19/04/2016

Seuola Superiore j Ee tis

Sant’Anna Real-Time Systems Laboratory

Response-Time Analysis
of Conditional DAG Tasks
in Multiprocessor Systems

Alessandra Melani

What does it mean?

U « Response-time analysis » V
) « conditional »
1 « DAG tasks »

1 « multiprocessor systems » V

What does it mean?

) i‘ﬁ‘-
[« conditional » %
END

Q (]
: :
. ;

If-then-else statements Switch statements

What does it mean?

m] i DAG: Directed Acyclic Graph E
i N e i
0 « DAG tasks » ! Q—C}r@;@\\ :

I A e i
Q : % ~ :

In other words

J We will analyze a multiprocessor real-time systems...

1 ... by means of a schedulability test based on response-time
analysis

1 ... assuming Global Fixed Priority or Global EDF scheduling
policies

... and assuming a parallel task model (i.e., a task is modelled
as a Directed Acyclic Graph - DAG)

Parallel task models

Many parallel programming models have been proposed to support
parallel computation on multiprocessor platforms (e.g., OpenMP,
OpenCL, Cilk, Cilk Plus, Intel TBB)

OpenMIP ' :.% Cilk Plus T—"g

OpenCL

Early real-time scheduling Recently, more expressive
models: each recurrent task execution models allow
is completely sequential exploiting task parallelism

19/04/2016

Fork-join

[Each task is an alternating sequence of sequential and parallel
segments

1 Every parallel segment has a degree of parallelism < m (number
of processors)

<m C,%@:}:}/‘O

Synchronous-parallel

J Generalization of the fork-join model
[Allows consecutive parallel segments
[Allows an arbitrary degree of parallelism of every segment

[Synchronization at segment boundaries: a sub-task in the new
segment may start only after completion of all sub-tasks in the
previous segment

sync

DAG

[Directed acyclic graph (DAG) G; = (V;, E;)
OV = {1, Vin s B S Vi x V;

[Generalization of the previous two models
1 Every node is a sequential sub-task

[Arcs represent precedence constraints between sub-tasks

//(:.k . }
R S NN
e e

cp-DAG

[Conditional - parallel DAG (cp-DAG) G; = (V;, E;)
v

uccessors must be executed in parallel

= (Conditional:to model start/end of a conditional construct
(e.g-, if-then-else statement)

L Each node has a WCET (; ;
) In this lecture, we will focus on this task model

1 (v,,v6) form a conditional pair
v, is a starting conditional node
= v, is the joining point of the conditional branches starting at v,
[Restriction: there cannot be any connection between a node
belonging to a branch of a conditional statement (e.g., v,) and

nodes outside that branch (e.g., vs), including other branches of
the same statement

[It does not make sense for v5 to wait for v, if v5 is executed

J Analogously, v, cannot be connected to v; since only one is
executed

[Violation of the correctness of conditional constructs and the
semantics of the precedence relation

19/04/2016

Formal definition (1)

Let (v4, v,) be a pair of conditional nodes in a DAG G; = (V;, E;).
The pair (v4, v,) is a conditional pair if the following hold:
U Suppose there are exactly g outgoing arcs from v; to the nodes

1,82, ., Sq, for some q > 1. Then there are exactly q incoming
arcs into v, in E;, from some nodes t4, t,, o tg

Formal definition (2)

U For each [€{1,2,..,q}, let V/ € V; and E; < E; denote all the
nodes and arcs on paths reachable from s; that do not include
Vy.

By definition, s; is the sole source node of the DAG G; =
(V/,E;"). It must hold that ¢; is the sole sink node of G;.

Formal definition (3)

O It must hold that V) NV = @ for all 1,j,1 # j.
Additionally, with the exception of (v4,s;), there should be no
arcs in E; into nodes in V;’ from nodes not in V,’, for each
le{12,..,q}

Thatis, E; n ((V;\W}) x V) = {(vy,s,)} should hold for all L.

How is parallel code structured?

#pragma omp parallel num_threads(N)

{
#pragma omp master {
#pragma omp task { // T,
if (condition) { s
#pragma omp task { // T, }
}else {

T (condition) {...
else {...}

#pragma omp task { // T, }
#pragma omp task { // T, }
#pragma omp task { // T, }

Which branch
leads to the
worst-case

response-time?

Which branch leads to the WCRT?

1 processor

Upper branch B

10,
s T,

v

ff (condition) {.
i
~a T,

85
Ty

Upper branch

Which branch leads to the WCRT?

23 processors

f (condition) {..}
else {.}

Lower branch

Upper branch

19/04/2016

Lesson learnt System model
Depending on the number of processors and on the interfering »
tasks, it is not obvious to identify the branch leading to the U n conditional-parallel tasks (cp-tasks) t;, expressed as cp-DAGs

WCRT in the form G; = (V;, E;)

It makes sense to account for [platform composed of m identical processors
the different execution flows by

enriching the task model 1 sporadic arrival pattern (minimum inter-arrival time T; between

jobs of task t;)

[constrained relative deadline D; < T;

Schedulability analysis for cp-tasks, globally scheduled on m identical
processors with any work-conserving algorithm (including G-FP
and G-EDF)

Why don’t we do it also with
sequential tasks?

= Only the longest path matters

= Conditional branches are already
incorporated in the notion of
WCET

Quantities of interest 1. Chain (or path)

1. Chain (or path) of a cp-task A chain (or path) of a cp-task t; is a sequence of nodes A =
(Vi -, Vip) such that (v j, v j11) € E;, Vj € [a, D).

2. Longest path)

3. Volume

4. Worst-case workload

5. Critical chain

1. Chain (or path) 2. Longest path

The longest path L; of a cp-task t; is any source-sink chain of the
A chain (or path) of a cp-task t; is a sequence of nodes A = task that achieves the longest length

(Wiq s Vip) SUCh that (v, v; j41) € E;, V) € [a,b).

The length of the chain, denoted by len(}), is the sum of the L; also represents the time required to execute it when the number
WCETs of all its nodes: of processing units is infinite (large enough to allow maximum
b parallelism)
len@) = Z Cij Necessary condition for feasibility: L; < D;
j=a

19/04/2016

2. Longest path
How to compute the longest path?
1. Find a topological order of the given cp-DAG

) Atopological order is such that of there is an arc from u to v in
the cp-DAG, then u appears before v in the topological order
— can be done in 0(n)

) Example: for this cp-DAG possible topological orders are
= (v1,V3,Vs, V3, Vs, Vg, Vg, V7, Vo)
= (v1, V5, V2, V3, Vy, Ve, V7, Vg, Vo)

= (V1,V2,V4, V3, V6, Vs, Vg, V7, Vo)

2. Longest path
How to compute the longest path?

2. For each vertex v; ; of the cp-DAG in the topological order,
compute the length of the longest path ending at v; ; by looking at
its incoming neighbors and adding C; ; to the maximum length
recorded for those neighbors

If v; ; has no incoming neighbors, set the length of the longest
path ending at v; j to C;
Example:

= For vy, record 1
= For v,, record 2
= For vy, record 5
= For v,, record 6
= For vg, record max(5,6) = 6

2. Longest path
How to compute the longest path?

3. Finally, the longest path in the cp-DAG may be obtained by starting
at the vertex v; ; with the largest recorded value, then repeatedly
stepping backwards to its incoming neighbor with the largest
recorded value, and reversing the sequence found in this way

Example: recorded values

+ Starting at vy and stepping
backward we find the sequence
(9, 7,6, V4, V2, V1)

+ The longest path is then
(W1, v, v, Ve, V7, vg)

Complexity of the longest path computation: 0(n)

3. Volume

In the absence of conditional branches, the volume of a task is the
worst-case execution time needed to complete it on a dedicated
single-core platform

It can be computed as the sum of the WCETs of all its vertices:

UOli= Z Ci,j

Vi j€Vi

It also represents the maximum

amount of workload generated

by a single instance of a DAG-
task

4. Worst-case workload

In the presence of conditional branches, the worst-case workload
of a task is the worst-case execution time needed to complete it on
a dedicated single-core platform, over all combination of choices for
the conditional branches

It also represents the maximum
amount of workload generated
by a single instance of a cp-task

In this example, the worst-case workload is given by all the vertices
except v, since the branch corresponding to v, yields a larger
workload

4. Worst-case workload

How can it be computed?

3 Teverse topological order
4 i takes the z" element of the permutation
5 S takes the worst-case workload from v till the end of the cp-DAG
6 [W then | if the vertex has some successors
% (T TREECINCONDL:) then | i tte vertex is the head node of a conditional pair
s: v* is the successor of v; achieving the largest partial workload
% S(v7) is merged into S(v;)
:': o -""m"“ B 5_', v R workloac_i con(ribulipn of all
: i Ll vESUCC(w) is merged into S(v;)
12: end il
13 end if
14 _end for
15: return C'(S(up)) the worst-case workload accumulated by the source vertex is returned as output

16: end procedure

19/04/2016

4. Worst-case workload

1 What is the complexity of this algorithm?

Algorithm 1 Worst-Case Workload Computation
I+ procedure WCW(G)
o « TOPOLOGICALORDER(()

for = =[] down 1o 1 do

2
3
4 i=o(z)
s S(w3) += {ui} * O(|E|) set operations

;: it S:th‘lt‘fé';)(j# gthen(. « Any of them may require to compute
g S| GINCOND (v en .

N o o argmas espee(en C1S()) C(S(vy)), which has cost 0(|V|)

9 S(w) + S(v)US(*)

10: else The time complexity is then O(|E||V])

1 S(13) = S(0) Ul esueeqwny S(0)
2 end if

13 end if

14 end for

15 return C(S(vg0)))

16: end procedure

5. Critical chain

) Given a set of cp-tasks and a (work-conserving) scheduling
algorithm, the critical chain A; of a cp-task t; is the chain of vertices
of t; that leads to its worst-case response-time R;

[How can it be identified?

= We should know the worst-case instance of t; (i.e., the job of t; that has the
largest response-time in the worst-case scenario)

= Then we should take its sink vertex v; ,, and recursively pre-pend the last to
complete among the predecessor nodes, until the source vertex v;; has
been included in the chain

Key observation: the critical chain is unknown, but is always upper-
bounded by the longest path of the cp-task!

Critical interference

To find the response-time of a cp-task, it is sufficient to characterize
the maximum interference suffered by its critical chain

The critical interference I;; imposed by task 1, on task t; is the
cumulative workload executed by vertices of t, while a node
belonging to the critical chain of t; is ready to execute but is not
executing

Critical chain

Critical interference of
H v ont

Work-conserving schedulers

Global schedulers are typically work-conserving (e.g., Global

FP/EDF)
Property: a ready job cannot execute only if all m processors are

busy

Yo ik
1i = -
m
We can safely assume that the interference is distributed across all
m processors

Critical interference

1 I;: total interference suffered by task t;

U I; - total interference of task t, on task t;

I
Ii = M For any work-conserving algorithm!
m
Yt Tik
R; =len(A}) + I; = len(A}) + kT

Types of interference

We need to deal with two types of interference:

o Intertask interference: from o Intra-task interference: from
other tasks in the system; vertices of the same task on itself;
analogous to the classic notion peculiar to parallel tasks only

Interfering [Interfering (i.e., not critical)]

Interfered [Interfered (i.e., critical)]

" oy 2l » et i
R = len() + Iy = len() + T2 — len(y) £X 1, {Cueet i)
inter-task int.

19/04/2016

Inter-task interference

[Caused by other cp-tasks executing in the system
U Finding it exactly is difficult

) We need to find an upper-bound on the workload of an interfering task
in the scheduling window [r;, 7; + R;]

U In the sequential case (global multiprocessor scheduling):

Carry-out job

Inter-task interference

) Sequential case

= The first job of T, starts executing as late as possible, with a starting time aligned
with the beginning of the scheduling window

= Later jobs are executed as soon as possible

) Parallel case

= This scenario may not give a safe upper-bound on the interfering workload. Why?

ean |an |l

|

7

T i+ R

Shifting right the scheduling window may give a larger interfering workload!

Inter-task interference

] Pessimistic assumption
[Each interfering job of task T, executes for its worst-case workload W

[The carry-in and carry-out contributions are evenly distributed among all m
processors

[Distributing them on less processors cannot increase the workload within the
window

[Other task configurations cannot lead to a higher workload within the window

Inter-task interference

) Lemma: An upper-bound on the workload of an interfering task t, in a
scheduling window of length L is given by

Wi(L) = lLJrR"T;W"/T"J Wy, + min (Wk,m . ((L + Ry — %) mod Tk>>

3
3

=
=

+
>

k
1 Proof:
) The maximum number of carry-in and body instances within the
window is
L+ Ry — Wy/m
Ty
[1]
= |
H]
N P t
Ry — Wy /miTk Tie T

Inter-task interference

L+ Ry — Wie/m
7,

U Proof (continued): ‘ Wk(L)=| 3 ‘wk+min<wk,m-((L+Rk—%)muark>) ‘

L+Ryi—W, . .
"Ti"/ml instances contributes for W,
k

0 Each of the l

U The portion of the carry-out job included in the window is
(L + Ry — %) mod Ty

—
3
-

=0 bAn B |

i >
(L + Ry — Wy /m)mod Ty,

L) At most m processors may be occupied by the carry-out job

) The carry-out job cannot execute for more than W, units

Intra-task interference

It is the interference from vertices of the same task on itself

Who is interfering and
who is interfered?

= The interfered contribution is the critical chain
= Critical chain: chain that leads to the WCRT of the cp-task

[Criticalchain#longestpath] A
b |

= Longest path is 10 time-units S 4

iR T

= Critical chain can be either 10 or 6 6

19/04/2016

Intra-task interference Putting things together Q

) Simple upper-bound) Schedulability condition
. 4 ‘Ii,k(L) < Wi (L) ‘
Ry =len(A) +1; {fen(%{) 4+ ‘:ﬂ_ Zrk:’ik Given a cp-task set globally scheduled on m processors, an upper-bound

R on the response-time of a task t; can be derived by the fixed-point
iteration of the following expression, starting with R*? = L;:

1 1
R = Lt — (W= L) +—) {0
m m
Vk#i

. 1
Zi &f len(?\l-) +E1i'i

U Global FP

ub .
critical chain X6 = XTP = Wi (RE?), Vk<i
3 otherwise

1
<len(A}) + - (W;=len(}}))

,

il

<L

Vo1

s — (W, — L;
,\m Wi —Ly) W~ tenGi)
 Length of the longest path |

U Global EDF

X6 = XEPF = Wy (RFP), V ke # i

[0= [0 (-) |

Putting things together Q Reference

1 1
RY® =Li+E(VVi_Li)+EZ xge

Vk#i
) Global FP A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-
L)) - Spaccamela, G. Buttazzo, Response-Time Analysis of
Igi&);ez;prﬁ'm:f]rigtr:gztupﬁ?;:gsttahsibj:trﬂd;twefécreas'ng priority order, Conditional DAG Tasks in Multiprocessor Systems,
' ' Proceedings of the 27" Euromicro Conference on Real-
= one of the response-time bounds exceeds the task relative deadline Time Systems (ECRTS 2015)

D; (negative schedulability result);

= OR no more update is possible (positive schedulability result), i.e.,
Vi: Rf =R < D;

[Global EDF

= Multiple rounds may be needed

Schedulability example Solution sketch
Global FP
moz RV =1, =28
1
R?P =1, + —(W;~L;) =325
R® =Rr® =325<35 Task 1 is schedulable
RV =1,=37
w,
2 1 1(|Ry + Ry ="/)
RP =1, o W = L) + D\ || Wy + min(..) | = 695
RY =925
High-priority task Low-priority task Rg") = R?) =92.5< 139 Task 2 is schedulable
D=35 D =139
T=37 T=229
Len =28 Len =37
w=37 wW=37

19/04/2016

Alessandra Melal
alessandra.melani@

