
04/06/2016

1

RTSIMRTSIM
RealReal TimeTime systemsystem SIMulatorSIMulator

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
11

RealReal--Time Time system system SIMulatorSIMulator

Mauro MarinoniMauro Marinoni

ReTiSReTiS Lab, Lab, TeCIPTeCIP InstituteInstitute

Scuola superiore Sant’Anna Scuola superiore Sant’Anna -- PisaPisa

AgendaAgenda

 RTSIMRTSIM

MetaSimMetaSim

RTLibRTLib

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
22

 ExamplesExamples

 ProjectProject proposalsproposals

RTSIMRTSIM

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
33

RTSIMRTSIM

OverviewOverview

RealReal--Time system Time system SIMulatorSIMulator

 RTSIM is a collection of programming libraries written in C++
for simulating real-time control systems.

 It has been developed for experimenting with new scheduling
algorithms and solutions.

 It already contains some classic real-time scheduling
l ith

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
44

algorithms.

 It consists of 2 components:

 MetaSim: it is a generic library for simulation of discrete event
systems.

 RTLib: based on MetaSim, it is a library for simulating scheduling
algorithms and real-time tasks.

RTSIM RTSIM -- InstallationInstallation

Both MetaSim and RTLib are available on GitHub:

 https://github.com/glipari/metasim

 https://github.com/glipari/rtlib2.0

Configurable using Cmake

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
55

Configurable using Cmake

Can be compiled under Unix, Mac and Windows

 Testing support written using the Catch library

Documentation can be generated using the Doxygen tool

MetaSimMetaSim

 MetaSim is a framework that allows to developdevelop customizedcustomized
simulationsimulation entitiesentities.

 Each entity that can post discrete events in time.

 The framework also provides some useful classes in order to:

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
66

 handle random variables;

 collect statistical values;

 write traces and debug output.

 The user can analyze the behavior of a system without
actually having it.

04/06/2016

2

MetaSimMetaSim –– SimulationsSimulations

 The model can run under differentdifferent conditionsconditions and with
different inputs, deterministic or randomly distributed.

 In a deterministic simulation the user is interested in
analyzing the temporal evolution of the system state (trace)
under certain conditions.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
77

 If the input is randomly distributed, the user is interested
in obtaining statistics on certain system variables, like
average, variance, maximum and minimum value,
confidence intervals, etc.

MetaSimMetaSim –– ClassesClasses
 The main classesclasses of the framework are:

 Entities: they are the bricks with which is possible to model a system.
Every component of the system must be derived from this class. This
class provides basic functionalities for initialization and provides a
naming system.

 Events: simulations are based on the discrete event model. Events
are the basic objects for describing the temporal evolution of the

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
88

system.

 RandomVar: the basic class to generate random variables from
different distributions.

 Simulation: this is the main engine of the library.

 BaseStat: the basic class to collect statistics.

 Trace: the basic class to trace the behavior of a system

MetaSimMetaSim –– ClassesClasses
 The main classesclasses of the framework are:

 Entities: they are the bricks with which is possible to model a system.
Every component of the system must be derived from this class. This
class provides basic functionalities for initialization and provides a
naming system.

 Events: simulations are based on the discrete event model. Events
are the basic objects for describing the temporal evolution of the

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
99

system.

 RandomVar: the basic class to generate random variables from
different distributions.

 Simulation: this is the main engine of the library.

 BaseStat: the basic class to collect statistics.

 Trace: the basic class to trace the system behavior.

Mutually
exclusive

MetaSimMetaSim –– EntitiesEntities
 It is the base class for every simulation object.

 It has an internal status, an interface for modifying the status,
and can contain one or more events.

 It can be referred also by its name (a string of characters) using
the static method find.

 A specific entity class should redefine the find function for

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1010

p y
doing type checking.

 Function newRun() resets the entity status at the beginning of every
run. It is called automatically at the beginning of every run, and
initializes the entity status. It can be redefined in order to perform the
desired changes, for example to change the parameters after some
runs. WarningWarning: in newRun() is not permitted to create/destroy new
entity objects.

MetaSimMetaSim –– EventsEvents
 It is the basic event class, it models an event in the simulator and

contains all the basic methods for handling it.

 To define a new ”type” of events in your system model, you need to
derive a class from this, overriding the virtual doitdoit()() method.

 This class also includes a static event queue, where all ”active” events
are enqueued.

 To insert an event in the queue, you can call the post() method specifying a

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1111

q , y p () p y g
triggering time.

 Events are ordered in the queue by triggering time.

 In case of two events with the same triggering time, events are ordered by
priority. The priority is for the object, and not for the class!

const int MetaSim::Event::_DEFAULT_PRIORITY = 8

 It is not possible to post an event in the past, but is possible to post an event in
the present.

MetaSimMetaSim –– Events (2)Events (2)
 If the event is marked as disposable, the main simulation loop

will delete it after it has been processed. Setting disp to true
gives the ownership of the object to the Simulation engine,
which will destroy after using it.

 When an event is ”triggered” in the simulation, its doit()
method is invoked.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1212

 In most of the cases, the doit() method simply calls a method
of an entity, which will be informally called ”handler” of the
event. In case the doit() method only calls the appropriate
event handler, you can use the template class GEvent< X >
instead of deriving a new class.

04/06/2016

3

MetaSimMetaSim –– RandomVarRandomVar

 This class implements a random variable: some derived classes
provide more detailed implementations depending on the type of
random variable.

 The class diagram is…

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1313

MetaSimMetaSim –– SimulationSimulation
 This singleton implements the simulation engine and some debugging

facilities.

 The main function is run(Ticklenght, size_t runs) that is
responsible for running the simulation for one or more times.

 After defining all the objects in a simulation, this function should be
invoked for running the simulation.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1414

 Example: Simulation::run(10000, 10);

 At the beginning and at the end of each run, initialization and finalization
are called. They are named Entity::newRun() and
Entity::endRun(), respectively.

 The getTime() returns the current globalTime in the simulation.

 The random seed is not initialized at every run, but it is left as it is.

MetaSimMetaSim –– BaseStatBaseStat
 This class is used to collect statistical values.

 The first two levels of abstraction are implemented, while the third is left to the
programmer, depending on his needs.

 Level 0 (BaseStat) implements the functions for doing statistic: it is initialized with the number of
experiments to be done, and has an array to record the data at the end of the simulation.

 It has two pure virtual function, probe() and record(), so no object of this class can be
instantiated.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1515

 It has some function to get the final stats, like getMean() and getConfInterval().

 Level 1 (StatMax) implements the function for collecting statistic; for example, the StatMax class
record the maximum value during an experiment.

 The user can add his own classes to this level, and he must implement the record() function
and the initValue() function.

 Level 2 implements the probe() for a single event. The user must write it depending on the
variable he needs to measure. When implementing a class of this level, the user must write the
probe function, which has to call the record() function with the appropriate value.

MetaSimMetaSim –– TraceTrace

 This class allows programmers to trace variables on a stream.
By default it opens a binary stream.

 The derived class TraceASCII put the traced values into an
ASCII stream.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1616

RTLIBRTLIB

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1717

RtLibRtLib

RtLib is a library for Real-Time
Kernels Simulation written in C++

 RtLib provides software modules needed to
simulate a real-time kernel;

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1818

simulate a real time kernel;

 It is based on MetaSim, so all classes are
derived from Entity.

04/06/2016

4

RtLibRtLib –– ModulesModules

 Some basic modules are:

 RTKernel: The base module of a real-time operating
system.

 Scheduler, TaskModel: Modules that provide methods to
handle task’ s priority queues and scheduling parameters.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
1919

p y q g p

 Task: Base class that implements task functionalities.

 Instr : The base class for every pseudo-instruction.

 TextTrace: Module that let each event to be traced in a text
file.

RtLibRtLib –– Modules (2)Modules (2)

 There are other simulation entities provided by RTLib
that are:

 CPU

 PollingServer

 SporadicServer

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2020

 Grub

 Supervisor

 Resource

 ResManager

RtLibRtLib –– RTKernelRTKernel
 An implementation of a real-time single processor kernel. It contains:

 a pointer to one CPU;

 a pointer to a Scheduler, which implements the scheduling policy;

 a pointer to a Resource Manager, which is responsible for resource access
related operations and thus implements a resource allocation policy;

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2121

 the set of task handled by this kernel.

 This implementation is quite general: it lets the user of this class the
freedom to adopt any scheduler derived form Scheduler and a
resource manager derived from ResManager or none.

 Also the implementation for real-time multiprocessor kernel is
available.

RtLibRtLib –– RTKernelRTKernel (2)(2)
 Method dispatch() compares currently executing task with the first

in the ready queue. If they are different, it forces a context switch.

 The corresponding schedule() and deschedule() functions of
the two tasks are called.

 Function onArrival() is invoked from the task onArrival function,
which in turn is invoked when a task arrival event is triggered. It
inserts the task in the ready queue and calls di t h();

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2222

inserts the task in the ready queue and calls dispatch();

 Function onEnd() is invoked from the task onEnd function, which in
turn is invoked when a task completes the execution of the current
instance.

 It removes the task from the ready queue, set current executing
pointer to NULL and calls dispatch().

RtLibRtLib –– Scheduler and Scheduler and TaskModelTaskModel
 Scheduler is an abstract class and cannot be instantiated. This class models a

generic real-time scheduler and it implements the Scheduler interface.

 Basically, this and the derived classes manage a priority queue in a convenient
manner, and offer a clean interface toward the kernel and the resource manager.

 The class keeps internally a repository of all tasks that can be scheduled by this
scheduler.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2323

RtLibRtLib –– Scheduler and Scheduler and TaskModelTaskModel (2)(2)
 Every time a task is ”added” to the scheduler, an appropriate TaskModel object is built, which

contains the scheduling paramenters of the task.

 In this way, we clearly separate the task parameters (like period, deadline, wcet, etc.) that are
contained in the task class, from the scheduling parameters that are contained in the
TaskModel derived classes.

 Tipically a scheduler contains a queue of task model’ s instances. The responsibility of this class is
to maintain the queue.

 Class TaskModel contains the scheduling parameters and a pointer to the task It is used by a

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2424

 Class TaskModel contains the scheduling parameters and a pointer to the task. It is used by a
scheduler to store the pointer to the task and the set of scheduling parameters.

 Each scheduler has its own task model. So the class inheritance trees of the task models and of
the schedulers are similar.

04/06/2016

5

RtLibRtLib –– TaskTask

 This class models a cyclic task.

 A cyclic task is a task that is cyclically activated by a timer (e.g.,
periodic task) or by an external event (e.g., sporadic or aperiodic
task).

 This class models a ”run-to-completion” semantic. At every activation
(also called arrival), an instance of the task is executed.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2525

(a so ca ed a a), a s a ce o e as s e ecu ed

 The task executes all the instructions in the sequence until the last
one, and then the instance is completed (task end).

 At the next activation, the task starts executing a new instance, and
the instruction pointer is reset to the beginning of the sequence.

RtLibRtLib –– Task (2)Task (2)

 When a job arrives (onArrival()), the corresponding deadline is set
(the class Task has no deadline parameter).

 It adds deadline event to check deadline misses, with the possibility
to abort the simulation in case of deadline miss (depending on the
abort parameter in the constructor).

 In order to create a Task the programmer must provide two

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2626

o de o c ea e a as e p og a e us p o de o
essential parameters:

o Interarrival-time time between consecutive activations. Set it to
NULL if you want just one activation.

o Relative Deadline Used to calculate the absolute deadline, when
the task arrives.

RtLibRtLib –– Task (3)Task (3)
 Another important feature is to provide pseudo-code to the created task:

function insertCode(const string)

 It parses and inserts instructions into this task. The input string must be a sequence
of instructions separated by a semicolon (also for last instruction). The instruction’ s
types will be described in the related subsection.

 Here is just an intuitive example of code:

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2727

t1.insertCode("fixed(4);wait(Res1);delay(unif(4,10));signal(Res1);delay(unif(10,20));");

 In this case, the task performs 5 instructions;

 the first one lasts 4 ticks;

 the second one is a wait on resource Res1;

 the third one has variable execution time, uniformely distributed between 4 and 10 ticks;

 the fourth one is a signal on resource Res1.

 the last instruction has variable execution time uniformely distributed between 10 and 20 ticks

RtLibRtLib –– Instruction Instruction
 The base class for every pseudo instruction, that represents

the code that a task executes.

 An instruction is identified by an execution time (possibly
random) and by a certain optional functionality.

 A task contains a list of instructions, that are executed in
sequence

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2828

sequence.

RtLibRtLib –– TaskStatTaskStat
 Using statistical modules provided by MetaSim (i.e., StatMean, StatMax, StatMean)

it is possible to create custom statistics related to task.

 Task statistics already implemented are:

 PreemptionStat< Measure > Computes the preemption count for each job

 GlobalPreemptionStat Computes the total number of preemptions.

 FinishingTimeStat< Measure > Computes the finishing time of each job.

 LatenessStat< Measure > Computes the lateness of each job of the task attached.

 TardinessStat< Measure > Computes the finishing time normalized by the relative deadline.

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
2929

 UtilizationStat< Measure > Computes the utilization of each job.

 MissPercentage Computes the miss percentage.

 MissCount Computes the number of deadline misses (single task or the entire task set).

 ConsumedPower< Measure >

 SavedPower< Measure >

 Some of them are created depending on the template class (Measure) that is
passed to it, in order to allow programmers to collect the mean, max, min of the
desired parameters within all the jobs of all the tasks that are attached to that class.

EXAMPLESEXAMPLES

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
3030

04/06/2016

6

MetaSimMetaSim ExamplesExamples

Few examples are provided for:

 Queue

Markov

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
3131

Markov

 Ethernet

MetaSimMetaSim ExamplesExamples

Few examples are provided for:

 Queue

Markov

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
3232

Markov

 Ethernet

RTLibRTLib ExamplesExamples

 Examples are provided for:

 CBS

 EDF

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
3333

 GRUB

 RM

 …

PROJECT PROJECT

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
3434

PROPOSALSPROPOSALS

Available projectsAvailable projects

Design and develop new algorithms
for RTSIM

Compare different solutions to handle
resources reservation under resource sharing

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
3535

 Implements semi-partitioned multiprocessor
scheduling algorithms

thank you!thank you!
Mauro MarinoniMauro Marinoni -- m.marinoni@sssup.itm.marinoni@sssup.it

ComponentComponent--Based Software Design Based Software Design –– LMESLMES
3636

http://retis.sssup.it/people/nino

