Scuola Superiore
Sant’Anna

OpenMP and GPU Programming
OpenMP Exercises

Emanuele Ruffaldi

PERCeptual RObotics Laboratory, TeCIP
Scuola Superiore Sant’Anna
Pisa, ltaly

e.ruffaldi@sssup.it

April 6, 2016

Task Dependencies

OpenMP allows for creating dependencies between tasks for
moving from a purely parallel model to a data flow model. The
result is that the task structure moves from hierarchical fork-join
to a Direct Acyclic Graph (DAG).

The depend clause specifies how a variable, or array slide, is
produced or consumed by the task. The dependent-type can be
in,out or inout followed by a list of variables. The newly generated
task that specifies a in dependency will wait sibling tasks with out
or inout.

for (dint i = 0; i < T; ++i) {
#pragma omp task shared(x, ...) depend(out: x) // T1i
preprocess_some_data (...)

#pragma omp task shared(x, ...) depend(in: x) // T2
do_something_with_data (...)

#pragma omp task shared(x, ...) depend(in: x) // T3
do_something_independent_with_data (...);

Manual Code Protection

In some cases the resource protection provided by the
shared/private mechanism of tasks is not enough.

For this reason OpenMP provides two constructs that supports
such a protection. The first is the one of critical section that
protects the execution of code: only one task at time executes a
given code region.

Then we have atomic directives for controlling the access and the
operations to variables.

&

Reference

» Environment Variables

» OMP_NUM_THREADS

» OMP_DYNAMIC
» Functions

» omp_set_num_threads

> omp_set_dynamic
> Directives
parallel
parallel for (with schedule, unordered, collapse)
single
critical
task/taskwait/taskgroup/taskyield
cancel taskgroup

vyVYVvYVvVVYYy

B
&t
Exercises
» Fibonacci (basic tasking)
» Mandelbrot Set (looping)
Tools: GCC >4.9
Source code will be made available on Github
https://github.com/eruffaldi/course_openmpgpu.
B
[
Parallel Fibonacci
Compute the Fibonacci sequence using a recursive parallel scheme
based on tasks. Then estimate timing. Use the following stub:
#include <omp.h>
#include <stdio.h>
// omp_get_wtime ()
int fib(int n)
{
// usi openmp
}
int pfib(int q)
{
// ... something
}
im main(int argc, char const xargv([])
int n = pfib(atoi(argv[1]))
printf("hello, %d\n" ,n);
return 0;
}
B
&



https://github.com/eruffaldi/course_openmpgpu

Mandelbrot Set

A Mandelbrot Set is the most known
fractal that is built based on the
termination situation of a recursive
function. In particular the recursive
function:

2k +1] = z[K]* + ¢ (1)
2[1] = (0,0) (@)

The iteration is stop when the complex
modulus is larger than a threshold (e.g.
100) or a number of iterations have been
reached (e.g. 256)

Then the point is colored based on the
number of iterations with the convention
of 0 if the maximum iteration is reached.
Javascript example online: here.

For saving use stb_image_writer.h library.

f&2

Visualizing For Schedule

The schedule clause of the parallel for
allows for specifying the distribution
across the threads. While performing the
Mandlebrot set it is possible to display
the different scheduling policies. The
images on the right show the following
cases with 8 threads and collapse 2.

Top-left static 50
Top-right dynamic 50
Bottom-left guided 50
Bottom-right auto

yVYVvy

(&2



http://www.atopon.org/mandel/

