14/04/2016

Global vs Partitioned scheduling

& - U Single shared queue instead of multiple dedicated queues
Seuola Superiore etis

Sant’Anna Real-Time Systems Laboratory

AND PERCEPTION

TECHNOLOGIES

Global scheduling Partitioned scheduling
Gy [T EeE— gy

Gy [T WE—y
Gu [HTE—&

Global Scheduling in
Multiprocessor Real-Time

Systems
{Bin-packing| 4 Uniprocessor
{ problem | scheduling :
< | _problem
NP-hard in th
strongrse‘:se;e Well-known
Alessandra Melani various heuristics

adopted

Pros and cons Main (negative) results
U Global scheduling U Partitioned scheduling Ul Weak theoretical framework .
v/ Automatic load balancing v Supported by automotive = Unknown critical instant
v/ Lower avg. response time industry (e.g., AUTOSAR)))
S s .) 7 No migrations = G-EDF is not optimal
impler implementation
/ Optimal schedulers exist Isolation between cores = Any G-JLFP scheduler is not optimal
- . v Mature schedulin:
7 More efficient reclaiming framework g = Optimality only for implicit deadlines
Migration costs ¥ Cannot exploit unused

’ = Many sufficient tests (most of them incomparable)
N capacity
Inter-core synchronization

® Rescheduling not convenient

Loss of cache affinity .
¥ NP-hard allocation

¥ X X X

Weak scheduling framework

Unknown critical instant Unknown critical instant
U Critical instant U Synchronous periodic arrival of jobs is not a critical
= Job release time such that response-time is maximized instant for muItiprocessors

U Uniprocessor Synchronous periodic

= Liu & Layland: synchronous release sequence yields worst-case CuD.T; situation
response-times 71 =(1,1,2)
.) T2 =(1,13)
o Synchronous: all tasks release a job at time 0 73 = (5,6,6)

o Assuming constrained deadlines and no deadline misses .)
The second job of t; is

. delayed by one unit
[Multiprocessors

= No general critical instant is known!) o]
We need to find pessimistic situations to derive sufficient

= Itis not necessarily the synchronous release sequence... schedulability tests

14/04/2016

G-EDF is not optimal

E Scheduled on
T3 processor 1
Scheduled on

processor 2

Ty

N —

U Uniprocessors 1 Multiprocessors
= G-EDF is not optimal

= EDF is optimal
= Key problem: sequentiality of tasks

= Two processors available for t;,
but it can only use one

Any G-JLFP scheduler is not optimal
Two processors, three tasks, T; = 15, C; = 10

T

E Scheduled on

Ty processor 1

Scheduled on
processor 2

T3

|

[Any job-level fixed-priority scheduler is not optimal

Synchronous release time

One of the three jobs is scheduled last under any JLFP policy

Deadline miss unavoidable!

Scheduled on
processor 1

D Scheduled on
processor 2

G-JLFP Tz [

x T3

T1
G-JLDP Scheduled on
Ty processor 1
V D Scheduled on
‘[3 processor 2

¥
\
\
\

‘{ Job priority changes! ‘

) G-JLDP: Global Job Level Dynamic Priority; the priority of each
job may change over time

Taxonomy of multiprocessor
scheduling algorithms

Optimal

Uniprocessor

Multiprocessor

Not
optimal
anymore

Proportionate fairness

[P-fair: notion of “fair share of processor”

0 If a schedule is P-fair, no implicit deadline will be missed —
optimal algorithm

Basic principle:
U Timeline is divided into equal length slots
[Task period and execution time are multiples of the slot size

[Each task receives amount of slots proportional to its task
utilization
If a task has utilization U = % then it will have been allocated U - t time slots
for execution in the interval [0, t]

Proportionate fairness

Example:

d C1:(52:32T1:T2:6(U1:U2:%)

[Quantum-based: C; € Z*,T; € Z*; scheduling decisions can only occur
at integers

1 Atask executes during a whole time slot or not execute at all in that
time slot

14/04/2016

Proportionate fairness

13

—_—— Y

C:
lag(ty,t) =t- (#) — allocated(t;, t)

Error “Fluid” Real
execution: execution in
should have [0,0)
executed in
[0,2)

1 Goal: find an algorithm that minimizes max |lag(t, t)|

[Which are the values that lag(t;) can take?

Proportionate fairness
0 Example: t={(T, =5, ¢; =2), (T, =7, C, =4)}, 1 processor
No task executes in [0,1)
T LI—U_LU_‘ lag(‘rl,l):l-(é)—o #0
T, lag(tz,) =1-(3) =0 #0

T H Task t; executes in [0,1) lag(t;,1) =0
! =1-(is i ibl
lag(r,) =1-(3) -1 =0 is impossible

T, lag(‘rz,l)=1-(§)—0 #0

Task t, executes in [0,1)
T I _ 2

lag(r,) =1-(2)=0 %0
T, H lag(r, D =1-(2) =1 =0

Proportionate fairness

O Example:t={(T, =4, ¢, =1), (T, =4, C,=1),(T3=4, C;=1),(T, =4, ¢, =1},
one processor

Tlﬁ B lag<r1.1)=1-(%)—1
v | | |
v | | |]]
AN

3
4
3

1
lag(ty,3) =3 (Z) —-0= 7

—1 < lag(t;t) < 1 seems
to be the worst-case lag

Proportionate fairness

) Definition (P-fair schedule):
a schedule is P-fair if and only if v t; and v t: —1 < lag(t;,t) < 1

lag (v, t)
+/-1

Execution domain of P-fair

Slope U;

Proportionate fairness

1 Theorem
A P-fair schedule is optimal in the sense of feasibility for a set of periodic
tasks with implicit deadlines

) Proof
A schedule S is P-fair
= -1<lag(t,t) <1
= —-1<lag(t;,kT}) <1
>-1< kTi% — allocated (T, kT;) < 1
= —1 < kC; — allocated (t;, kT;) < 1
= kC; — allocated (t;, kT;) = 0
= kC; = allocated (t;, kT;)
= allocated(t;, (k +1)T;) — allocated (t;, kT;) = C;
= 1; executes C; time-units during [kT;, (k + 1)T;]
= 1; meets every deadline in periodic scheduling

The algorithm PF

) How to generate a P-fair schedule?

= Execute all urgent tasks
o Atask t; is urgent at time ¢ if
lag(t;,t) > 0 and lag(t;,t + 1) = 0 if 1; executes

= Do not execute tnegru tasks
o Atask t; is tnegru at time ¢ if
lag(t;,t) < 0and lag(t;,t + 1) < 0 if t; does not execute

= For the other tasks, execute the task that has the least t such
that lag(t;, t) > 0

14/04/2016

The algorithm PF

[l Results

The algorithm PF assigns priorities to tasks at every time slot —
Job-level dynamic priority (JLDP) scheduling policy

Theorem: the schedule generated by algorithm PF is P-fair
o Proof: [Baruah et al., ‘96]

The algorithm PF

1 Example: t={(T, =5,¢, =2), (T, =5, ¢, =3)},0ne

processor
At time 0, any of the two tasks
T may be scheduled
At time 1: At time 2 if t, executes:
[t =1 2 1= 3 L 2)=2 3 1= !
ag(n, D=1-(g)-1=-% ag(t2)=2-(5)-1=7¢
3 3
lag(ty, 1) =1- g~ 0= B T, is urgent at time 11!

The algorithm PF

[Example: t={(T, =5,¢, =2), (T, =5, C, =3)},0ne

processor
o bl 11111
At time 2: At time 3 if T, executes:
I 2)=2 2 1= ! ! 3)=3 z 1= !
ag(ty,2) = 3 =-3 ag(ty,3) = g =z
3 1 3 1
lag(T2,2)=2-(§>—1=§ lag(T2,3)=3-(§>—Z=—§

T, is scheduled since it has the least t such that lag is positive

The algorithm PF

[Example: t = {(T, =5,¢, =2), (T, =5, C, =3)},0ne
processor

At time 3:
2
lag(ty,3) =3- <§> -1=

At time 4 if t; executes:

2 2
lag(ty,4) = 4(5) —-2= -z

Ul = 1=

lag(t,,3) =3 (g) —-2=-

1, is scheduled since it has the least t such that lag is positive

The algorithm PF

[Example: t={(T, =5,¢, =2), (T, =5, ¢, =3) },0ne
processor

At time 4: At time 5 if T, executes:
2 2 3
lag(tl,4)=4-<g>—2=—§ lag(t2,5)=5-(§>—3=0
lag(t,,4) =4~ (g) —2= é T, is urgent at time 41!

...and so on...

Proportionate fairness

[Exact test of existence of a P-fair schedule:
n

Ui =m
i=1
[Full processor utilization!

Disadvantages
[High number of preemptions
1 High number of migrations
[Optimal only for implicit deadlines

14/04/2016

(Other) negative results

) No optimal algorithm is known for constrained or arbitrary
deadline systems

1 No optimal online algorithm is possible for arbitrary
collections of jobs [Leung and Whitehead]

[Even for sporadic task systems, optimality requires
clairvoyance [Fisher et al., 2009]

= Many sufficient schedulability tests exist, according to
different metrics of evaluation

[Percentage of schedulable task-sets detected = RTA-based test

RTA-based test

] Response time analysis

In a uniprocessor system, it provides a necessary and sufficient
test for fixed-priority preemptive scheduling with constrained
deadlines

3 |
7 R 1) Exact
R® = Cl+ C interference
i ! ! Z 10 from higher-
priority tasks

In a multiprocessor system, it provides an only sufficient
schedulability test

How to compute interference from higher-priority tasks?

Task under analysis

Interference of t, ont; M

Global FP and Global EDF
are work-conserving
schedulers

Work-conserving scheduler: it never idles a
core if there is workload ready to be executed

Task under analysis

Interference of t; on 1;

For work-conserving 1
schedulers: a ready Li=—) Ii
job cannot execute = ’
only if all m 1
processors are busy R =Ci+I;(R) =Ci + ;Z Iik(Ri)

k#i

We can safely assume that the interference is distributed across all
m processors

Limiting the interference

It is sufficient to consider at most the portion (D; — C; + 1) of each
term I¥ in the sum

Task under analysis

Interference of t, ont; M

It can be proved that R; is given by the fixed point iteration of:

1
Ri= C;+— > min(IER), D; = C; + 1)

k#i

Bounding the interference

[Exactly computing the interference is complex
= No critical instant scenario

[Pessimistic assumptions:

1. Bound the interference of a task with the workload
k
IF(R) < Wi(Ry)

2. Use an upper-bound to the workload

14/04/2016

Bounding the workload

Consider a pessimistic situation in which:

= The first job executes as close as possible to its deadline
= Successive jobs execute as soon as possible

S Il

Wi (L) < wy (L) = Ni(L) - C + &, (L)

Where:
L+ Dy —Cp
T— Number of jobs excluding the last one
k

Ni(L) = I

Sk(L) = min(Ck,L + Dy — C, — Nk(L) . Tk) Last job

RTA for generic global schedulers

An upper-bound on the worst-case response time of z; is given
by the fixed point iteration of:

1
Ri — Ci + Ez min(wk(Ri),Di - Ci + 1)

k=#i

The slack of ; is at least: S; = D; — R;

Improvement using slack values

Consider a pessimistic situation in which:
= The first job executes as close as possible to its deadline
= Successive jobs execute as soon as possible

i) 1 im Tl |

L

Wi (L) < wi (L, Sk) = Ni(L,Si) * Ci + & (L, Si)

Where:
L+ Dk - Sk - Ck Number of jobs
Ni (L, S) = lTik excluding the last one

ex(L,Sp) = min(Cy, L + Dy — Cy — S — N (L, Ry,) *Ty) Lastjob

Improvement using slack values

Consider a pessimistic situation in which:
= The first job executes as close as possible to its deadline
= Successive jobs execute as soon as possible

A 1 e |

L
Wi (L) < wi (L, Ry) = N (L, Ry) * Ci + & (L, Ry)

Where:

Ni(L,Ry) = IMJ Number of jobs

Tk excluding the last one

ex(L, R) = min(Cy, L + Ry — C — Ni(L, R) * T) Lastjob

RTA for generic global schedulers

An upper-bound on the worst-case response time of z; is given
by the fixed point iteration of:

1
Ri «— Ci + EZ min(wk(Ri,Rk), Di - Ci + 1)

k#i

If a fixed point R; < D; is reached for every task in the system,
the task set is schedulable with any work-conserving global
scheduler

Iterative schedulability test

1. All response times R; initialized to C;
2. Compute response time bound for tasks 1, ...,n
= [f larger than old value — update R;
= If R; > D;, mark as temporarily not schedulable

3. If no response time has been updated for tasks 1, ...,n and
all tasks have R; < D;— return success

4. If no response time has been updated for tasks 1, ...,n and
R; > D; for some task — return fail

5. Otherwise, return to point 2

14/04/2016

RTA refinement for Fixed Priority
U The interference from lower priority tasks is always null
IF(R) =0,Vk > i

[An upper bound on the worst-case response time of 7; can be
given by the fixed point iteration of

1
Ri — Ci + Ez min(wk(Ri,Rk), Di - Ci + 1)

k<i

RTA refinement for EDF

1 Adifferent bound can be derived analyzing the worst-case

workload in a situation in which:

= The interfering and interfered tasks have a common
deadline

= All jobs execute as late as possible
k
LF(Ry) < wy(Dy, Ry)

Rk Dy T«

i | | | fem

RTA refinement for EDF
B i

T l

7|

! Di . Di
wi(D;, R) < T Cx + min(Cy,| D; — Sy — T Ty
k « o

[An upper-bound on the worst-case response time of ; is
given by the fixed point iteration of

1
Ry« Ci+ ;Z min(wy (R;, Ry), Dy — C; + 1, wi (D, Ry.))

k#i

Alessandra Melani
alessandra.melani@s:

Complexity

[Pseudo-polynomial complexity
[Fast average behavior
[Lower complexity for Fixed Priority systems
= Response times are updated in decreasing priority order

[Multiple rounds may be needed in the general case

