
19/04/2016

1

1

Response-Time Analysis
of Conditional DAG Tasks
in Multiprocessor Systems

Alessandra Melani

2

 « Response-time analysis »

 « conditional »

 « DAG tasks »

 « multiprocessor systems »

What does it mean?

3

 « Response-time analysis »

 « conditional »

 « DAG tasks »

 « multiprocessor systems »

What does it mean?

If-then-else statements Switch statements

4

 « Response-time analysis »

 « conditional »

 « DAG tasks »

 « multiprocessor systems »

What does it mean?

DAG: Directed Acyclic Graph

5

 We will analyze a multiprocessor real-time systems…

 … by means of a schedulability test based on response-time
analysis

 … assuming Global Fixed Priority or Global EDF scheduling
policies

 … and assuming a parallel task model (i.e., a task is modelled
as a Directed Acyclic Graph - DAG)

In other words

6

Many parallel programming models have been proposed to support
parallel computation on multiprocessor platforms (e.g., OpenMP,
OpenCL, Cilk, Cilk Plus, Intel TBB)

Parallel task models

Early real-time scheduling
models: each recurrent task
is completely sequential

Recently, more expressive
execution models allow
exploiting task parallelism

19/04/2016

2

7

 Each task is an alternating sequence of sequential and parallel
segments

 Every parallel segment has a degree of parallelism ൑ ݉ (number

of processors)

Fork-join

൑ ݉

8

 Generalization of the fork-join model

 Allows consecutive parallel segments

 Allows an arbitrary degree of parallelism of every segment

 Synchronization at segment boundaries: a sub-task in the new
segment may start only after completion of all sub-tasks in the
previous segment

Synchronous-parallel

ܿ݊ݕݏ

9

 Directed acyclic graph (DAG) ܩ௜ ൌ ሺ ௜ܸ, ௜ሻܧ

 ௜ܸ ൌ ,௜,ଵݒ … , ௜,௡೔ݒ ; ௜ܧ ⊆ ௜ܸ ⨯ ௜ܸ

 Generalization of the previous two models

 Every node is a sequential sub-task

 Arcs represent precedence constraints between sub-tasks

DAG

10

 Conditional - parallel DAG (cp-DAG) ܩ௜ ൌ ሺ ௜ܸ, ௜ሻܧ

 Two types of nodes

 Regular: all successors must be executed in parallel

 Conditional: to model start/end of a conditional construct
(e.g., if-then-else statement)

 Each node has a WCET ܥ௜,௝
 In this lecture, we will focus on this task model

cp-DAG

11

 ሺݒଶ, ଺ሻݒ form a conditional pair

 ࢜૛ is a starting conditional node

 ࢜૟ is the joining point of the conditional branches starting at ݒଶ

 Restriction: there cannot be any connection between a node
belonging to a branch of a conditional statement (e.g., ݒସ) and
nodes outside that branch (e.g., ݒହ), including other branches of
the same statement

Conditional pairs

12

 It does not make sense for ݒହ to wait for ݒସ if ݒଷ is executed

 Analogously, ݒସ cannot be connected to ݒଷ since only one is
executed

 Violation of the correctness of conditional constructs and the
semantics of the precedence relation

Why this restriction?

19/04/2016

3

13

Let ,ଵݒ ଶݒ be a pair of conditional nodes in a DAG ௜ܩ ൌ ௜ܸ, ௜ܧ .

The pair ሺݒଵ, ଶሻݒ is a conditional pair if the following hold:

 Suppose there are exactly ݍ outgoing arcs from ଵݒ to the nodes
,ଵݏ ,ଶݏ … , ,௤ݏ for some ݍ ൐ 1. Then there are exactly ݍ incoming
arcs into ଶݒ in ,௜ܧ from some nodes ,ଵݐ ,ଶݐ … , ௤ݐ

Formal definition (1)

ଵݒ
…

ଵݏ

ଶݏ…

௤ݏ

ଶݒ

ଵݐ

ଶݐ

௤ݐ

…

14

 For each ݈ ∈ 1,2, … , ݍ , let ௟ܸ
ᇱ ⊆ ௜ܸ and ௟ܧ

ᇱ ⊆ ௜ܧ denote all the
nodes and arcs on paths reachable from ௟ݏ that do not include
.ଶݒ

By definition, ௟ݏ is the sole source node of the DAG ௟ܩ
ᇱ ൌ

ሺ ௟ܸ
ᇱ, .௟′ሻܧ It must hold that ௟ݐ is the sole sink node of ௟ܩ

ᇱ.

Formal definition (2)

ଵݒ
…

ଵݏ

ଶݏ…

௤ݏ

ଶݒ

ଵݐ

ଶݐ

௤ݐ

…

…

… ଵܩ
ᇱ ൌ ሺ ଵܸ

ᇱ, ଵ′ሻܧ

15

 It must hold that ௟ܸ
ᇱ ∩ ௝ܸ

ᇱ ൌ ∅ for all ݈, ݆, ݈ ് ݆.

Additionally, with the exception of ሺݒଵ, ,௟ሻݏ there should be no

arcs in ௜ܧ into nodes in ௟ܸ ′ from nodes not in ௟ܸ ′, for each
݈ ∈ ሼ1,2, … , .ሽݍ

That is, ௜ܧ ∩ ௜ܸ\ ௟ܸ
ᇱ ⨯ ௟ܸ

ᇱ ൌ ሼሺݒଵ, ௟ሻሽݏ should hold for all ݈.

Formal definition (3)

ଵݒ
…

ଵݏ

ଶݏ…

௤ݏ

ଶݒ

ଵݐ

ଶݐ

௤ݐ

…

…

…

௫ݒ

16

How is parallel code structured?
#pragma omp parallel num_threads(N)

{

#pragma omp master {

#pragma omp task { // T0

if (condition) {

#pragma omp task { // T1 }

} else {

#pragma omp task { // T2 }

#pragma omp task { // T3 }

#pragma omp task { // T4 }

}

}}}

Which branch
leads to the
worst-case

response-time?

if (condition) {…}
else {…}

T1

T2

T3

T4

10

6

6

6

17

Which branch leads to the WCRT?
1 processor

Upper branch

Lower branch

10

18

2 processors

Upper branch

Lower branch

10

12

if (condition) {…}
else {…}

T1

T2

T3

T4

10

6

6

6

18

Which branch leads to the WCRT?
≥3 processors

Lower branch

10

if (condition) {…}
else {…}

T1

T2

T3

T4

10

6

6

6

Upper branch

3 processors + interfering task

Upper branch

10

Lower branch

12

19/04/2016

4

19

Lesson learnt

…

…

Depending on the number of processors and on the interfering
tasks, it is not obvious to identify the branch leading to the
WCRT

if (condition) {…}
else {…}

if (condition) {…}
else {…}

It makes sense to account for
the different execution flows by
enriching the task model … …

…

Why don’t we do it also with
sequential tasks?

 Only the longest path matters

 Conditional branches are already
incorporated in the notion of
WCET

20

 ݊ conditional-parallel tasks (cp-tasks) τ௜, expressed as cp-DAGs
in the form ௜ܩ ൌ ሺ ௜ܸ, ௜ሻܧ

 platform composed of ݉ identical processors

 sporadic arrival pattern (minimum inter-arrival time ௜ܶ between
jobs of task τ௜)

 constrained relative deadline ௜ܦ ൑ ௜ܶ

System model

Problem

Schedulability analysis for cp-tasks, globally scheduled on m identical
processors with any work-conserving algorithm (including G-FP
and G-EDF)

21

1. Chain (or path) of a cp-task

2. Longest path

3. Volume

4. Worst-case workload

5. Critical chain

Quantities of interest

22

A chain (or path) of a cp-task τ௜ is a sequence of nodes λ ൌ
ሺݒ௜,௔, … , ௜,௕ሻݒ such that ,௜,௝ݒ ௜,௝ାଵݒ ∈ ,௜ܧ ∀݆ ∈ ሾܽ, ܾሻ.

1. Chain (or path)

23

A chain (or path) of a cp-task τ௜ is a sequence of nodes λ ൌ
ሺݒ௜,௔, … , ௜,௕ሻݒ such that ,௜,௝ݒ ௜,௝ାଵݒ ∈ ,௜ܧ ∀݆ ∈ ሾܽ, ܾሻ.

The length of the chain, denoted by ݈݁݊ሺλሻ, is the sum of the
WCETs of all its nodes:

݈݁݊ λ ൌ ෍ܥ௜,௝

௕

௝ୀ௔

1. Chain (or path)

24

The longest path ௜ܮ of a cp-task τ௜ is any source-sink chain of the
task that achieves the longest length

௜ܮ also represents the time required to execute it when the number
of processing units is infinite (large enough to allow maximum
parallelism)

Necessary condition for feasibility: ௜ܮ ൑ ௜ܦ

2. Longest path

ࢋࢉ࢛࢘࢕࢙ ࢑࢔࢏࢙

19/04/2016

5

25

How to compute the longest path?

1. Find a topological order of the given cp-DAG

 A topological order is such that of there is an arc from ݑ to ݒ in
the cp-DAG, then ݑ appears before ݒ in the topological order
→ can be done in ܱሺ݊ሻ

 Example: for this cp-DAG possible topological orders are

 ሺݒଵ, ,ଶݒ ,ହݒ ,ଷݒ ,ସݒ ,଺ݒ ,଼ݒ ,଻ݒ ଽሻݒ

 ሺݒଵ, ,ହݒ ,ଶݒ ,ଷݒ ,ସݒ ,଺ݒ ,଻ݒ ,଼ݒ ଽሻݒ

 ሺݒଵ, ,ଶݒ ,ସݒ ,ଷݒ ,଺ݒ ,ହݒ ,଼ݒ ,଻ݒ ଽሻݒ

2. Longest path

26

How to compute the longest path?

2. For each vertex ௜,௝ݒ of the cp-DAG in the topological order,
compute the length of the longest path ending at ௜,௝ݒ by looking at
its incoming neighbors and adding ܥ௜,௝ to the maximum length
recorded for those neighbors

If ௜,௝ݒ has no incoming neighbors, set the length of the longest
path ending at ௜,௝ݒ to ܥ௜,௝

Example:
 For ݒଵ, record 1
 For ݒଶ, record 2
 For ݒଷ, record 5
 For ݒସ, record 6
 For ݒହ, record max 5, 6 ൌ 6

2. Longest path

27

How to compute the longest path?

3. Finally, the longest path in the cp-DAG may be obtained by starting
at the vertex ௜,௝ݒ with the largest recorded value, then repeatedly
stepping backwards to its incoming neighbor with the largest
recorded value, and reversing the sequence found in this way

Example: recorded values

Complexity of the longest path computation: ܱሺ݊ሻ

2. Longest path

૚

૛

૜

૞

૟
૟

ૠ

ૠ

ૡ

• Starting at ݒଽ and stepping
backward we find the sequence
,ଽݒ ,଻ݒ ,଺ݒ ,ସݒ ,ଶݒ ଵݒ

• The longest path is then
,ଵݒ ,ଶݒ ,ସݒ ,଺ݒ ,଻ݒ ଽݒ

28

In the absence of conditional branches, the volume of a task is the
worst-case execution time needed to complete it on a dedicated
single-core platform

It can be computed as the sum of the WCETs of all its vertices:

௜݈݋ݒ ൌ ෍ ௜,௝ܥ
௩೔,ೕ∈௏೔

3. Volume

1 0

It also represents the maximum
amount of workload generated
by a single instance of a DAG-

task

29

In the presence of conditional branches, the worst-case workload
of a task is the worst-case execution time needed to complete it on
a dedicated single-core platform, over all combination of choices for
the conditional branches

In this example, the worst-case workload is given by all the vertices
except ,ଷݒ since the branch corresponding to ସݒ yields a larger
workload

4. Worst-case workload

It also represents the maximum
amount of workload generated

by a single instance of a cp-task

30

How can it be computed?

4. Worst-case workload

reverse topological order
݅ takes the ݖ௧௛ element of the permutation

S takes the accumulated worst-case workload from ݒ௜ till the end of the cp-DAG
if the vertex has some successors

if the vertex is the head node of a conditional pair
∗ݒ is the successor of ݒ௜	achieving the largest partial workload

ܵሺݒ∗ሻ is merged into ܵሺݒ௜ሻ
if instead the vertex is a regular one

the workload contribution of all
successors is merged into ܵሺݒ௜ሻ

the worst-case workload accumulated by the source vertex is returned as output

19/04/2016

6

31

4. Worst-case workload

 What is the complexity of this algorithm?

• ܱሺ|ܧ|ሻ set operations
• Any of them may require to compute
௜ሻሻ, which has cost ܱሺ|ܸ|ሻݒሺܵሺܥ

The time complexity is then ܱሺ|ܧ||ܸ|ሻ

32

 Given a set of cp-tasks and a (work-conserving) scheduling
algorithm, the critical chain λ௜

∗ of a cp-task τ௜ is the chain of vertices
of τ௜ that leads to its worst-case response-time ܴ௜

5. Critical chain

 How can it be identified?

 We should know the worst-case instance of τ௜ (i.e., the job of τ௜ that has the
largest response-time in the worst-case scenario)

 Then we should take its sink vertex ௜,௡೔ݒ and recursively pre-pend the last to
complete among the predecessor nodes, until the source vertex ௜,ଵݒ has
been included in the chain

Key observation: the critical chain is unknown, but is always upper-
bounded by the longest path of the cp-task!

33

To find the response-time of a cp-task, it is sufficient to characterize
the maximum interference suffered by its critical chain

The critical interference ௜,௞ܫ imposed by task τ௞ on task τ௜ is the
cumulative workload executed by vertices of τ௞ while a node
belonging to the critical chain of τ௜ is ready to execute but is not
executing

Critical interference

i

i
i

τ4

τ1
τ2

τ3τ2

τ5

τ6

τ8

τ5

τ3

τ7

τ3

௜ݎ ௜ݎ ൅ ܴ௜

i Critical chain

τk Critical interference of
τ௞ on τ௜

m

34

Work-conserving schedulers

Property: a ready job cannot execute only if all m processors are
busy

We can safely assume that the interference is distributed across all
m processors

τi

τ3 τ1

τ2 τ5

τ2 τ3

τi

τi

τ3 τ6

τ5 τ4

τ7 τ8

ri ri + Ri

m

Global schedulers are typically work-conserving (e.g., Global
FP/EDF)

௜ܫ ൌ
∑ ௜,௞தೖܫ

݉

35

 :௜ܫ total interference suffered by task τ௜

 :௜,௞ܫ total interference of task τ௞ on task τ௜

Critical interference

i

i
i

௜ݎ ௜ݎ ൅ ܴ௜

ܴ௜ ൌ ݈݁݊ሺλ௜
∗ሻ ௜ܫ + ൌ ݈݁݊ሺλ௜

∗ሻ	+	
∑ ூ೔,ೖಜೖ

௠

For any work-conserving algorithm!ܫ௜ ൌ
∑ ௜,௞தೖܫ

݉

τ4

τ1
τ2

τ3τ2

τ5

τ6

τ8

τ5

τ3

τ7

τ3
m

36

Types of interference

ܴ௜ ൌ ݈݁݊ሺλ௜
∗ሻ ൅	ܫ௜ ൌ ݈݁݊ሺλ௜

∗ሻ	+	
∑ ூ೔,ೖಜೖ

௠
ൌ ݈݁݊ሺλ௜

∗ሻ ൅ ଵ

௠
௜,௜ܫ 	൅

∑ ூ೔,ೖಜೖಯ೔
௠

Intra-task int. inter-task int.

o Inter-task interference: from
other tasks in the system;
analogous to the classic notion

o Intra-task interference: from
vertices of the same task on itself;
peculiar to parallel tasks only

We need to deal with two types of interference:

Interfering

Interfered

Interfering (i.e., not critical)

Interfered (i.e., critical)

19/04/2016

7

37

 Caused by other cp-tasks executing in the system

 Finding it exactly is difficult

 We need to find an upper-bound on the workload of an interfering task
in the scheduling window ሾݎ௜, ௜ݎ ൅ ܴ௜ሿ

Inter-task interference

 In the sequential case (global multiprocessor scheduling):

Carry-in job Body jobs Carry-out job

What is the scenario that maximizes the interfering workload?

௜ݎ ௜ݎ ൅ ܴ௜

38

 Sequential case

 The first job of τ௞ starts executing as late as possible, with a starting time aligned
with the beginning of the scheduling window

 Later jobs are executed as soon as possible

 Parallel case

 This scenario may not give a safe upper-bound on the interfering workload. Why?

Inter-task interference

Shifting right the scheduling window may give a larger interfering workload!

௜ݎ ௜ݎ ൅ ܴ௜

39

 Pessimistic assumption

 Each interfering job of task τ௞ executes for its worst-case workload ௞ܹ

 The carry-in and carry-out contributions are evenly distributed among all ݉
processors

 Distributing them on less processors cannot increase the workload within the
window

 Other task configurations cannot lead to a higher workload within the window

Inter-task interference

௜ݎ ௜ݎ ൅ ܴ௜

݉

40

 Lemma: An upper-bound on the workload of an interfering task τ௞ in a
scheduling window of length ܮ is given by

௞ࣱ ܮ ൌ
ܮ ൅ ܴ௞ െ ௞ܹ/݉

௞ܶ
௞ܹ ൅ min ௞ܹ,݉ ∙ ܮ ൅ ܴ௞ െ

௞ܹ

݉
	݀݋݉ ௞ܶ

 Proof:

 The maximum number of carry-in and body instances within the
window is

ܮ ൅ ܴ௞ െ ௞ܹ/݉

௞ܶ

Inter-task interference

݉

ܮ
ܴ௞

ܴ௞ െ ௞ܹ/݉ ௞ܶ ௞ܶ௞ܶ

41

 Proof (continued):

 Each of the
௅ାோೖିௐೖ/௠

்ೖ
instances contributes for ௞ܹ

 The portion of the carry-out job included in the window is

ܮ ൅ ܴ௞ െ
ௐೖ

௠
	݀݋݉ ௞ܶ

 At most ݉ processors may be occupied by the carry-out job

 The carry-out job cannot execute for more than ௞ܹ units

Inter-task interference
௞ࣱ ܮ ൌ

ܮ ൅ ܴ௞ െ ௞ܹ/݉

௞ܶ
௞ܹ ൅ min	 ௞ܹ , ݉ ∙ ܮ ൅ ܴ௞ െ

௞ܹ

݉
	݀݋݉ ௞ܶ

݉

ܮ
ሺܮ ൅ ܴ௞ െ ௞ܹ ݉ሻ⁄ 	݀݋݉ ௞ܶ

42

Intra-task interference

 The interfered contribution is the critical chain

 Critical chain: chain that leads to the WCRT of the cp-task

Critical chain ≠ longest path

It is the interference from vertices of the same task on itself

Who is interfering and
who is interfered?

If (c) {…}
else {…}

T1

T2

T3

T4

10

6

6

6

endif

 Longest path is 10 time-units

 Critical chain can be either 10 or 6

19/04/2016

8

43

 Simple upper-bound

ܴ௜ ൌ ݈݁݊ሺλ௜
∗ሻ ൅	ܫ௜ ൌ ݈݁݊ሺλ௜

∗ሻ ൅ ଵ

௠
௜,௜ܫ 	൅

∑ ூ೔,ೖಜೖಯ೔
௠

Intra-task interference

ሻܮ௜,௞ሺܫ ൑ ௞ࣱ ܮ

ܼ௜ ≝ ݈݁݊ λ௜
∗ ൅

1
݉
௜,௜ܫ

൑ ݈݁݊ λ௜
∗ ൅

1
݉
ሺ ௜ܹെ݈݁݊ሺλ௜

∗ሻሻ

൑ ௜ܮ ൅
1
݉
ሺ ௜ܹ	െ	ܮ௜ሻ

௜ܹ െ ݈݁݊ሺλ௜
∗ሻ

critical chain

Length of the longest path

44

 Schedulability condition

Given a cp-task set globally scheduled on ݉ processors, an upper-bound
ܴ௜
௨௕ on the response-time of a task τ௜ can be derived by the fixed-point

iteration of the following expression, starting with ܴ௜
௨௕ ൌ :௜ܮ

ܴ௜
௨௕ ൌ ௜ܮ ൅

1
݉ ௜ܹ െ ௜ܮ ൅

1
݉
෍ ढ௞

஺௅ீ

∀௞ஷ௜

Putting things together

 Global FP

ढ௞
஺௅ீ ൌ ढ௞

ி௉ ൌ ቊड௞ ܴ௜
௨௕ , 				 ∀	݇ ൏ ݅

0, ݁ݏ݅ݓݎ݄݁ݐ݋														

 Global EDF
ढ௞
஺௅ீ ൌ ढ௞

ா஽ி ൌ ड௞ ܴ௜
௨௕ , ∀	݇ ് ݅

Decreasing priority order

௞ࣱ ܮ ൌ
ܮ ൅ ܴ௞ െ ௞ܹ/݉

௞ܶ
௞ܹ ൅ min	 ௞ܹ,݉ ∙ ܮ ൅ ܴ௞ െ

௞ܹ

݉
	݀݋݉ ௞ܶ

45

ܴ௜
௨௕ ൌ ௜ܮ ൅

1
݉ ௜ܹ െ ௜ܮ ൅

1
݉
෍ ढ௞

஺௅ீ

∀௞ஷ௜

Putting things together

 Global FP

The fixed-point iteration updates the bounds in decreasing priority order,
starting from the highest priority task, until either:

 one of the response-time bounds exceeds the task relative deadline
௜ܦ (negative schedulability result);

 OR no more update is possible (positive schedulability result), i.e.,
∀	݅: 	ܴ௜

௫ ൌ ܴ௜
௫ାଵ ൑ ௜ܦ

 Global EDF

 Multiple rounds may be needed

46

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-
Spaccamela, G. Buttazzo, Response-Time Analysis of
Conditional DAG Tasks in Multiprocessor Systems,
Proceedings of the 27th Euromicro Conference on Real-
Time Systems (ECRTS 2015)

Reference

47

Schedulability example

10

6

9 10

1

1

1

4

4

1 10

7

7

8

9

9 4

High-priority task
D = 35
T = 37

Len = 28
W = 37

Low-priority task
D = 139
T = 229
Len = 37
W = 37

Global FP
m = 2

48

Solution sketch

ܴଵ
ሺଵሻ ൌ ଵܮ ൌ 28

ܴଵ
ሺଶሻ ൌ ଵܮ ൅

1
݉ ଵܹ െ ଵܮ ൌ 32.5

ܴଵ
ଷ ൌ ܴଵ

ሺଶሻ ൌ 32.5 ൑ 35 Task 1 is schedulable

ܴଶ
ሺଵሻ ൌ ଶܮ ൌ 37

ܴଶ
ሺଶሻ ൌ ଶܮ ൅

1
݉ ଶܹ െ ଶܮ ൅

1
݉

ܴଶ ൅ ܴଵ െ ଵܹ ݉ൗ

ଵܶ
ଵܹ ൅ min	ሺ… ሻ ൌ 69.5

ܴଶ
ଷ ൌ 92.5

ܴଶ
ሺସሻ ൌ ܴଶ

ሺଷሻ ൌ 92.5 ൑ 139 Task 2 is schedulable

19/04/2016

9

49

Thank you!
Alessandra Melani
alessandra.melani@sssup.it

