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Global vs Partitioned scheduling
 Single shared queue instead of multiple dedicated queues

Bin-packing
problem

Uniprocessor
scheduling

problem

+

NP-hard in the
strong sense; 

various heuristics
adopted

Well-known
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Pros and cons

Global scheduling

Automatic load balancing

Lower avg. response time

Simpler implementation

Optimal schedulers exist

More efficient reclaiming

Migration costs

Inter-core synchronization

Loss of cache affinity

Weak scheduling framework

Partitioned scheduling

Supported by automotive 
industry (e.g., AUTOSAR)

No migrations

Isolation between cores

Mature scheduling 
framework

Cannot exploit unused 
capacity

Rescheduling not convenient

NP-hard allocation
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Main (negative) results

Weak theoretical framework

 Unknown critical instant

 G-EDF is not optimal

 Any G-JLFP scheduler is not optimal

 Optimality only for implicit deadlines

 Many sufficient tests (most of them incomparable)
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Unknown critical instant

Critical instant

 Job release time such that response-time is maximized

Uniprocessor

 Liu & Layland: synchronous release sequence yields worst-case 
response-times

o Synchronous: all tasks release a job at time 0

o Assuming constrained deadlines and no deadline misses

Multiprocessors

 No general critical instant is known!

 It is not necessarily the synchronous release sequence…
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Unknown critical instant

Synchronous periodic arrival of jobs is not a critical 
instant for multiprocessors

Synchronous periodic
situation

The second job of τଵ is
delayed by one unit

We need to find pessimistic situations to derive sufficient
schedulability tests

࣎૚ ൌ ૚, ૚, ૛
࣎૛ ൌ ሺ૚, ૚, ૜ሻ
࣎૜ ൌ ሺ૞, ૟, ૟ሻ

ଵܲ

ଶܲ

ଵܲ

ଶܲ

,࢏࡯ ,࢏ࡰ ࢏ࢀ
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G-EDF is not optimal

Uniprocessors
 EDF is optimal

 Multiprocessors
 G-EDF is not optimal

 Key problem: sequentiality of tasks

 Two processors available for τଵ,

but it can only use one

τଵ

τଶ

τଷ

τସ

τହ

Scheduled on 
processor 1

Scheduled on 
processor 2

8

Any G-JLFP scheduler is not optimal

Two processors, three tasks, ௜ܶ ൌ ௜ܥ ,15 ൌ 10

 Any job-level fixed-priority scheduler is not optimal

 Synchronous release time

 One of the three jobs is scheduled last under any JLFP policy

 Deadline miss unavoidable!

τଵ

τଶ

τଷ

Scheduled on 
processor 1

Scheduled on 
processor 2
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G-JLDP required for optimality

Job priority changes!

τଵ
τଶ

τଷ

Scheduled on 
processor 1

Scheduled on 
processor 2

τଵ
τଶ

τଷ

Scheduled on 
processor 1

Scheduled on 
processor 2

G-JLFP

G-JLDP

 G-JLDP: Global Job Level Dynamic Priority; the priority of each 
job may change over time
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Taxonomy of multiprocessor 
scheduling algorithms

Uniprocessor
Algorithms

LLFEDF

Partitioned
Algorithms

Global
Algorithms

Global
EDF

Dedicated
Global

Algorithms

Partitioned
EDF Optimal

Algorithms

EKG

DP-Wrap

pfair

LLREF

Uniprocessor

Multiprocessor

RM

Partitioned
FP

Global
FP

DM

Optimal

Not
optimal

anymore
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Proportionate fairness

 P-fair: notion of “fair share of processor”

 If a schedule is P-fair, no implicit deadline will be missed → 
optimal algorithm

Basic principle:

 Timeline is divided into equal length slots

 Task period and execution time are multiples of the slot size

 Each task receives amount of slots proportional to its task 
utilization
 If a task has utilization ܷ ൌ

஼೔
்೔

, then it will have been allocated ܷ ∙ ݐ time slots 

for execution in the interval ሾ0, ሿݐ
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Proportionate fairness
Example:

 ଵܥ ൌ ଶܥ ൌ 3;	 ଵܶ ൌ ଶܶ ൌ 6	ሺ ଵܷ ൌ ଶܷ ൌ
ଵ

ଶ
ሻ

 Quantum-based: ܥ௜ ∈ 	Ժା, ௜ܶ ∈ 	 Ժା; scheduling decisions can only occur 
at integers

 A task executes during a whole time slot or not execute at all in that 
time slot

τଵ

τଶ
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Proportionate fairness

݈ܽ݃ τ௜, ݐ ൌ ݐ ∙
௜ܥ
௜ܶ
െ ,ሺτ௜݀݁ݐܽܿ݋݈݈ܽ ሻݐ

 Goal: find an algorithm that minimizes max
௧
|݈ܽ݃ሺτ௜, |ሻݐ

 Which are the values that ሻ࢏ሺ࣎ࢍࢇ࢒ can take?

Error “Fluid” 
execution: 

should have 
executed in 

ሾ0, ሻݐ

Real 
execution in 

ሾ0, ሻݐ
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 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 7, ଶܥ ൌ 4 , 1 processor 

Proportionate fairness

τଵ

τଶ

τଵ

τଶ

τଵ

τଶ

No task executes in ሾ0,1ሻ

݈ܽ݃ τଵ, 1 ൌ 1 ∙ ଶ

ହ
െ 0	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∙ ସ

଻
െ 0	 ് 0

Task τଵ executes in ሾ0,1ሻ

݈ܽ݃ τଵ, 1 ൌ 1 ∙ ଶ

ହ
െ 1	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∙ ସ

଻
െ 0	 ് 0

Task τଶ executes in ሾ0,1ሻ

݈ܽ݃ τଵ, 1 ൌ 1 ∙ ଶ

ହ
െ 0	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∙ ସ

଻
െ 1	 ് 0

݈ܽ݃ τ௜, 1 ൌ 0
is impossible
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Proportionate fairness

 Example: τ ൌ ଵܶ ൌ 4, ଵܥ ൌ 1 , ଶܶ ൌ 4, ଶܥ ൌ 1 , ଷܶ ൌ 4, ଷܥ ൌ 1 , ଶܶ ൌ 4, ଶܥ ൌ 1 , 

one processor 

			݈ܽ݃ τଵ, 1 ൌ 1 ∙
1
4

െ 1 ൌ െ
3
4

݈ܽ݃ τସ, 3 ൌ 3 ∙
1
4

െ 0 ൌ
3
4

τଵ

τଶ

τଷ

τସ
െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1 seems
to be the worst-case lag
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 Definition (P-fair schedule):

a schedule is P-fair if and only if ∀	τ௜ and ∀	ݐ: െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1

൅/െ	1

Execution domain of P-fair

ݐ

݈ܽ݃ሺτ௜, ሻݐ

Slope ௜ܷ

Proportionate fairness
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Proportionate fairness
 Theorem

A P-fair schedule is optimal in the sense of feasibility for a set of periodic 
tasks with implicit deadlines

 Proof

A schedule ܵ is P-fair
⇒ െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1

⇒ െ1 ൏ ݈ܽ݃ τ௜, ݇ ௜ܶ ൏ 1

⇒ െ1 ൏ ݇ ௜ܶ
஼೔
்೔
	െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൏ 1

⇒ െ1 ൏ ௜ܥ݇ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൏ 1
⇒ ௜ܥ݇ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൌ 0

⇒ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ሺ݇ ൅1ሻ ௜ܶ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൌ ௜ܥ

⇒ ௜ܥ݇ ൌ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ

⇒ τ௜ executes ܥ௜ time-units during ݇ ௜ܶ, ݇ ൅ 1 ௜ܶ

⇒ τ௜ meets every deadline in periodic scheduling
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The algorithm PF
 How to generate a P-fair schedule?

 Execute all urgent tasks

o A task τ௜ is urgent at time ݐ if

݈ܽ݃ τ௜, ݐ ൐ 0 and ݈ܽ݃ሺτ௜, ݐ ൅ 1ሻ ൒ 0 if τ௜ executes

 Do not execute tnegru tasks

o A task τ௜ is tnegru at time ݐ if

݈ܽ݃ τ௜, ݐ ൏ 0 and ݈ܽ݃ τ௜, ݐ ൅ 1 ൑ 0 if τ௜ does not execute

 For the other tasks, execute the task that has the least ݐ such 
that ݈ܽ݃ τ௜, ݐ ൐ 0
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The algorithm PF
 Results

 The algorithm PF assigns priorities to tasks at every time slot → 
Job-level dynamic priority (JLDP) scheduling policy

 Theorem: the schedule generated by algorithm PF is P-fair

o Proof: [Baruah et al., ‘96]

20

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one 

processor 

τଵ

At time 1:

			݈ܽ݃ τଵ, 1 ൌ 1 ∙
2
5

െ 1 ൌ െ
3
5

݈ܽ݃ τଶ, 1 ൌ 1 ∙
3
5

െ 0 ൌ
3
5

At time 0, any of the two tasks 
may be scheduled

At time 2 if τଶ executes:

݈ܽ݃ τଶ, 2 ൌ 2 ∙
3
5

െ 1 ൌ
1
5

τଶ is urgent at time 1!!
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The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one 

processor 

τଵ

At time 2:

			݈ܽ݃ τଵ, 2 ൌ 2 ∙
2
5

െ 1 ൌ െ
1
5

݈ܽ݃ τଶ, 2 ൌ 2 ∙
3
5

െ 1 ൌ
1
5

At time 3 if τଶ executes:

݈ܽ݃ τଵ, 3 ൌ 3 ∙
2
5

െ 1 ൌ
1
5

݈ܽ݃ τଶ, 3 ൌ 3 ∙
3
5

െ 2 ൌ െ
1
5

τଶ is scheduled since it has the least ݐ such that lag is positive
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The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one 

processor 

τଵ

At time 3:

			݈ܽ݃ τଵ, 3 ൌ 3 ∙
2
5

െ 1 ൌ
1
5

݈ܽ݃ τଶ, 3 ൌ 3 ∙
3
5

െ 2 ൌ െ
1
5

At time 4 if τଵ executes:

݈ܽ݃ τଵ, 4 ൌ 4 ∙
2
5

െ 2 ൌ െ
2
5

τଵ is scheduled since it has the least ݐ such that lag is positive
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The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one 

processor 

τଵ

At time 4:

			݈ܽ݃ τଵ, 4 ൌ 4 ∙
2
5

െ 2 ൌ െ
2
5

݈ܽ݃ τଶ, 4 ൌ 4 ∙
3
5

െ 2 ൌ
2
5

At time 5 if τଶ executes:

݈ܽ݃ τଶ, 5 ൌ 5 ∙
3
5

െ 3 ൌ 0

τଶ is urgent at time 4!!

…and so on…
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Proportionate fairness

 Exact test of existence of a P-fair schedule:

෍ ௜ܷ ൑ ݉

௡

௜ୀଵ

 Full processor utilization!

Disadvantages

 High number of preemptions

 High number of migrations

 Optimal only for implicit deadlines
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(Other) negative results

 No optimal algorithm is known for constrained or arbitrary 
deadline systems

 No optimal online algorithm is possible for arbitrary 
collections of jobs [Leung and Whitehead]

 Even for sporadic task systems, optimality requires 
clairvoyance [Fisher et al., 2009]

⇒ Many sufficient schedulability tests exist, according to 
different metrics of evaluation

 Percentage of schedulable task-sets detected ⟹ RTA-based test
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 Response time analysis

 In a uniprocessor system, it provides a necessary and sufficient 
test for fixed-priority preemptive scheduling with constrained 
deadlines

 In a multiprocessor system, it provides an only sufficient 
schedulability test

 How to compute interference from higher-priority tasks? 

RTA-based test

Exact
interference 
from higher-
priority tasks

27

Introducing the interference

k

Task under analysisτi
Interference of τ௞ on τ௜

τi

τ3 τ1

τ2 τ5

τ2 τ3

τi

τi

τ3 τ6

τ5 τ4

τ7 τ8

ri ri + Ri

m

Global FP and Global EDF 
are work-conserving 

schedulers

Work-conserving scheduler: it never idles a 
core if there is workload ready to be executed

௜ܫ ൌ
1
݉
෍ܫ௜,௞
௞ஷ௜
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Introducing the interference

k

Task under analysisτi
Interference of τ௞ on τ௜

ܴ௜ ൌ ௜ܥ ൅ ௜ܫ ܴ௜ ൌ ௜ܥ ൅
1
݉
෍ܫ௜

௞ሺܴ௜ሻ
௞ஷ௜

τi

τ3 τ1

τ2 τ5

τ2 τ3

τi

τi

τ3 τ6

τ5 τ4

τ7 τ8

ri ri + Ri

m

For work-conserving 
schedulers: a ready 
job cannot execute 

only if all m 
processors are busy

We can safely assume that the interference is distributed across all 
m processors

௜ܫ ൌ
1
݉
෍ܫ௜,௞
௞ஷ௜
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Limiting the interference

ܴ௜ ൌ ௜ܥ ൅
1
݉
෍min	ሺܫ௜

௞ ܴ௜ , ௜ܦ െ ௜ܥ ൅ 1ሻ
௞ஷ௜

It is sufficient to consider at most the portion ሺܦ௜ െ ௜ܥ ൅ 1ሻ of each 
term ܫ௜

௞ in the sum 

It can be proved that ܴ௜ is given by the fixed point iteration of:

k

Task under analysisτi
Interference of τ௞ on τ௜

τi

τ3 τ1

τ2 τ5

τ2 τ3

τi

τi

τ3 τ6

τ5 τ4

τ7 τ8

ri ri + Ri

m
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Bounding the interference

௜ܫ
௞ ܴ௜ ൑ ௞ܹሺܴ௜ሻ

 Exactly computing the interference is complex
 No critical instant scenario

 Pessimistic assumptions:

1. Bound the interference of a task with the workload

2. Use an upper-bound to the workload
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Bounding the workload

Consider a pessimistic situation in which:

 The first job executes as close as possible to its deadline
 Successive jobs execute as soon as possible

Ckk
L

Dk

Ck Ck Ck

Tk εk

௞ܹ ܮ ൑ ௞ݓ ܮ ൌ ௞ܰ ܮ ∙ ௞ܥ ൅ ሻܮ௞ሺߝ
Where:

௞ܰ ܮ ൌ
ܮ ൅ ௞ܦ െ ௞ܥ

௞ܶ

ε௞ ܮ ൌ min	ሺܥ௞, ܮ ൅ ௞ܦ െ ௞ܥ െ ௞ܰሺܮሻ ∙ ௞ܶሻ

Number of jobs excluding the last one

Last job

32

RTA for generic global schedulers

An upper-bound on the worst-case response time of ߬௜ is given 
by the fixed point iteration of:

ܴ௜ ← ௜ܥ ൅
1
݉
෍min	ሺݓ௞ ܴ௜ , ௜ܦ െ ௜ܥ ൅ 1ሻ
௞ஷ௜

The slack of ߬௜ is at least: ௜ܵ ൌ ௜ܦ െ ܴ௜

Ri Si
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Improvement using slack values

Consider a pessimistic situation in which:
 The first job executes as close as possible to its deadline
 Successive jobs execute as soon as possible

Ckk
L

Dk

Ck Ck Ck

TkSk

௞ܹ ܮ ൑ ௞ݓ ,ܮ ܵ௞ ൌ ௞ܰ ,ܮ ܵ௞ ∙ ௞ܥ ൅ ,ܮ௞ሺߝ ܵ௞ሻ

Where:

௞ܰ ,ܮ ܵ௞ ൌ
ܮ ൅ ௞ܦ െ ܵ௞ െ ௞ܥ

௞ܶ

ε௞ ,ܮ ܵ௞ ൌ min	ሺܥ௞, ܮ ൅ ௞ܦ െ ௞ܥ െ ܵ௞ െ ௞ܰሺܮ, ܴ௞ሻ ∙ ௞ܶሻ

Number of jobs 
excluding the last one

Last job
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Improvement using slack values

௞ܹ ܮ ൑ ௞ݓ ,ܮ ܴ௞ ൌ ௞ܰ ,ܮ ܴ௞ ∙ ௞ܥ ൅ ,ܮ௞ሺߝ ܴ௞ሻ

Where:

௞ܰ ,ܮ ܴ௞ ൌ
ܮ ൅ ܴ௞ െ ௞ܥ

௞ܶ

ε௞ ,ܮ ܴ௞ ൌ min	ሺܥ௞, ܮ ൅ ܴ௞ െ ௞ܥ െ ௞ܰሺܮ, ܴ௞ሻ ∙ ௞ܶሻ

Number of jobs 
excluding the last one

Last job

Ckk
L

Dk

Ck Ck Ck

TkRk

Consider a pessimistic situation in which:
 The first job executes as close as possible to its deadline
 Successive jobs execute as soon as possible
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RTA for generic global schedulers

An upper-bound on the worst-case response time of ߬௜ is given 
by the fixed point iteration of:

ܴ௜ ← ௜ܥ ൅
1
݉
෍min	ሺݓ௞ ܴ௜, ܴ௞ , ௜ܦ െ ௜ܥ ൅ 1ሻ
௞ஷ௜

If a fixed point ܴ௜ ൑ ௜ܦ is reached for every task in the system, 
the task set is schedulable with any work-conserving global 
scheduler 

36

Iterative schedulability test

1. All response times ܴ௜ initialized to ܥ௜
2. Compute response time bound for tasks 1, … , ݊
 If larger than old value ⟶ update ܴ௜
 If ܴ௜ ൐ ௜, mark as temporarily not schedulableܦ

3. If no response time has been updated for tasks 1, … , ݊	 and 
all tasks have ܴ௜ ൑ ⟶௜ܦ return success

4. If no response time has been updated for tasks 1, … , ݊ and 
ܴ௜ ൐ ௜ܦ for some task ⟶ return fail

5. Otherwise, return to point 2
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RTA refinement for Fixed Priority

 The interference from lower priority tasks is always null

௜ܫ
௞ ܴ௜ ൌ 0, ∀݇ ൐ ݅

 An upper bound on the worst-case response time of ߬௜ can be 
given by the fixed point iteration of

ܴ௜ ← ௜ܥ ൅
1
݉
෍min	ሺݓ௞ ܴ௜, ܴ௞ , ௜ܦ െ ௜ܥ ൅ 1ሻ
௞ழ௜

38

RTA refinement for EDF

 A different bound can be derived analyzing the worst-case 
workload in a situation in which:

 The interfering and interfered tasks have a common 
deadline

 All jobs execute as late as possible

௜ܫ
௞ ܴ௜ ൑ ,௜ܦ௞′ሺݓ ܴ௞ሻ

Ck
k

Dk

Ck Ck Ck

Tk
Rk

i
Di
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RTA refinement for EDF

 An upper-bound on the worst-case response time of ߬௜ is 
given by the fixed point iteration of

௞ݓ
ᇱ ,௜ܦ ܴ௞ ൑

௜ܦ
௞ܶ
௞ܥ ൅ min	 ,௞ܥ ௜ܦ െ ܵ௞ െ

௜ܦ
௞ܶ

௞ܶ
0

Ck
k

Dk

Ck Ck Ck

Tk
Rk

i
Di

ܴ௜ ← ௜ܥ ൅
1
݉
෍min	ሺݓ௞ ܴ௜, ܴ௞ , ௜ܦ െ ௜ܥ ൅ ௞ݓ,1

ᇱ ,௜ܦ ܴ௞ ሻ
௞ஷ௜

Sk

40

Complexity

 Pseudo-polynomial complexity

 Fast average behavior

 Lower complexity for Fixed Priority systems

 Response times are updated in decreasing priority order

 Multiple rounds may be needed in the general case
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Thank you!
Alessandra Melani 
alessandra.melani@sssup.it


