into this task. The input string must be a sequence
of instructions separated by a semicolon (also for last instruction). The instruction’ s
types will be described in the related subsection.

) Here is just an intuitive example of code:
tl.insertCode("fixed(4);wait(Resl);delay(unif(4,10));signal(Resl);delay(unif(10,20));");

» Inthis case, the task performs 5 instructions;
1 the first one lasts 4 ticks;
the second one is a wait on resource Res1;
the third one has variable execution time, uniformely distributed between 4 and 10 ticks;

the fourth one is a signal on resource Res1.

0Oo0oo

the last instruction has variable execution time uniformely distributed between 10 and 20 ticks

RtLib — Instruction

[The base class for every pseudo instruction, that represents
the code that a task executes.

[An instruction is identified by an execution time (possibly
random) and by a certain optional functionality.

) A task contains a list of instructions, that are executed in
sequence.

| - 1 2 1 | : 1
| RTSim-Schedinstr | | ATSm-Signalmitr | | ATSm-Suspendinstr| | ATSisThrewstr | | ATSiscWaest

RtLib — TaskStat

J Using statistical modules provided by MetaSim (i.e., StatMean, StatMax, StatMean)
it is possible to create custom statistics related to task.

[Task statistics already implemented are:
» PreemptionStat< Measure > Computes the preemption count for each job
» GlobalPreemptionStat Computes the total number of preemptions.
» FinishingTimeStat< Measure > Computes the finishing time of each job.
» LatenessStat< Measure > Computes the lateness of each job of the task attached.
» TardinessStat< Measure > Computes the finishing time normalized by the relative deadline.
» UtilizationStat< Measure > Computes the utilization of each job.
» MissPercentage Computes the miss percentage.
» MissCount Computes the number of deadline misses (single task or the entire task set).
» ConsumedPower< Measure >
» SavedPower< Measure >
) Some of them are created depending on the template class (Measure) that is

passed to it, in order to allow programmers to collect the mean, max, min of the
desired parameters within all the jobs of all the tasks that are attached to that class.

Senola Superiore j Eetis‘

Sant’Anna Fso-Thoree T Lty

EXAMPLES

04/06/2016

MetaSim Examples

) Few examples are provided for:
U Queue

L) Markov

L) Ethernet

MetaSim Examples

U Few examples are provided for:
L] Queue
U Markov

[Ethernet

RTLib Examples
L Examples are provided for:

U CBS
U EDF
U GRUB
U RM

Q..

ant Fasal-Thres gt | k

."rlm].'{lilllupr rinre E Eetig

PROJECT
PROPOSALS

Available projects

Ll Design and develop new algorithms
for RTSIM

» Compare different solutions to handle
resources reservation under resource sharing

» Implements semi-partitioned multiprocessor
scheduling algorithms

