
14/04/2016

1

1

Global Scheduling in
Multiprocessor Real-Time

Systems

Alessandra Melani

2

Global vs Partitioned scheduling
 Single shared queue instead of multiple dedicated queues

Bin-packing
problem

Uniprocessor
scheduling

problem

+

NP-hard in the
strong sense;

various heuristics
adopted

Well-known

t2 t1t3t4t5 t3

t1t4t5

t2

Global scheduling Partitioned scheduling

t1

t2

t3

t1

t2

3

Pros and cons

Global scheduling

Automatic load balancing

Lower avg. response time

Simpler implementation

Optimal schedulers exist

More efficient reclaiming

Migration costs

Inter-core synchronization

Loss of cache affinity

Weak scheduling framework

Partitioned scheduling

Supported by automotive
industry (e.g., AUTOSAR)

No migrations

Isolation between cores

Mature scheduling
framework

Cannot exploit unused
capacity

Rescheduling not convenient

NP-hard allocation

4

Main (negative) results

Weak theoretical framework

 Unknown critical instant

 G-EDF is not optimal

 Any G-JLFP scheduler is not optimal

 Optimality only for implicit deadlines

 Many sufficient tests (most of them incomparable)

5

Unknown critical instant

Critical instant

 Job release time such that response-time is maximized

Uniprocessor

 Liu & Layland: synchronous release sequence yields worst-case
response-times

o Synchronous: all tasks release a job at time 0

o Assuming constrained deadlines and no deadline misses

Multiprocessors

 No general critical instant is known!

 It is not necessarily the synchronous release sequence…

6

Unknown critical instant

Synchronous periodic arrival of jobs is not a critical
instant for multiprocessors

Synchronous periodic
situation

The second job of τଵ is
delayed by one unit

We need to find pessimistic situations to derive sufficient
schedulability tests

࣎૚ ൌ ૚, ૚, ૛
࣎૛ ൌ ሺ૚, ૚, ૜ሻ
࣎૜ ൌ ሺ૞, ૟, ૟ሻ

ଵܲ

ଶܲ

ଵܲ

ଶܲ

,࢏࡯ ,࢏ࡰ ࢏ࢀ

14/04/2016

2

7

G-EDF is not optimal

Uniprocessors
 EDF is optimal

 Multiprocessors
 G-EDF is not optimal

 Key problem: sequentiality of tasks

 Two processors available for τଵ,

but it can only use one

τଵ

τଶ

τଷ

τସ

τହ

Scheduled on
processor 1

Scheduled on
processor 2

8

Any G-JLFP scheduler is not optimal

Two processors, three tasks, ௜ܶ ൌ ௜ܥ ,15 ൌ 10

 Any job-level fixed-priority scheduler is not optimal

 Synchronous release time

 One of the three jobs is scheduled last under any JLFP policy

 Deadline miss unavoidable!

τଵ

τଶ

τଷ

Scheduled on
processor 1

Scheduled on
processor 2

9

G-JLDP required for optimality

Job priority changes!

τଵ
τଶ

τଷ

Scheduled on
processor 1

Scheduled on
processor 2

τଵ
τଶ

τଷ

Scheduled on
processor 1

Scheduled on
processor 2

G-JLFP

G-JLDP

 G-JLDP: Global Job Level Dynamic Priority; the priority of each
job may change over time

10

Taxonomy of multiprocessor
scheduling algorithms

Uniprocessor
Algorithms

LLFEDF

Partitioned
Algorithms

Global
Algorithms

Global
EDF

Dedicated
Global

Algorithms

Partitioned
EDF Optimal

Algorithms

EKG

DP-Wrap

pfair

LLREF

Uniprocessor

Multiprocessor

RM

Partitioned
FP

Global
FP

DM

Optimal

Not
optimal

anymore

11

Proportionate fairness

 P-fair: notion of “fair share of processor”

 If a schedule is P-fair, no implicit deadline will be missed →
optimal algorithm

Basic principle:

 Timeline is divided into equal length slots

 Task period and execution time are multiples of the slot size

 Each task receives amount of slots proportional to its task
utilization
 If a task has utilization ܷ ൌ

஼೔
்೔

, then it will have been allocated ܷ ∙ ݐ time slots

for execution in the interval ሾ0, ሿݐ

12

Proportionate fairness
Example:

 ଵܥ ൌ ଶܥ ൌ 3;	 ଵܶ ൌ ଶܶ ൌ 6	ሺ ଵܷ ൌ ଶܷ ൌ
ଵ

ଶ
ሻ

 Quantum-based: ܥ௜ ∈ 	Ժା, ௜ܶ ∈ 	 Ժା; scheduling decisions can only occur
at integers

 A task executes during a whole time slot or not execute at all in that
time slot

τଵ

τଶ

14/04/2016

3

13

Proportionate fairness

݈ܽ݃ τ௜, ݐ ൌ ݐ ∙
௜ܥ
௜ܶ
െ ,ሺτ௜݀݁ݐܽܿ݋݈݈ܽ ሻݐ

 Goal: find an algorithm that minimizes max
௧
|݈ܽ݃ሺτ௜, |ሻݐ

 Which are the values that ሻ࢏ሺ࣎ࢍࢇ࢒ can take?

Error “Fluid”
execution:

should have
executed in

ሾ0, ሻݐ

Real
execution in

ሾ0, ሻݐ

14

 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 7, ଶܥ ൌ 4 , 1 processor

Proportionate fairness

τଵ

τଶ

τଵ

τଶ

τଵ

τଶ

No task executes in ሾ0,1ሻ

݈ܽ݃ τଵ, 1 ൌ 1 ∙ ଶ

ହ
െ 0	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∙ ସ

଻
െ 0	 ് 0

Task τଵ executes in ሾ0,1ሻ

݈ܽ݃ τଵ, 1 ൌ 1 ∙ ଶ

ହ
െ 1	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∙ ସ

଻
െ 0	 ് 0

Task τଶ executes in ሾ0,1ሻ

݈ܽ݃ τଵ, 1 ൌ 1 ∙ ଶ

ହ
െ 0	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∙ ସ

଻
െ 1	 ് 0

݈ܽ݃ τ௜, 1 ൌ 0
is impossible

15

Proportionate fairness

 Example: τ ൌ ଵܶ ൌ 4, ଵܥ ൌ 1 , ଶܶ ൌ 4, ଶܥ ൌ 1 , ଷܶ ൌ 4, ଷܥ ൌ 1 , ଶܶ ൌ 4, ଶܥ ൌ 1 ,

one processor

			݈ܽ݃ τଵ, 1 ൌ 1 ∙
1
4

െ 1 ൌ െ
3
4

݈ܽ݃ τସ, 3 ൌ 3 ∙
1
4

െ 0 ൌ
3
4

τଵ

τଶ

τଷ

τସ
െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1 seems
to be the worst-case lag

16

 Definition (P-fair schedule):

a schedule is P-fair if and only if ∀	τ௜ and ∀	ݐ: െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1

൅/െ	1

Execution domain of P-fair

ݐ

݈ܽ݃ሺτ௜, ሻݐ

Slope ௜ܷ

Proportionate fairness

17

Proportionate fairness
 Theorem

A P-fair schedule is optimal in the sense of feasibility for a set of periodic
tasks with implicit deadlines

 Proof

A schedule ܵ is P-fair
⇒ െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1

⇒ െ1 ൏ ݈ܽ݃ τ௜, ݇ ௜ܶ ൏ 1

⇒ െ1 ൏ ݇ ௜ܶ
஼೔
்೔
	െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൏ 1

⇒ െ1 ൏ ௜ܥ݇ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൏ 1
⇒ ௜ܥ݇ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൌ 0

⇒ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ሺ݇ ൅1ሻ ௜ܶ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൌ ௜ܥ

⇒ ௜ܥ݇ ൌ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ

⇒ τ௜ executes ܥ௜ time-units during ݇ ௜ܶ, ݇ ൅ 1 ௜ܶ

⇒ τ௜ meets every deadline in periodic scheduling

18

The algorithm PF
 How to generate a P-fair schedule?

 Execute all urgent tasks

o A task τ௜ is urgent at time ݐ if

݈ܽ݃ τ௜, ݐ ൐ 0 and ݈ܽ݃ሺτ௜, ݐ ൅ 1ሻ ൒ 0 if τ௜ executes

 Do not execute tnegru tasks

o A task τ௜ is tnegru at time ݐ if

݈ܽ݃ τ௜, ݐ ൏ 0 and ݈ܽ݃ τ௜, ݐ ൅ 1 ൑ 0 if τ௜ does not execute

 For the other tasks, execute the task that has the least ݐ such
that ݈ܽ݃ τ௜, ݐ ൐ 0

14/04/2016

4

19

The algorithm PF
 Results

 The algorithm PF assigns priorities to tasks at every time slot →
Job-level dynamic priority (JLDP) scheduling policy

 Theorem: the schedule generated by algorithm PF is P-fair

o Proof: [Baruah et al., ‘96]

20

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one

processor

τଵ

At time 1:

			݈ܽ݃ τଵ, 1 ൌ 1 ∙
2
5

െ 1 ൌ െ
3
5

݈ܽ݃ τଶ, 1 ൌ 1 ∙
3
5

െ 0 ൌ
3
5

At time 0, any of the two tasks
may be scheduled

At time 2 if τଶ executes:

݈ܽ݃ τଶ, 2 ൌ 2 ∙
3
5

െ 1 ൌ
1
5

τଶ is urgent at time 1!!

21

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one

processor

τଵ

At time 2:

			݈ܽ݃ τଵ, 2 ൌ 2 ∙
2
5

െ 1 ൌ െ
1
5

݈ܽ݃ τଶ, 2 ൌ 2 ∙
3
5

െ 1 ൌ
1
5

At time 3 if τଶ executes:

݈ܽ݃ τଵ, 3 ൌ 3 ∙
2
5

െ 1 ൌ
1
5

݈ܽ݃ τଶ, 3 ൌ 3 ∙
3
5

െ 2 ൌ െ
1
5

τଶ is scheduled since it has the least ݐ such that lag is positive

22

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one

processor

τଵ

At time 3:

			݈ܽ݃ τଵ, 3 ൌ 3 ∙
2
5

െ 1 ൌ
1
5

݈ܽ݃ τଶ, 3 ൌ 3 ∙
3
5

െ 2 ൌ െ
1
5

At time 4 if τଵ executes:

݈ܽ݃ τଵ, 4 ൌ 4 ∙
2
5

െ 2 ൌ െ
2
5

τଵ is scheduled since it has the least ݐ such that lag is positive

23

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one

processor

τଵ

At time 4:

			݈ܽ݃ τଵ, 4 ൌ 4 ∙
2
5

െ 2 ൌ െ
2
5

݈ܽ݃ τଶ, 4 ൌ 4 ∙
3
5

െ 2 ൌ
2
5

At time 5 if τଶ executes:

݈ܽ݃ τଶ, 5 ൌ 5 ∙
3
5

െ 3 ൌ 0

τଶ is urgent at time 4!!

…and so on…

24

Proportionate fairness

 Exact test of existence of a P-fair schedule:

෍ ௜ܷ ൑ ݉

௡

௜ୀଵ

 Full processor utilization!

Disadvantages

 High number of preemptions

 High number of migrations

 Optimal only for implicit deadlines

14/04/2016

5

25

(Other) negative results

 No optimal algorithm is known for constrained or arbitrary
deadline systems

 No optimal online algorithm is possible for arbitrary
collections of jobs [Leung and Whitehead]

 Even for sporadic task systems, optimality requires
clairvoyance [Fisher et al., 2009]

⇒ Many sufficient schedulability tests exist, according to
different metrics of evaluation

 Percentage of schedulable task-sets detected ⟹ RTA-based test

26

 Response time analysis

 In a uniprocessor system, it provides a necessary and sufficient
test for fixed-priority preemptive scheduling with constrained
deadlines

 In a multiprocessor system, it provides an only sufficient
schedulability test

 How to compute interference from higher-priority tasks?

RTA-based test

Exact
interference
from higher-
priority tasks

27

Introducing the interference

k

Task under analysisτi
Interference of τ௞ on τ௜

τi

τ3 τ1

τ2 τ5

τ2 τ3

τi

τi

τ3 τ6

τ5 τ4

τ7 τ8

ri ri + Ri

m

Global FP and Global EDF
are work-conserving

schedulers

Work-conserving scheduler: it never idles a
core if there is workload ready to be executed

௜ܫ ൌ
1
݉
෍ܫ௜,௞
௞ஷ௜

28

Introducing the interference

k

Task under analysisτi
Interference of τ௞ on τ௜

ܴ௜ ൌ ௜ܥ ൅ ௜ܫ ܴ௜ ൌ ௜ܥ ൅
1
݉
෍ܫ௜

௞ሺܴ௜ሻ
௞ஷ௜

τi

τ3 τ1

τ2 τ5

τ2 τ3

τi

τi

τ3 τ6

τ5 τ4

τ7 τ8

ri ri + Ri

m

For work-conserving
schedulers: a ready
job cannot execute

only if all m
processors are busy

We can safely assume that the interference is distributed across all
m processors

௜ܫ ൌ
1
݉
෍ܫ௜,௞
௞ஷ௜

29

Limiting the interference

ܴ௜ ൌ ௜ܥ ൅
1
݉
෍min	ሺܫ௜

௞ ܴ௜ , ௜ܦ െ ௜ܥ ൅ 1ሻ
௞ஷ௜

It is sufficient to consider at most the portion ሺܦ௜ െ ௜ܥ ൅ 1ሻ of each
term ܫ௜

௞ in the sum

It can be proved that ܴ௜ is given by the fixed point iteration of:

k

Task under analysisτi
Interference of τ௞ on τ௜

τi

τ3 τ1

τ2 τ5

τ2 τ3

τi

τi

τ3 τ6

τ5 τ4

τ7 τ8

ri ri + Ri

m

30

Bounding the interference

௜ܫ
௞ ܴ௜ ൑ ௞ܹሺܴ௜ሻ

 Exactly computing the interference is complex
 No critical instant scenario

 Pessimistic assumptions:

1. Bound the interference of a task with the workload

2. Use an upper-bound to the workload

14/04/2016

6

31

Bounding the workload

Consider a pessimistic situation in which:

 The first job executes as close as possible to its deadline
 Successive jobs execute as soon as possible

Ckk
L

Dk

Ck Ck Ck

Tk εk

௞ܹ ܮ ൑ ௞ݓ ܮ ൌ ௞ܰ ܮ ∙ ௞ܥ ൅ ሻܮ௞ሺߝ
Where:

௞ܰ ܮ ൌ
ܮ ൅ ௞ܦ െ ௞ܥ

௞ܶ

ε௞ ܮ ൌ min	ሺܥ௞, ܮ ൅ ௞ܦ െ ௞ܥ െ ௞ܰሺܮሻ ∙ ௞ܶሻ

Number of jobs excluding the last one

Last job

32

RTA for generic global schedulers

An upper-bound on the worst-case response time of ߬௜ is given
by the fixed point iteration of:

ܴ௜ ← ௜ܥ ൅
1
݉
෍min	ሺݓ௞ ܴ௜ , ௜ܦ െ ௜ܥ ൅ 1ሻ
௞ஷ௜

The slack of ߬௜ is at least: ௜ܵ ൌ ௜ܦ െ ܴ௜

Ri Si

33

Improvement using slack values

Consider a pessimistic situation in which:
 The first job executes as close as possible to its deadline
 Successive jobs execute as soon as possible

Ckk
L

Dk

Ck Ck Ck

TkSk

௞ܹ ܮ ൑ ௞ݓ ,ܮ ܵ௞ ൌ ௞ܰ ,ܮ ܵ௞ ∙ ௞ܥ ൅ ,ܮ௞ሺߝ ܵ௞ሻ

Where:

௞ܰ ,ܮ ܵ௞ ൌ
ܮ ൅ ௞ܦ െ ܵ௞ െ ௞ܥ

௞ܶ

ε௞ ,ܮ ܵ௞ ൌ min	ሺܥ௞, ܮ ൅ ௞ܦ െ ௞ܥ െ ܵ௞ െ ௞ܰሺܮ, ܴ௞ሻ ∙ ௞ܶሻ

Number of jobs
excluding the last one

Last job

34

Improvement using slack values

௞ܹ ܮ ൑ ௞ݓ ,ܮ ܴ௞ ൌ ௞ܰ ,ܮ ܴ௞ ∙ ௞ܥ ൅ ,ܮ௞ሺߝ ܴ௞ሻ

Where:

௞ܰ ,ܮ ܴ௞ ൌ
ܮ ൅ ܴ௞ െ ௞ܥ

௞ܶ

ε௞ ,ܮ ܴ௞ ൌ min	ሺܥ௞, ܮ ൅ ܴ௞ െ ௞ܥ െ ௞ܰሺܮ, ܴ௞ሻ ∙ ௞ܶሻ

Number of jobs
excluding the last one

Last job

Ckk
L

Dk

Ck Ck Ck

TkRk

Consider a pessimistic situation in which:
 The first job executes as close as possible to its deadline
 Successive jobs execute as soon as possible

35

RTA for generic global schedulers

An upper-bound on the worst-case response time of ߬௜ is given
by the fixed point iteration of:

ܴ௜ ← ௜ܥ ൅
1
݉
෍min	ሺݓ௞ ܴ௜, ܴ௞ , ௜ܦ െ ௜ܥ ൅ 1ሻ
௞ஷ௜

If a fixed point ܴ௜ ൑ ௜ܦ is reached for every task in the system,
the task set is schedulable with any work-conserving global
scheduler

36

Iterative schedulability test

1. All response times ܴ௜ initialized to ܥ௜
2. Compute response time bound for tasks 1, … , ݊
 If larger than old value ⟶ update ܴ௜
 If ܴ௜ ൐ ௜, mark as temporarily not schedulableܦ

3. If no response time has been updated for tasks 1, … , ݊	 and
all tasks have ܴ௜ ൑ ⟶௜ܦ return success

4. If no response time has been updated for tasks 1, … , ݊ and
ܴ௜ ൐ ௜ܦ for some task ⟶ return fail

5. Otherwise, return to point 2

14/04/2016

7

37

RTA refinement for Fixed Priority

 The interference from lower priority tasks is always null

௜ܫ
௞ ܴ௜ ൌ 0, ∀݇ ൐ ݅

 An upper bound on the worst-case response time of ߬௜ can be
given by the fixed point iteration of

ܴ௜ ← ௜ܥ ൅
1
݉
෍min	ሺݓ௞ ܴ௜, ܴ௞ , ௜ܦ െ ௜ܥ ൅ 1ሻ
௞ழ௜

38

RTA refinement for EDF

 A different bound can be derived analyzing the worst-case
workload in a situation in which:

 The interfering and interfered tasks have a common
deadline

 All jobs execute as late as possible

௜ܫ
௞ ܴ௜ ൑ ,௜ܦ௞′ሺݓ ܴ௞ሻ

Ck
k

Dk

Ck Ck Ck

Tk
Rk

i
Di

39

RTA refinement for EDF

 An upper-bound on the worst-case response time of ߬௜ is
given by the fixed point iteration of

௞ݓ
ᇱ ,௜ܦ ܴ௞ ൑

௜ܦ
௞ܶ
௞ܥ ൅ min	 ,௞ܥ ௜ܦ െ ܵ௞ െ

௜ܦ
௞ܶ

௞ܶ
0

Ck
k

Dk

Ck Ck Ck

Tk
Rk

i
Di

ܴ௜ ← ௜ܥ ൅
1
݉
෍min	ሺݓ௞ ܴ௜, ܴ௞ , ௜ܦ െ ௜ܥ ൅ ௞ݓ,1

ᇱ ,௜ܦ ܴ௞ ሻ
௞ஷ௜

Sk

40

Complexity

 Pseudo-polynomial complexity

 Fast average behavior

 Lower complexity for Fixed Priority systems

 Response times are updated in decreasing priority order

 Multiple rounds may be needed in the general case

41

Thank you!
Alessandra Melani
alessandra.melani@sssup.it

