
21/04/2016

1

1

Timing Characterization of
OpenMP4 Tasking Model

Alessandra Melani

2

OpenMP and Embedded Systems

 Convergence of High Performance Computing
(HPC) and Embedded Computing (EC)

 High-end EC systems are increasingly requiring HPC-
like performance in real time

 Parallel programming models for massive
parallelism exploitation in a predictable way

 Reduce the complexity of parallel programming
 Abstraction level

 OpenMP is widely used in the HPC domain and is
increasingly adopted in the EC domain as well

3

OpenMP and Embedded Systems

 How about timing predictability?

 The recent specification v4.0 offers a sophisticated
tasking execution model, which shares certain
similarities with traditional real-time task graphs

 But is completely agnostic to timing requirements

 Key questions
 Can OpenMP tasks be used to describe a real-time

application?

 How to enable classical timing analysis and real-time
scheduling within the OpenMP tasking model?

 How to use standard real-time scheduling techniques without
violating the semantics of the OpenMP execution model?

4

OpenMP and Embedded Systems

OpenMP4 tasking model allows expressing fine-
grained and irregular parallelism

 Task (independent parallel unit of work)

 Data dependencies

OpenMP4 tasking model resembles the way RT
application are modelled

 Sporadic Directed Acyclic Graph (DAG) model

#pragma omp task depend(in: a)
depend(out: b)

{
int c = 10;
b = a + c;

}

5

OpenMP4 Tasking Model

#pragma omp parallel num_threads(N)
#pragma omp task // ࢀ૙
{
p00
#pragma omp task depend(out:x) // ࢀ૚

p10
p01
#pragma omp task depend(in:x) ૛ࢀ //

p20
p02
#pragma omp task // ࢀ૜

p30
p03

}

0 1 2 N-1

Task pool

Team of threads

଴ܶ

ଶܶ

ଷܶଵܶ

6

OpenMP4 Tasking Model

#pragma omp parallel num_threads(N)
#pragma omp task // ࢀ૙
{
p00
#pragma omp task depend(out:x) // ࢀ૚

p10
p01
#pragma omp task depend(in:x) ૛ࢀ //

p20
p02
#pragma omp task // ࢀ૜

p30
p03

}

Task Scheduling Points
(TSPs):
 Points in the program

where the task can be
suspended and the
hosting thread can be
rescheduled to a
different task

 They occur upon task
creation and
completion, and at task
synchronization points
such as taskwait and
barrier directives

21/04/2016

2

7

OpenMP4 Tasking Model

#pragma omp parallel num_threads(N)
#pragma omp task // ࢀ૙
{
p00
#pragma omp task depend(out:x) // ࢀ૚

p10
p01
#pragma omp task depend(in:x) ૛ࢀ //

p20
p02
#pragma omp task // ࢀ૜

p30
p03

}

Task Scheduling Points
(TSPs) divide tasks into
parts executed
uninterruptedly from start
to end

Task part
 Uninterruptedly

executed unit of code

8

OpenMP4 vs. DAG-based model

#pragma omp parallel num_threads(N)
#pragma omp task // ࢀ૙
{
p00
#pragma omp task depend(out:x) // ࢀ૚

p10
p01
#pragma omp task depend(in:x) ૛ࢀ //

p20
p02
#pragma omp task // ࢀ૜

p30
p03

}

From an OpenMP program,
an OpenMP-DAG can be
derived

P00

T0

P01

P10

T1

P30

T3

P20

T2

P02

P03

OpenMP4 DAG-based

Task parts Nodes

Dependencies and TSPs Edges

OpenMP programs Tasks

9

OpenMP-DAG derivation

 Task parts correspond to nodes in the DAG, upon
which WCET estimation is derived

Edges are then incorporated in the DAG

 depend clauses force tasks to be synchronized

 Task creation also imposes a dependency relation

 The same holds for taskwait and other synchronization
directives

This OpenMP-DAG contains all information to derive a
real-time schedule that complies with the semantics of

the OpenMP tasking execution model

10

OpenMP-DAG derivation

 Task parts correspond to nodes in the DAG, upon
which WCET estimation is derived

Edges are then incorporated in the DAG

 depend clauses force tasks to be synchronized

 Task creation also imposes a dependency relation

 The same holds for taskwait and other synchronization
directives

DAG scheduling techniques can be applied to OpenMP-
DAGs to provide timing guarantees

However, some features in the OpenMP tasking model
complicate the analysis, due to backward compatibility…

11

OpenMP backward compatibility

Up to OpenMP 2.5: Thread based model

Since OpenMP 3.0: Task based model

#pragma omp parallel num_threads(2)
{
if (omp_get_thread_id()==1)

work1(i);
else
work2(i);

}

Thread 1 will compute work1()
Thread 0 will compute work2()

#pragma omp parallel num_threads(2)
{
#pragma omp task

work3(i);
#pragma omp task
work4(i);

}

Any thread will compute
work3() and work4()

12

OpenMP backward compatibility

Up to OpenMP 2.5: Thread based model

Since OpenMP 3.0: Task based model

#pragma omp parallel num_threads(2)
{
if (omp_get_thread_id()==1)
work1(i);

else
work2(i);

}

#pragma omp parallel num_threads(2)
{
#pragma omp task
work3(i);

#pragma omp task
work4(i);

}

Not aware
of threads

Aware of
threads

21/04/2016

3

13

Thread/task model compatibility

 Backward compatibility

 Make both models compatible
 tied vs. untied tasks

#pragma omp task
{
if (omp_get_thread_id()==1)
{

P00

#pragma omp task { P10 }
P01

}
}

T0

P01

P10

T1

P00

14

Tied vs. untied tasks

 tied tasks (default): compatible with both thread-
and task-based model

#pragma omp task
{

...
}

 Can only be executed by the thread that started it

 Task scheduling constraint (TSC): A new tied task
can only be scheduled in a thread if it is a descendant
of all the other tasks suspended in that thread

P00Thread 0

Thread 1

P10 P01

T0

P01

P10

T1

P00

15

Tied vs. untied tasks

 untied tasks: compatible with only task-based
model

#pragma omp task untied
{

...
}

 Can be resumed by any thread after being suspended

 Not subject to TSC

P00Thread 0

Thread 1

P10

P01

T0

P01

P10

T1

P00

16

Why Task Scheduling Constraint?

 It prevents the run-time from deadlocks

#pragma omp task // Task A
{

#pragma omp critical
{

#pragma omp task // Task C
{
}
#pragma omp taskyield

}
}

#pragma omp task // Task B
{

#pragma omp critical
{
}

}

 Tasks A, B, C are tied tasks

 The thread executing Task A is about
to enter the
critical taskyield region and the
thread owns the lock associated
with the critical region

 Because taskyield is a task
scheduling point, the thread
executing Task A may choose to
suspend

 Tasks B and C are in the task pool.
By TSC, the thread executing Task A
cannot execute Task B because it is
not a descendant of Task A. Only
Task C can be scheduled at this
point, because it is a descendant of
Task A

17

Why Task Scheduling Constraint?

 It prevents the run-time from deadlocks

#pragma omp task // Task A
{

#pragma omp critical
{

#pragma omp task // Task C
{
}
#pragma omp taskyield

}
}

#pragma omp task // Task B
{

#pragma omp critical
{
}

}

 Tasks A, B, C are tied tasks

 The thread executing Task A is about
to enter the
critical taskyield region and the
thread owns the lock associated
with the critical region

 Because taskyield is a task
scheduling point, the thread
executing Task A may choose to
suspend

 Tasks B and C are in the task pool.
By TSC, the thread executing Task A
cannot execute Task B because it is
not a descendant of Task A. Only
Task C can be scheduled at this
point, because it is a descendant of
Task A

taskyield: The current
task can be suspended
in favor of a different
task

But the lock is not
released!

18

Why Task Scheduling Constraint?

 It prevents the run-time from deadlocks

#pragma omp task // Task A
{

#pragma omp critical
{

#pragma omp task // Task C
{
}
#pragma omp taskyield

}
}

#pragma omp task // Task B
{

#pragma omp critical
{
}

}

 If Task B were to be scheduled, the
thread to which Task A is tied
cannot enter the critical region in
Task B because the thread already
holds the lock. Therefore, a
deadlock occurs

 The purpose of TSC is to avoid this
kind of deadlocks

 Note that a deadlock can also occur
if the programmer nests a critical
section inside Task C, but that
would be a programming error

21/04/2016

4

19

tied / untied tasks implications

 Timing analysis

 In real-time systems, the use of work-conserving
schedulers facilitates the timing characterization
o Work-conserving schedulers never idle threads

whenever workload is available

 tied tasks are not compatible, untied tasks are

P00Thread 0

Thread 1

P10 P01 P00Thread 0

Thread 1

P10

P01

T0

P01

P10

T1

P00

TIED UNTIED

20

Impact of tied tasks on scheduling

 Reduced number of available threads for a new
tied task

 A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

21

Impact of tied tasks on scheduling

 Reduced number of available threads for a new
tied task

 A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

PA0Th. 0

Th. 1

Th. 2

PA1PA2

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

22

Impact of tied tasks on scheduling

 Reduced number of available threads for a new
tied task

 A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

PA0Th. 0

Th. 1

Th. 2

PB0

PA1

PA2

PB1

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

23

Impact of tied tasks on scheduling

 Reduced number of available threads for a new
tied task

 A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

PA0Th. 0

Th. 1

Th. 2

PB0

PA1

PA2

PB1

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

24

Impact of tied tasks on scheduling

 Reduced number of available threads for a new
tied task

 A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

PA0Th. 0

Th. 1

Th. 2

PB0

PA1

PA2

PB1

PC0

PD0

21/04/2016

5

25

Impact of tied tasks on scheduling

 Reduced number of available threads for a new
tied task

 A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

PA0Th. 0

Th. 1

Th. 2

PB0

PA1
PB1

PC0

PD0

PA2

26

Impact of tied tasks on scheduling

 Reduced number of available threads for a new
tied task

 A new tied task can only be scheduled in a thread if
it is a descendant of all the other tasks suspended
in that thread

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

PA0Th. 0

Th. 1

Th. 2

PB0

PA1
PB1

PC0

PD0

PA2

27

Impact of tied tasks on scheduling

 tied tasks cannot resume their execution in a
thread different than the one that started it

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

28

Impact of tied tasks on scheduling

 tied tasks cannot resume their execution in a
thread different than the one that started it

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA0Th. 0

Th. 1

Th. 2

PA1

29

Impact of tied tasks on scheduling

 tied tasks cannot resume their execution in a
thread different than the one that started it

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA0Th. 0

Th. 1

Th. 2

PA1

PB1

PB0

30

Impact of tied tasks on scheduling

 tied tasks cannot resume their execution in a
thread different than the one that started it

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA0Th. 0

Th. 1

Th. 2

PA1

PB1

PB0

21/04/2016

6

31

Impact of tied tasks on scheduling

 tied tasks cannot resume their execution in a
thread different than the one that started it

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA0Th. 0

Th. 1

Th. 2

PA1

PB1

PB0

PC0

PD0

32

Impact of tied tasks on scheduling

 tied tasks cannot resume their execution in a
thread different than the one that started it

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA0Th. 0

Th. 1

Th. 2

PA1

PB1

PB0 PC0

PD0

33

Impact of tied tasks on scheduling

 tied tasks cannot resume their execution in a
thread different than the one that started it

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA0Th. 0

Th. 1

Th. 2

PA1

PB1

PB0 PC0

PD0

34

Impact of tied tasks on scheduling

 Impact on time predictability

 Non-work conserving policy
 Schedulability analysis without introducing

unacceptable pessimism is prohibitive, or at least
very difficult to achieve

 Impact on performance

 The number of effective threads is reduced at task
creation and resumption

35

Schedulability analysis of untied tasks

 Work-conserving policy

 Tasks can be freely migrated across threads
 Each task part is executed in one of the available

threads as soon as all its dependencies have
been fulfilled

 OpenMP4 DAG ↔	Real-time DAG task
 untied tasks

 WCET of each task part (nodes)
 Relative deadline (ܦ)
 Period (ܶ)

Schedulability
test

36

Schedulability analysis of untied tasks

 Schedulability test

 OpenMP-DAG :ܩ
 Relative deadline :ܦ
 ݉: number of processors/threads
 ݈݁݊ሺܩሻ: length of the critical path (longest chain)
 ሻ: sum of all WCETs of the nodes (volume)ܩሺ݈݋ݒ

ܴ௨௕ ൌ ݈݁݊ ܩ ൅
1
݉

݈݋ݒ ܩ െ ݈݁݊ሺܩሻ ൑ ܦ

Response time
upper-bound

Relative
deadline

21/04/2016

7

37

Schedulability analysis of untied tasks

 Schedulability test

 OpenMP-DAG :ܩ
 Relative deadline :ܦ
 ݉: number of processors/threads
 ݈݁݊ሺܩሻ: length of the critical path (longest chain)
 ሻ: sum of all WCETs of the nodes (volume)ܩሺ݈݋ݒ

ܴ௨௕ ൌ ݈݁݊ ܩ ൅
1
݉

݈݋ݒ ܩ െ ݈݁݊ሺܩሻ ൑ ܦ

Critical path Rest of workDivided
among

processors

38

Schedulability analysis of untied tasks

 Schedulability of a DAG ൎ	Makespan minimization problem

 Makespan: response time of the collection of jobs

 The makespan minimization problem is NP-hard

 Graham’s List Scheduling algorithm
 Polynomial time complexity

 Approximation bound: ܴ	 ൑ 2 െ ଵ

௠
ܴ௢௣௧

o The obtained makespan is at most 2 െ ଵ

௠
times the

optimal one
o It implements a work-conserving scheduling strategy

39

List Scheduling example

 Example

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

PA0Th. 0

Th. 1

Th. 2

PB0

PA1

PB1PC0

PD0

PA2

40

List Scheduling approximation bound

 Proof
 Construct a critical chain of jobs λ∗ as follows

o Take the job ݒ௭ that completes last, and let ݐ௭ be its starting time

o Let ݒ௭ିଵ be the predecessor of ݒ௭ that completes last

o Go on in this way until a job without predecessors is reached

 We get a chain of jobs λ∗ ൌ ,ଵݒ … , ௭ݒ

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

PC1

PE0

TE

Th. 0

Th. 1

Th. 2

PA0

PB0

PA1

PB1PC0

PD0

PA2

PC1

PE0

ܴ	 ൑ 2 െ
1
݉

ܴ௢௣௧

41

List Scheduling approximation bound

 Proof
 Construct a critical chain of jobs λ∗ as follows

o Take the job ݒ௭ that completes last, and let ݐ௭ be its starting time

o Let ݒ௭ିଵ be the predecessor of ݒ௭ that completes last

o Go on in this way until a job without predecessors is reached

 We get a chain of jobs λ∗ ൌ ,ଵݒ … , ௭ݒ

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

PC1

PE0

TE

Th. 0

Th. 1

Th. 2

PA0

PB0

PC0

PE0

ܴ	 ൑ 2 െ
1
݉

ܴ௢௣௧

42

List Scheduling approximation bound

 Proof (continued)

 Observation: between the completion time ݐ௜ ൅ ௜ܥ of each job of λ∗

and the starting time of the next job, all threads must be busy
(otherwise job ݒ௜ାଵ would have started earlier)

 Some job belonging to λ∗ is executing at every time instant when
not all threads are busy

PA0

TA

PA1

PB0

TB

PB1

PC0

TC

PD0

TD

PA2

PC1

PE0

TE

ܴ	 ൑ 2 െ
1
݉

ܴ௢௣௧

Th. 0

Th. 1

Th. 2

PA0

PB0

PC0

PE0

21/04/2016

8

43

List Scheduling approximation bound

 Proof (continued)

 ܴ equal to the sum of

 Time instants when some of the threads are idle:
൑ ݈݁݊ λ∗ 	

 Time instants when all the threads are busy:

൑	ଵ
௠
ሺ݈݋ݒ ܩ െ ݈݁݊ሺλ∗ሻሻ

that gives

R ൑ ݈݁݊ λ∗ ൅
1
݉
ሺ݈݋ݒ ܩ െ ݈݁݊ሺλ∗ሻሻ

44

List Scheduling approximation bound

 Proof (continued)

 Total work executed on ݉ threads

ܴ௢௣௧ ൒
1
݉
෍ ௜ܥ
௩೔∈௏

ൌ
1
݉
ሻܩሺ݈݋ݒ

 Longest chain executed sequentially

ܴ௢௣௧ ൒ max
஛∈ீ

෍ ௜ܥ
௩೔∈஛

ൌ ݈݁݊ሺܩሻ

45

 Since ݈݁݊ λ∗ ൑ ݈݁݊ሺܩሻ, we obtain

List Scheduling approximation bound

 Proof (continued)

R ൑ ݈݁݊ λ∗ ൅
1
݉

݈݋ݒ ܩ െ ݈݁݊ λ∗

ൌ ݈݁݊ λ∗ ൅
1
݉
݈݋ݒ ܩ െ

1
݉
݈݁݊ λ∗

൑ ܴ௢௣௧ ൅ ܴ௢௣௧ െ
1
݉
ܴ௢௣௧

ൌ 1 െ
1
݉
൅ 1 ܴ௢௣௧ ൌ 2 െ

1
݉

ܴ௢௣௧

ܴ௨௕ ൌ ݈݁݊ ܩ ൅
1
݉
ሺ݈݋ݒ ܩ െ ݈݁݊ሺܩሻሻ

46

Conclusions

The OpenMP4 tasking model resembles the sporadic DAG
scheduling model

A schedulability analysis can be easily derived for the untied
tasking model, enabling the applicability of OpenMP4 in real-
time systems

However, to provide timing guarantees we need to consider the
following OpenMP features

 tied tasks: do not allow the use of work-conserving
schedulers, complicating the schedulability analysis

 untied tasks: allow the use of work-conserving schedulers

47

Example

What is the
corresponding

OpenMP-DAG?

48

Solution

21/04/2016

9

49

Thank you!
Alessandra Melani
alessandra.melani@sssup.it

