
OpenMP and GPU Programming
OpenMP

Emanuele Ruffaldi

PERCeptual RObotics Laboratory, TeCIP
Scuola Superiore Sant’Anna

Pisa,Italy

e.ruffaldi@sssup.it

April 5, 2016

Introduction

Parallel Programming

Parallel programming refers to the computation of a problem by
decomposing across multiple processors performing the same task.
This is complementary to concurrent programming in which
different processors perform related task acting on possibly shared
resources.
Parallel programming is becoming important even on Desktop or
Laptop machines due to the increased availability of multicore
CPUs.
Parallel programming can be organized between shared memory or
message passing:

I shared memory: the processors share task memory

I message passing: all (most) data is exchanged via some form
of channels

Introduction

Memory Models

This diagram shows the memory models:

Thread Thread

Single Process VM Space

Heap

Private
Stack

Private
Stack

Process Process

Shared	
 Arena	
 (mmap)

Private
Stack

Private
Stack

Private
Heap

Private
Heap

Introduction

Parallel Programming in C/C++

There are two approaches for this type of programming in C/C++
and in general programming languages: language-based features vs
library based features.

I Language-based features introduce some special syntax for
expressing parallelism and concurrency (OpenMP, Cilk)

I Library-based features use library functions for expressing
paralellism, at different levels of abstraction (pthreads, Intel
TBB)

In this course we address OpenMP because it is standard based,
easy to use and widely available on most C/C++ programming
tools.

Introduction

OpenMP Programming Model

Programming Model:

I Language support and library for shared memory parallel
programming

I Multiple threads, one per-core, within the same address space

I Different levels of parallelization

I Specific for C/C++ and Fortran

Goals:

I Minimize transformation from single process to multiprocess
application

I Provide easy to use synchronization without message passing

Introduction

OpenMP Solution Stack

The following picture presents the OpenMP solution stack with the
User Application on top, then the OpenMP development time
functionalities, the run-time, OS services and then the shared
memory processors.

Stack

End	
 User

Application

Directives	
 and	

Compiler OpenMP Library

Environment	

Variables

OpenMP Run-­‐time

OS	
 Threading	
 and	
 Shared	
 Memory

Shared	
 Address	
 Space

CPU CPU CPU CPU CPU

Introduction

OpenMP History

I OpenMP has been standardized from the OpenMP
architecture review board in 1997 first for Fortran then C++

I 2.0 arrived in 2000 and then 2.5 in 2005.

I 3.0 introduced Tasks in 2008

I 4.0 introduced a large set of features in 2013

I last one is 4.5 added in 2015

Introduction

Compiler Support

Each compiler has adopted OpenMP at different stages of the
standard:

I GCC supports OpenMP 4.0 since gcc 4.9, 3.0 since gcc 4.4,
2.5 since gcc 4.2 (enabled with -fopenmp)

I Microsoft Visual C++ supports OpenMP 2.5 since version
2005 (enabled with /openmp)

I CLang supports OpenMP 3.1 since version 3.8 (but not in
stock OSX CLang)

Introduction

Minimal Example
Before entering a systematic analysis of OpenMP it is worth
getting an example:

#i n c l u d e <cmath>
#i n c l u d e <chrono>
#i n c l u d e <i o s t r eam>

int main ()
{
const int s i z e = 32768;
double s i nTab l e [s i z e] ;

#pragma omp p a r a l l e l for

for (int n=0; n<s i z e ; ++n)
s i nTab l e [n] = s td : : s i n (2 ∗ M PI ∗ n / s i z e) ;

return 0 ;
}

The environment variable OMP NUM THREADS controls the
number of parallel threads to be instantiated so different situations
can be tested.

I Try the example using different OMP NUM THREADS and
time it

I How we can measure time precisely under Linux?

Introduction

Building Example

These examples can be easily build using gcc with ”-fopemp” flag,
and then the library is provided by libgomp.

f i n d p a c k a g e (OpenMP)
if (OPENMP FOUND)
s e t (CMAKE C FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
s e t (CMAKE CXX FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
e n d i f ()
a d d d e f i n i t i o n s(−−s t d=c++11)
l i n k l i b r a r i e s (gomp)

Introduction

Measuring Time
Sometime we’ll need time measurement. Under Linux the main
option is clock gettime that supports different types of clock
sources:

I CLOCK REALTIME
I CLOCK MONOTONIC
I CLOCK PROCESS CPUTIME ID
I CLOCK THREAD CPUTIME ID

Then we’ll use some code for time difference. This is good but not
portable so let’s use C++11 standard:

#i n c l u d e <chrono>
auto now = s td : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;
auto dt = [] (d e c l t y p e (now) now) { return s t d : : chrono : : d u r a t i o n c a s t<s t d : : chrono : : m ic roseconds>(s t d : : chrono : : h i g h r e s o l u t i o n c l o c k : : now()−now) . count () ; } ;
. . .
s t d : : cout << "elapsed us: " << dt (now) << s t d : : e nd l ;
}

The Linux clocks are reflected by the C++11 clock families:
I high resolution clock
I system clock
I steady clock

Luckly OpenMP provides omp get wtime() that returns in double
the number of elapsed seconds.

Introduction

OpenMP Directives
OpenMP is based on the use of directives that in C/C++ do correspond to
preprocessor pragma commands starting with ”omp”.

#pragma omp c on s t r u c t [c l a u s e [c l a u s e] .]

Example:

#pragma omp p a r a l l e l num threads (4)

These directives apply to the next statement. The syntax allows the serial
execution just by ignoring the directives.

I In particular the OpenMP directive acts over a ”structured block” that is:
an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or another OpenMP construct.

An OpenMP enabled compiler uses these directives to transform the code also
by adding the invocation to the run-time API.
In the following we’ll discuss the different directives.

Introduction

Compilation and Run-time Detection

The presence of OpenMP can be detected at compile-time via the
OPENMP define. The OpenMP run-time can be accessed via the
include file omp.h.
The most classic solution is the estimation of the number of
available threads via get thread num().

Introduction

Parallel Directive

The parallel directive introduces a parallel region
executed by all the OpenMP processes. The contained
structured block is affected by that directive.

#pragma omp p a r a l l e l
{

< code o f s t r u c t u r e d b l o ck >
}

At high-level OpenMP works by dealing with a number
of threads organized in a Team. At start there is only
one thread in the team and then the parallel directive
activates other threads in the team. When not specified
there is a number of thread in the team equal to the
available processors. Otherwise it can be specified.

#pragma omp p a r a l l e l num threads (3)
{
< code o f s t r u c t u r e d b l o ck >
}

#pragma	
 omp parallel
{

T1 T4T3T2

}

Introduction

For Directive

The for directive is used to
parallelize a for-loop with some
control over the loop is assigned
to the tasks. This is the most
common directive and it can be
specified inside a parallel
directive, or via a short-hand
”parallel for”. The for loop
following the directive is split
among the threads of the Team.

#pragma	
 omp parallel	
 for
{

T1 T4T3T2

}

i=1..
4

i=5..
8

i=9..
12

i=13.
..16

Introduction

For Directive
I There are different options for executing the threads in the Team and

they can be controlled via clauses in the directive
I schedule(static [,k]) - divides the loop in chunks of size k, if k is not

specified k is n/nthreads. Tasks are pre-assigned to the threads
I schedule(dynamic [,k]) - divides the loop in chunks as before, but tasks

are assigned dynamically
I schedule(guided) - k starts large and it is automatically decreased
I schedule(auto) is compiler dependent
I schedule(runtime) - uses the variable OMP SCHEDULE

I Also there is no guaranteed that the elements of the loop are
executed in a specific order, unless the ordered clause is added.

I The ordered directive dictates that a piece of code is executed in the
correct order.

I The single directive dictates that a piece of code is executed only by
a single thread.

Introduction

Sections

Parallel for is not enough for many tasks. For this reasons the
sections construct has been introduced. A sections construct is a
structured block containing multiple sections that needs to be
executed in parallel. Each section has to be preceded by ”omp
section” except the first. At the end of the sections block there is
a implicit barrier, unless the nowait clause is used.

#pragma omp p a r a l l e l // starts a new team

{
// Work0 (); // this function would be run by all threads.

#pragma omp s e c t i o n s // divides the team into sections

{
// everything herein is run only once.

{ Work1 () ; }
#pragma omp s e c t i o n
{ Work2 () ;
Work3 () ; }
#pragma omp s e c t i o n
{ Work4 () ; }

}
// Work5 (); // this function would be run by all threads.

}

Introduction

Sections Single

The following is the example for single

#include <i o s t r eam>

int main ()
{

#pragma omp p a r a l l e l
{

s t d : : cout << "multiple \n" ;
#pragma omp s i n g l e
{

s t d : : cout << "only one\n" ;
}

}
return 0 ;

}

Introduction

Tasks

Task have been introduce in OpenMP 3.0 to provide a simpler to
use control of tasking along the approach of the fork-join model.
The approach of section was cumbersome requiring a FIXED,
non-RECURSIVE number of parallel sections.
In OpenMP 3.0 every task can generate other task, that is then
enqueued to the tasks list and decided by the runtime when it will
be executed. Synchronization among tasks allow to collect
execution results.

I ”#pragma omp task” - creates a new task

I ”#pragma omp barrier” - blocks for all the threads in the
Team

I ”#pragma omp taskwait” - waits for the completion of the
children tasks

Introduction

Task elements

Tasks are made of the following elements:

I Code

I Data environment

I Assigned real thread

In addition they are characterized by two phases:

I Packaging - when the context is captured

I Execution

Introduction

Task data environment
Variables whose lexical scope is visible at the construct are considered
SHARED by default. Static variables declared inside the block are SHARED,
while local variable are PRIVATE. This behavior can be modified by specifying
a specific behavior for each variable

I shared(list) - variables are shared
I private (list) - one copy per thread default constructed. The original

variable cannot be used because it can be unreliable
I lastprivate (list) - as private but at the end of the execution the variable is

updatedd
I firstprivate (list) - the variable is copy constructed

The general behavior can be modified by using the clause default:

I default(shared) - all variables are shared (DEFAULT)
I default(none) - each variable has to be specified

Note that these clauses do apply also to other worksharing primitives such as
for, parallel and section.

Introduction

Task Example
#include <cmath>
#include <chrono>
#include <memory . h>
#include <i o s t r eam>
#include "omp.h"

int main ()
{

const int s i z e = 10 ;
double s i nTab l e [s i z e] ;
memset (s i nTab l e , 0 , sizeof (s i nTab l e)) ;
auto be f o r e 1 = omp get wtime () ;

#pragma omp p a r a l l e l
{

#pragma omp s i n g l e
{

s t d : : cout << "single " << omp get thread num () << s t d : : e nd l ;
for (int n=0; n<s i z e ; ++n)
{

#pragma omp ta sk default (none) sha r ed (s i nTab l e) f i r s t p r i v a t e (n) sha r ed (s td : : cout)
{

#pragma omp c r i t i c a l
{

s t d : : cout << "thread " << omp get thread num () << " iter " << n << " ptr "

<< s i nTab l e << s t d : : e nd l ;
}
s i nTab l e [n] = s td : : s i n (2 ∗ M PI ∗ n / s i z e) ;

}
}
#pragma omp t a s kwa i t

}

}
auto a f t e r 1 = omp get wtime () ;

s t d : : cout << "elapsed omp(s): " << (a f t e r 1−be f o r e 1) << s t d : : e nd l ;
for (int n=0; n<s i z e ; ++n)
{

s t d : : cout << "result " << n << " " << s i nTab l e [n] << s t d : : e nd l ;
}
return 0 ;

}

Introduction

OpenMP Implementation

How OpenMP can be implemented?

I Compiler support

I Code Transformations

I Run-time library

Discussion about the possible implementation of the simple
”parallel for”. Check also the ideas present in the paper ”Ruffaldi
E., Dabisias G., Brizzi F. & Buttazzo G. (2016). SOMA: An
OpenMP Toolchain For Multicore Partitioning. In 31st
ACM/SIGAPP Symposium on Applied Computing . ACM.

	Introduction

