21/04/2016

&etis

\) Secuola Superiore
¢/ Sant’Anna Real-Time Systems

Timing Characterization of
OpenMP4 Tasking Model

Alessandra Melani

OpenMP and Embedded Systems

[Convergence of High Performance Computing
(HPC) and Embedded Computing (EC)

= High-end EC systems are increasingly requiring HPC-
like performance in real time

U Parallel programming models for massive
parallelism exploitation in a predictable way
= Reduce the complexity of parallel programming
= Abstraction level

) OpenMP is widely used in the HPC domain and is
increasingly adopted in the EC domain as well

OpenMP and Embedded Systems

U How about timing predictability?

= The recent specification v4.0 offers a sophisticated
tasking execution model, which shares certain
similarities with traditional real-time task graphs

= Butis completely agnostic to timing requirements

[l Key questions

= Can OpenMP tasks be used to describe a real-time
application?

= How to enable classical timing analysis and real-time
scheduling within the OpenMP tasking model?

= How to use standard real-time scheduling techniques without
violating the semantics of the OpenMP execution model?

OpenMP and Embedded Systems

L1 OpenMP4 tasking model allows expressing fine-
grained and irregular parallelism —_—
OpenMP

= Task (independent parallel unit of work)

] i #pragma omp task depend(in: a)
Data dependencies e 1)
{

i
b
¥

nt c

10;
a c:

+ 1

L1 OpenMP4 tasking model resembles the way RT
application are modelled

= Sporadic Directed Acyclic Graph (DAG) model

OpenMP4 Tasking Model

#pragma omp parallel num_threads(N)
#pragma omp task // T,

Poo
#pragma omp task depend(out:x) // T,

P1o

01

#pragma omp task depend(in:x) // T,
P20

Po2

#pragma omp task // T3
P30
Po3
0 1 2 N-1

Task pool

(]

Team of threads

OpenMP4 Tasking Model

#pragma omp parallel num_threads(N)
#pragma omp task // T,
{ Task Scheduling Points
oo . (TSPs):
pragma omp task depend(out:x) // T, + Points in the program
Pio where the task can be
suspended and the

Po1
#pragma omp task depend(in:x) // T, hosting thread can be

Po2 P rescheduled to a
#pragma omp task // T; different task
P30

P = They occur upon task

03 .

b creation and
completion, and at task
synchronization points
such as taskwait and
barrier directives

21/04/2016

OpenMP4 Tasking Model

#pragma omp parallel num_threads(N)
#pragma omp task // T,
Task Scheduling Points

Poo L X

#pragma omp task depend(out:x) // Ty (TSPs) divide tasks into
P1o parts executed

Pox uninterruptedly from start

#pragma omp task depend(in:x) // T, to end
P20

Po2

#pragma omp task // T3

P e Task part

03 .

} Uninterruptedly

executed unit of code

OpenMP4 vs. DAG-based model

#pragma omp parallel num_threads(N)

#pragma omp task // T, From an OpenMP program,

an OpenMP-DAG can be

Poo derived
#pragma omp task depend(out:x) // Ty

P10

Po1
#pragma omp task depend(in:x) // T,

o P20 ‘

#pragma omp task // T3
P30

Po3
3
OpenMP4 DAG-based
Task parts Nodes
Dependencies and TSPs Edges
OpenMP programs Tasks

OpenMP-DAG derivation

[Task parts correspond to nodes in the DAG, upon
which WCET estimation is derived

1 Edges are then incorporated in the DAG
= depend clauses force tasks to be synchronized
= Task creation also imposes a dependency relation

= The same holds for taskwait and other synchronization
directives

This OpenMP-DAG contains all information to derive a
real-time schedule that complies with the semantics of
the OpenMP tasking execution model

OpenMP-DAG derivation

[Task parts correspond to nodes in the DAG, upon
which WCET estimation is derived

1 Edges are then incorporated in the DAG
= depend clauses force tasks to be synchronized
= Task creation also imposes a dependency relation

= The same holds for taskwait and other synchronization
directives

DAG scheduling techniques can be applied to OpenMP-
DAGs to provide timing guarantees

However, some features in the OpenMP tasking model
complicate the analysis, due to backward compatibility...

OpenMP backward compatibility

Up to OpenMP 2.5: Thread based model
#pragma omp parallel num_threads(2)

if (omp_get_thread_id()==1)
work1(i);

else
work2(i);

Thread 1 will compute work1()
Thread 0 will compute work2()

Since OpenMP 3.0: Task based model

#pragma omp parallel num_threads(2)
Any thread will compute

#pragma omp task work3() and work4()

work3(i);
#pragma omp task
work4(i);
b

OpenMP backward compatibility

Up to OpenMP 2.5: Thread based model
#pragma omp parallel num_threads(2)

if (omp_get_thread_id()==1)

workl(i); Aware of
else
work2(i); threads

Since OpenMP 3.0: Task based model

#pragma omp parallel num_threads(2)

#pragma omp task Not aware
work3(i);

#pragma omp task of threads
work4(i);

3

21/04/2016

Thread/task model compatibility Tied vs. untied tasks

O Backward compatibility U tied tasks (default): compatible with both thread-

#pragma omp task and task-based model

TU
.
#zpragma omp task Threado :@I@I@] e
3 T Thread 1

= Can only be executed by the thread that started it

if (omp_get_thread_id()==1)
{

POO
#pragma omp task { Py, }
POl

a Mak_e both mO(_jeIs compatible = Task scheduling constraint (TSC): A new tied task
= tiedvs.untied tasks can only be scheduled in a thread if it is a descendant
of all the other tasks suspended in that thread

mﬁ

Tied vs. untied tasks Why Task Scheduling Constraint?

L untied tasks: compatible with only task-based = Itprevents the run-time from deadlocks

model #pragma omp task // Task A = TasksA, B, C are tied tasks

itical = The thread executing Task A is about
pragma omp critica {0 enter the

#pragma omp task untied Thread 0 V @ { critical taskyield region and the
{ e ﬂ i #pragma omp task // Task C thread owns the lock associated
{

- with the critical region
} Thread 1 ‘

Because taskyield is a task
scheduling point, the thread
executing Task A may choose to

#pragma omp taskyield

¥ suspend
= Can beresumed by any thread after being suspended #pragma omp task // Task B « Tasks B and C are in the task pool.
By TSC, the thread executing Task A
: P cannot execute Task B because it is
= Not SUbJeCt to TSC ?pragma @iy ErEeEl not a descendant of Task A. Only
Task C can be scheduled at this
} point, because it is a descendant of
+ Task A

Why Task Scheduling Constraint? Why Task Scheduling Constraint?

U It prevents the run-time from deadlocks [It prevents the run-time from deadlocks

#pragma omp task // Task A = TasksA, B, C are tied tasks #pragma omp task // Task A

;thr:gre;deexecutlng Task Ais about #pragma omp critical = If Task B were to be sched_uled. the
critical taskyield region and the thread to which Tas_lfA s “e.d .
#pragma omp task // Task C thread owns the lock associated #pragma omp task // Task C cannot enter the critical region in
with the critical region Task B because the thread already
holds the lock. Therefore, a
deadlock occurs

#pragma omp critical

Because taskyield is a task
scheduling point, the thread
executing Task A may choose to The purpose of TSC is to avoid this
suspend ¥ kind of deadlocks

#pragma omp taskyield #pragma omp taskyield

¥

Tasks B and C are in the task pool. #pragma omp task // Task B
By TSC, the thread executing Task A
cannot execute Task B because it is

#pragma omp task Note that a deadlock can also occur

if the programmer nests a critical

#pragma omp #pragma omp critical section inside Task C, but that
not a descendant of Task A. Onl p
{ Task C can be scheduled at this Y { would be programming error
¥ point, because it is a descendant of 3
3 Task A ¥

21/04/2016

tied/untied tasks implications

O Timing analysis
= In real-time systems, the use of work-conserving
schedulers facilitates the timing characterization

o0 Work-conserving schedulers never idle threads
whenever workload is available

= tied tasks are not compatible, untied tasks are

TIED UNTIED

[[~

Thread 0 @@@ Thread 0 @@,
L L

Thread 1 Thread 1 m

Impact of tied tasks on scheduling

[Reduced number of available threads for a new

[A new tied task can only be scheduled in a thread if

tied task

itis a descendant of all the other tasks suspended
in that thread

Impact of tied tasks on scheduling

1 Reduced number of available threads for a new
tied task

[A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

Th.0 PQ

Impact of tied tasks on scheduling
[Reduced number of available threads for a new

) A new tied task can only be scheduled in a thread if

tied task

itis a descendant of all the other tasks suspended
in that thread

Th.0 PADi PAD

Impact of tied tasks on scheduling

1 Reduced number of available threads for a new
tied task

[A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

Impact of tied tasks on scheduling
[Reduced number of available threads for a new

0 A new tied task can only be scheduled in a thread if

tied task

itis a descendant of all the other tasks suspended
in that thread

PE]

Th.0 PADi PAD

Th.1 Peo

Th. 2

21/04/2016

Impact of tied tasks on scheduling

[Reduced number of available threads for a new
tied task

[A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

Impact of tied tasks on scheduling

) Reduced number of available threads for a new
tied task

[A new tied task can only be scheduled in a thread if
itis a descendant of all the other tasks suspended
in that thread

Impact of tied tasks on scheduling

] tied tasks cannot resume their execution in a
thread different than the one that started it

Impact of tied tasks on scheduling

] tied tasks cannot resume their execution in a
thread different than the one that started it

Th.0 [Py

Impact of tied tasks on scheduling

] tied tasks cannot resume their execution in a
thread different than the one that started it

Th. 0 [Py k Par

Impact of tied tasks on scheduling

] tied tasks cannot resume their execution in a
thread different than the one that started it

21/04/2016

Impact of tied tasks on scheduling

] tied tasks cannot resume their execution in a
thread different than the one that started it

Impact of tied tasks on scheduling

[l tied tasks cannot resume their execution in a
thread different than the one that started it

P
& 1.0 [P0 P) Poo
Th1 Pao PCD

Impact of tied tasks on scheduling

] tied tasks cannot resume their execution in a
thread different than the one that started it

Th. 0 [Pao A Pai A Poo

Th1 Puo PCQ
Th. 2 >< <

Impact of tied tasks on scheduling

U Impact on time predictability
= Non-work conserving policy

= Schedulability analysis without introducing
unacceptable pessimism is prohibitive, or at least
very difficult to achieve

U Impact on performance

= The number of effective threads is reduced at task
creation and resumption

Schedulability analysis of untied tasks

1 Work-conserving policy

= Tasks can be freely migrated across threads

= Each task part is executed in one of the available
threads as soon as all its dependencies have
been fulfilled

] OpenMP4 DAG < Real-time DAG task

= untied tasks .
Schedulability

= WCET of each task part (nodes) test
= Relative deadline (D)
= Period (T)

Schedulability analysis of untied tasks

[Schedulability test
* G: OpenMP-DAG
= D: Relative deadline
= m: number of processors/threads

= len(G): length of the critical path (longest chain)
= vol(G): sum of all WCETs of the nodes (volume)

L len(G) + % (vol(G) — len(G)) J

Relative
deadline

Response time
upper-bound

21/04/2016

Schedulability analysis of untied tasks

U Schedulability test
= G:OpenMP-DAG
= D: Relative deadline
= m: number of processors/threads
= len(G): length of the critical path (longest chain)
= vol(G): sum of all WCETs of the nodes (volume)

m

Critical path Divided Rest of work
among
processors

Schedulability analysis of untied tasks

1 Schedulability of a DAG =~ Makespan minimization problem
= Makespan: response time of the collection of jobs
= The makespan minimization problem is NP-hard

1 Graham’s List Scheduling algorithm
= Polynomial time complexity

= Approximation bound: R < (2 —%) ROPt
o0 The obtained makespan is at most (2 - %) times the

optimal one
o Itimplements a work-conserving scheduling strategy

List Scheduling example

[Example

Th.1 Pgo GDD

List Scheduling approximation bound

1
R < (2 ——)R"I"t
m

Th. 0 |Pag [[Pas Pa

Th. 1 Pgo Poo || Peo
Th.2 @ Pgy

O Proof
= Construct a critical chain of jobs A* as follows

o Take the job v, that completes last, and let t, be its starting time
o Letwv,_, be the predecessor of v, that completes last
o0 Go on in this way until a job without predecessors is reached

= We get a chain of jobs A* = (v, ..., v,)

List Scheduling approximation bound

1
R < (2 ——)R”pt
m

Th. 2

1 Proof
= Construct a critical chain of jobs 1* as follows

o Take the job v, that completes last, and let t, be its starting time
o Letv,_, be the predecessor of v, that completes last
o Go on in this way until a job without predecessors is reached

= We get a chain of jobs A* = (v4, ..., v,)

List Scheduling approximation bound

1
R < (2 ——)R"I"t
m

Th. 0 |Pa

U Proof (continued)

= Observation: between the completion time t; + C; of each job of A*
and the starting time of the next job, all threads must be busy
(otherwise job v;,, would have started earlier)

= Some job belonging to A* is executing at every time instant when
not all threads are busy

21/04/2016

List Scheduling approximation bound

0 Proof (continued)

U R equal to the sum of
= Time instants when some of the threads are idle:
< len(}*)

= Time instants when all the threads are busy:
< (vol(G) — len(X"))

that gives
1
R < len(*) + - (vol(G) — len(A"))

List Scheduling approximation bound

1 Proof (continued)

= Total work executed on m threads
e 1 1
ROPt > — Z C; = —wvol(G)
m m
ViEV
= Longest chain executed sequentially

opt > Z L=
R 2 max C; = len(G)

VEA

List Scheduling approximation bound

1 Proof (continued)
1
R < len(A") + E(val(G) - len(}*))
1 1
= len(A*) + —vol(G) — —len(A")
m m

<Ropt+Rapt_lRapt

- m

= 1—i+1 ROPt = 2—l RoOPt
m m

1 Since len(A*) < len(G), we obtain

[R“b = len(G) + %(uol(G) - len(G))]

Conclusions

The OpenMP4 tasking model resembles the sporadic DAG
scheduling model

However, to provide timing guarantees we need to consider the
following OpenMP features
U tied tasks: do not allow the use of work-conserving
schedulers, complicating the schedulability analysis
O untied tasks: allow the use of work-conserving schedulers

A schedulability analysis can be easily derived for the untied
tasking model, enabling the applicability of OpenMP4 in real-
time systems

Example

1 #pragma omp parallel num_threads(N) {
2 upragma omp single { £/ To

3 parte

4 wpragma omp task depend (out:x) // Ti

5 { partis
o #pragma omp task { pariza } // T2
7 partiy
8 #pragma omp taskwait
9 partia
10
11 partoy
12 fipragma omp task depend(in:x) // Ty
:: { partsg { N .
#pragma omp task partao Ty
PRt B What is the
:g partyy .
+
B hertes corresponding
19 #pragma omp task // Ts
20 { partso
3 i o sk {4 7 OpenMP-DAG?
22 partgo
23 #pragma omp task // Ty
{ partzo
25 dpragma omp task { partsg } 4/ Ty
26 #pragma omp taskwait
27 partyy
28 }
29 parte:
30 #pragma omp task { partoo } // To
31 partgs
32 }
33 partg,
34 #pragma omp taskwait
3s partsz
36

37 wpragma emp taskwait
38 partos
¥

Solution

------ > control flow
=== TSP (task creation/resume)
——» TSP (synchronization)

T

Pos, P Paz

21/04/2016

andra Melani
alessandra.melani@s

