

Scuola Superiore Sant'Anna
 INSTITUTE OF COMPUTATION,
 INNOVATION,
 AND PERCEPTION
 TECHNOLOGIES

Retis
 Real-Time Systems Laboratory

Global Scheduling in Multiprocessor Real-Time Systems

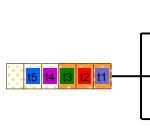
Alessandra Melani

 1

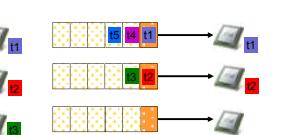
Global vs Partitioned scheduling

- Single shared queue instead of multiple dedicated queues

Global scheduling



Partitioned scheduling



Bin-packing problem

+

Uniprocessor scheduling problem

NP-hard in the strong sense; various heuristics adopted

Well-known

 2

Pros and cons

- Global scheduling**
 - ✓ Automatic load balancing
 - ✓ Lower avg. response time
 - ✓ Simpler implementation
 - ✓ Optimal schedulers exist
 - ✓ More efficient reclaiming
 - ✗ Migration costs
 - ✗ Inter-core synchronization
 - ✗ Loss of cache affinity
 - ✗ Weak scheduling framework
- Partitioned scheduling**
 - ✓ Supported by automotive industry (e.g., AUTOSAR)
 - ✓ No migrations
 - ✓ Isolation between cores
 - ✓ Mature scheduling framework
 - ✗ Cannot exploit unused capacity
 - ✗ Rescheduling not convenient
 - ✗ NP-hard allocation

 3

Main (negative) results

- Weak theoretical framework**
- Unknown critical instant
- G-EDF is not optimal
- Any G-JLFP scheduler is not optimal
- Optimality only for implicit deadlines
- Many sufficient tests (most of them incomparable)

 4

Unknown critical instant

- Critical instant**
 - Job release time such that **response-time** is maximized
- Uniprocessor**
 - Liu & Layland: synchronous release sequence yields worst-case response-times
 - Synchronous: all tasks release a job at time 0
 - Assuming constrained deadlines and no deadline misses
- Multiprocessors**
 - No general critical instant is known!
 - It is not necessarily the synchronous release sequence...

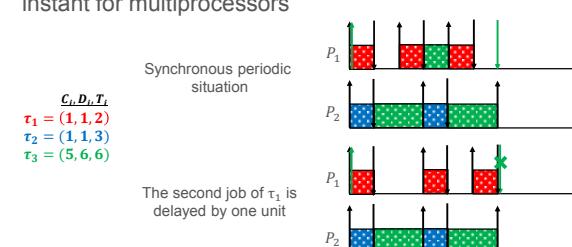
 5

Unknown critical instant

- Synchronous periodic arrival of jobs is not a critical instant for multiprocessors

Synchronous periodic situation

C_i, D_i, T_i
 $\tau_1 = (1, 1, 2)$
 $\tau_2 = (1, 1, 3)$
 $\tau_3 = (5, 6, 6)$



The second job of τ_1 is delayed by one unit

We need to find pessimistic situations to derive **sufficient** schedulability tests

 6

G-EDF is not optimal

Uniprocessors

- EDF is optimal

Multiprocessors

- G-EDF is not optimal
- Key problem: **sequentiality** of tasks
- Two processors available for τ_1 , but it can only use one

7

Any G-JLFP scheduler is not optimal

Two processors, three tasks, $T_i = 15$, $C_i = 10$

Any job-level fixed-priority scheduler is not optimal

- Synchronous release time
- One of the three jobs is scheduled last under any JLFP policy
- Deadline miss unavoidable!

8

G-JLDP required for optimality

G-JLFP

G-JLDP

Job priority changes!

G-JLDP: Global Job Level Dynamic Priority; the priority of each job may change over time

9

Taxonomy of multiprocessor scheduling algorithms

Optimal

Uniprocessor

Multiprocessor

Not optimal anymore

Partitioned Algorithms

Global Algorithms

Dedicated Global Algorithms

Optimal Algorithms

10

Proportionate fairness

P-fair: notion of “fair share of processor”

If a schedule is P-fair, no **implicit** deadline will be missed → optimal algorithm

Basic principle:

- Timeline is divided into **equal length slots**
- Task period and execution time are multiples of the slot size
- Each task receives amount of slots **proportional to its task utilization**
 - If a task has utilization $U = \frac{C_i}{T_i}$, then it will have been allocated $U \cdot t$ time slots for execution in the interval $[0, t]$

11

Proportionate fairness

Example:

$C_1 = C_2 = 3$; $T_1 = T_2 = 6$ ($U_1 = U_2 = \frac{1}{2}$)

Quantum-based: $C_i \in \mathbb{Z}^+$, $T_i \in \mathbb{Z}^+$; scheduling decisions can only occur at integers

A task executes during a whole time slot or not execute at all in that time slot

12

Proportionate fairness

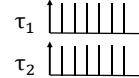
$$lag(\tau_i, t) = t \cdot \left(\frac{C_i}{T_i} \right) - allocated(\tau_i, t)$$

Error "Fluid" execution: should have executed in $[0, t)$ Real execution in $[0, t)$

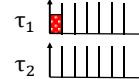
- Goal: find an algorithm that minimizes $\max_t |lag(\tau_i, t)|$
- Which are the values that $lag(\tau_i)$ can take?

Proportionate fairness

- Example: $\tau = \{(T_1 = 5, C_1 = 2), (T_2 = 7, C_2 = 4)\}$, 1 processor

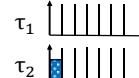


No task executes in $[0, 1)$
 $lag(\tau_1, 1) = 1 \cdot \left(\frac{2}{5} \right) - 0 \neq 0$
 $lag(\tau_2, 1) = 1 \cdot \left(\frac{4}{7} \right) - 0 \neq 0$



Task τ_1 executes in $[0, 1)$
 $lag(\tau_1, 1) = 1 \cdot \left(\frac{2}{5} \right) - 1 \neq 0$
 $lag(\tau_2, 1) = 1 \cdot \left(\frac{4}{7} \right) - 0 \neq 0$

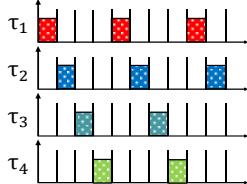
$lag(\tau_i, 1) = 0$
is impossible



Task τ_2 executes in $[0, 1)$
 $lag(\tau_1, 1) = 1 \cdot \left(\frac{2}{5} \right) - 0 \neq 0$
 $lag(\tau_2, 1) = 1 \cdot \left(\frac{4}{7} \right) - 1 \neq 0$

Proportionate fairness

- Example: $\tau = \{(T_1 = 4, C_1 = 1), (T_2 = 4, C_2 = 1), (T_3 = 4, C_3 = 1), (T_4 = 4, C_2 = 1)\}$, one processor



$$lag(\tau_1, 1) = 1 \cdot \left(\frac{1}{4} \right) - 1 = -\frac{3}{4}$$

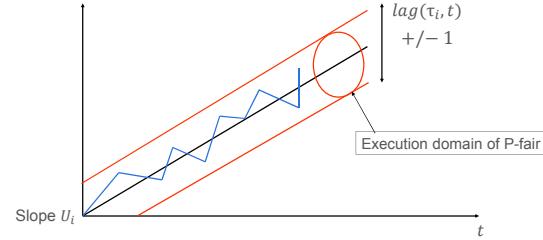
$$lag(\tau_4, 3) = 3 \cdot \left(\frac{1}{4} \right) - 0 = \frac{3}{4}$$

$-1 < lag(\tau_i, t) < 1$ seems to be the worst-case lag

Proportionate fairness

- Definition (P-fair schedule):

a schedule is P-fair if and only if $\forall \tau_i$ and $\forall t: -1 < lag(\tau_i, t) < 1$



Proportionate fairness

Theorem

A P-fair schedule is optimal in the sense of feasibility for a set of periodic tasks with implicit deadlines

Proof

A schedule S is P-fair
 $\Rightarrow -1 < lag(\tau_i, t) < 1$
 $\Rightarrow -1 < lag(\tau_i, kT_i) < 1$
 $\Rightarrow -1 < kT_i \frac{C_i}{T_i} - allocated(\tau_i, kT_i) < 1$
 $\Rightarrow -1 < kC_i - allocated(\tau_i, kT_i) < 1$
 $\Rightarrow kC_i - allocated(\tau_i, kT_i) = 0$
 $\Rightarrow kC_i = allocated(\tau_i, kT_i)$
 $\Rightarrow allocated(\tau_i, (k+1)T_i) - allocated(\tau_i, kT_i) = C_i$
 $\Rightarrow \tau_i$ executes C_i time-units during $[kT_i, (k+1)T_i]$
 $\Rightarrow \tau_i$ meets every deadline in periodic scheduling

The algorithm PF

How to generate a P-fair schedule?

- Execute all *urgent* tasks
 - A task τ_i is urgent at time t if $lag(\tau_i, t) > 0$ and $lag(\tau_i, t+1) \geq 0$ if τ_i executes
- Do not execute *tnegru* tasks
 - A task τ_i is tnegru at time t if $lag(\tau_i, t) < 0$ and $lag(\tau_i, t+1) \leq 0$ if τ_i does not execute
- For the other tasks, execute the task that has the least t such that $lag(\tau_i, t) > 0$

The algorithm PF

□ Results

- The algorithm PF assigns priorities to tasks at every time slot → Job-level dynamic priority (JLDP) scheduling policy
- **Theorem:** the schedule generated by algorithm PF is P-fair
 - Proof: [Baruah et al., '96]

19

The algorithm PF

- Example: $\tau = \{(\textcolor{red}{T_1} = 5, C_1 = 2), (\textcolor{blue}{T_2} = 5, C_2 = 3)\}$, one processor

At time 0, any of the two tasks may be scheduled

At time 1:

$$\begin{aligned} \text{lag}(\tau_1, 1) &= 1 \cdot \left(\frac{2}{5}\right) - 1 = -\frac{3}{5} \\ \text{lag}(\tau_2, 1) &= 1 \cdot \left(\frac{3}{5}\right) - 0 = \frac{3}{5} \end{aligned}$$

At time 2 if τ_2 executes:

$$\begin{aligned} \text{lag}(\tau_2, 2) &= 2 \cdot \left(\frac{3}{5}\right) - 1 = \frac{1}{5} \\ \tau_2 \text{ is urgent at time 1!!} \end{aligned}$$

20

The algorithm PF

- Example: $\tau = \{(\textcolor{red}{T_1} = 5, C_1 = 2), (\textcolor{blue}{T_2} = 5, C_2 = 3)\}$, one processor

At time 2:

$$\begin{aligned} \text{lag}(\tau_1, 2) &= 2 \cdot \left(\frac{2}{5}\right) - 1 = -\frac{1}{5} \\ \text{lag}(\tau_2, 2) &= 2 \cdot \left(\frac{3}{5}\right) - 1 = \frac{1}{5} \end{aligned}$$

At time 3 if τ_2 executes:

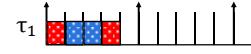
$$\begin{aligned} \text{lag}(\tau_1, 3) &= 3 \cdot \left(\frac{2}{5}\right) - 1 = \frac{1}{5} \\ \text{lag}(\tau_2, 3) &= 3 \cdot \left(\frac{3}{5}\right) - 2 = -\frac{1}{5} \end{aligned}$$

τ_2 is scheduled since it has the least t such that lag is positive

21

The algorithm PF

- Example: $\tau = \{(\textcolor{red}{T_1} = 5, C_1 = 2), (\textcolor{blue}{T_2} = 5, C_2 = 3)\}$, one processor



At time 3:

$$\begin{aligned} \text{lag}(\tau_1, 3) &= 3 \cdot \left(\frac{2}{5}\right) - 1 = \frac{1}{5} \\ \text{lag}(\tau_2, 3) &= 3 \cdot \left(\frac{3}{5}\right) - 2 = -\frac{1}{5} \end{aligned}$$

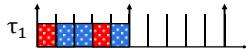
At time 4 if τ_1 executes:

$$\begin{aligned} \text{lag}(\tau_1, 4) &= 4 \cdot \left(\frac{2}{5}\right) - 2 = -\frac{2}{5} \\ \tau_1 \text{ is scheduled since it has the least } t \text{ such that lag is positive} \end{aligned}$$

22

The algorithm PF

- Example: $\tau = \{(\textcolor{red}{T_1} = 5, C_1 = 2), (\textcolor{blue}{T_2} = 5, C_2 = 3)\}$, one processor



At time 4:

$$\begin{aligned} \text{lag}(\tau_1, 4) &= 4 \cdot \left(\frac{2}{5}\right) - 2 = -\frac{2}{5} \\ \text{lag}(\tau_2, 4) &= 4 \cdot \left(\frac{3}{5}\right) - 2 = \frac{2}{5} \end{aligned}$$

At time 5 if τ_2 executes:

$$\begin{aligned} \text{lag}(\tau_2, 5) &= 5 \cdot \left(\frac{3}{5}\right) - 3 = 0 \\ \tau_2 \text{ is urgent at time 4!!} \end{aligned}$$

...and so on...

23

Proportionate fairness

- Exact test of existence of a P-fair schedule:

$$\sum_{i=1}^n U_i \leq m$$

- Full processor utilization!

Disadvantages

- High number of preemptions
- High number of migrations
- Optimal only for implicit deadlines

24

(Other) negative results

- ❑ No optimal algorithm is known for constrained or arbitrary deadline systems
- ❑ No optimal online algorithm is possible for arbitrary collections of jobs [Leung and Whitehead]
- ❑ Even for sporadic task systems, optimality requires **clairvoyance** [Fisher et al., 2009]

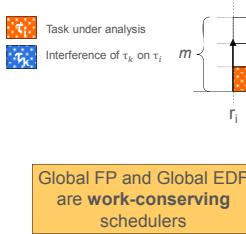
⇒ Many **sufficient** schedulability tests exist, according to different metrics of evaluation

- ❑ Percentage of schedulable task-sets detected ⇒ **RTA-based test**

25

26

Introducing the interference



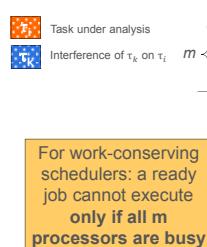
$$I_i = \frac{1}{m} \sum_{k \neq i} I_{i,k}$$

Work-conserving scheduler: it never idles a core if there is workload ready to be executed

27

28

Introducing the interference



$$I_i = \frac{1}{m} \sum_{k \neq i} I_{i,k}$$

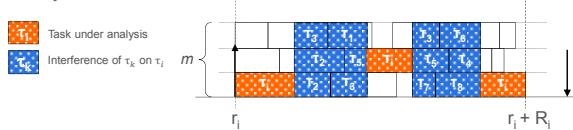
$$R_i = C_i + I_i(R_i) = C_i + \frac{1}{m} \sum_{k \neq i} I_i^k(R_i)$$

We can safely assume that the interference is distributed across all m processors

28

Limiting the interference

It is sufficient to consider at most the portion $(D_i - C_i + 1)$ of each term I_i^k in the sum



It can be proved that R_i is given by the fixed point iteration of:

$$R_i = C_i + \frac{1}{m} \sum_{k \neq i} \min(I_i^k(R_i), D_i - C_i + 1)$$

29

30

Bounding the interference

- ❑ Exactly computing the interference is complex
 - No critical instant scenario

- ❑ Pessimistic assumptions:

1. Bound the interference of a task with the **workload**

$$I_i^k(R_i) \leq W_k(R_i)$$

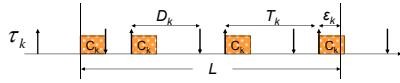
2. Use an **upper-bound** to the workload

30

Bounding the workload

Consider a pessimistic situation in which:

- The first job executes as close as possible to its deadline
- Successive jobs execute as soon as possible



$$W_k(L) \leq w_k(L) = N_k(L) \cdot C_k + \varepsilon_k(L)$$

Where:

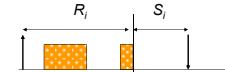
$$N_k(L) = \left\lfloor \frac{L + D_k - C_k}{T_k} \right\rfloor \quad \text{Number of jobs excluding the last one}$$

$$\varepsilon_k(L) = \min(C_k, L + D_k - C_k - N_k(L) \cdot T_k) \quad \text{Last job}$$

RTA for generic global schedulers

An upper-bound on the worst-case response time of τ_i is given by the fixed point iteration of:

$$R_i \leftarrow C_i + \frac{1}{m} \sum_{k \neq i} \min(w_k(R_i), D_i - C_i + 1)$$

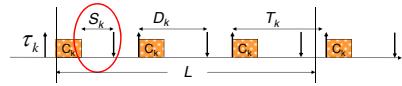


The **slack** of τ_i is at least: $S_i = D_i - R_i$

Improvement using slack values

Consider a pessimistic situation in which:

- The first job executes as close as possible to its deadline
- Successive jobs execute as soon as possible



$$W_k(L) \leq w_k(L, S_k) = N_k(L, S_k) \cdot C_k + \varepsilon_k(L, S_k)$$

Where:

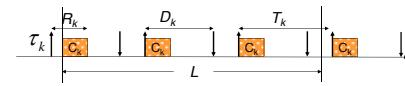
$$N_k(L, S_k) = \left\lfloor \frac{L + D_k - S_k - C_k}{T_k} \right\rfloor \quad \text{Number of jobs excluding the last one}$$

$$\varepsilon_k(L, S_k) = \min(C_k, L + D_k - C_k - S_k - N_k(L, S_k) \cdot T_k) \quad \text{Last job}$$

Improvement using slack values

Consider a pessimistic situation in which:

- The first job executes as close as possible to its deadline
- Successive jobs execute as soon as possible



$$W_k(L) \leq w_k(L, R_k) = N_k(L, R_k) \cdot C_k + \varepsilon_k(L, R_k)$$

Where:

$$N_k(L, R_k) = \left\lfloor \frac{L + R_k - C_k}{T_k} \right\rfloor \quad \text{Number of jobs excluding the last one}$$

$$\varepsilon_k(L, R_k) = \min(C_k, L + R_k - C_k - N_k(L, R_k) \cdot T_k) \quad \text{Last job}$$

RTA for generic global schedulers

An upper-bound on the worst-case response time of τ_i is given by the fixed point iteration of:

$$R_i \leftarrow C_i + \frac{1}{m} \sum_{k \neq i} \min(w_k(R_i, R_k), D_i - C_i + 1)$$

If a fixed point $R_i \leq D_i$ is reached for every task in the system, the task set is schedulable with **any work-conserving** global scheduler

Iterative schedulability test

1. All response times R_i initialized to C_i
2. Compute response time bound for tasks $1, \dots, n$
 - If larger than old value \rightarrow update R_i
 - If $R_i > D_i$, mark as temporarily not schedulable
3. If no response time has been updated for tasks $1, \dots, n$ and all tasks have $R_i \leq D_i \rightarrow$ return **success**
4. If no response time has been updated for tasks $1, \dots, n$ and $R_i > D_i$ for some task \rightarrow return **fail**
5. Otherwise, return to point 2

RTA refinement for Fixed Priority

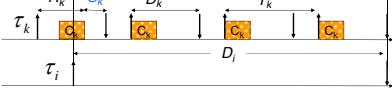
- The interference from lower priority tasks is always null

$$I_i^k(R_i) = 0, \forall k > i$$

- An upper bound on the worst-case response time of τ_i can be given by the fixed point iteration of

$$R_i \leftarrow C_i + \frac{1}{m} \sum_{k < i} \min(w_k(R_i, R_k), D_i - C_i + 1)$$

RTA refinement for EDF



$$w'_k(D_i, R_k) \leq \left\lfloor \frac{D_i}{T_k} \right\rfloor C_k + \min \left(C_k, \left(D_i - S_k - \left\lfloor \frac{D_i}{T_k} \right\rfloor T_k \right)_0 \right)$$

- An upper-bound on the worst-case response time of τ_i is given by the fixed point iteration of

$$R_i \leftarrow C_i + \frac{1}{m} \sum_{k \neq i} \min(w_k(R_i, R_k), D_i - C_i + 1, w'_k(D_i, R_k))$$

Thank you!

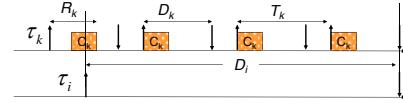
Alessandra Melani
alessandra.melani@sssup.it

RTA refinement for EDF

- A different bound can be derived analyzing the worst-case workload in a situation in which:

- The interfering and interfered tasks have a common deadline
- All jobs execute as late as possible

$$I_i^k(R_i) \leq w_k'(D_i, R_k)$$



Complexity

- Pseudo-polynomial complexity
- Fast average behavior
- Lower complexity for Fixed Priority systems
 - Response times are updated in decreasing priority order
- Multiple rounds may be needed in the general case