
1

Giorgio Buttazzo
g.buttazzo@sssup.it

Scuola Superiore Sant’Anna

2

Context

Embedded systems are becoming more complex
every day:

more functions

 higher performance

 higher efficiency

 new hardware platforms

Increasing complexity

1990 2000 2010
0

100

200

functions
in a cell phone

1980
year

2020

300

400

500

Hardware Performance

1990 2000 20101980 year2020
104

106

108

1010

1012

1970

Instructions per second

Intel 8080

M 68000 Intel 286

Intel 386

Intel 486

Intel Pentium ProDEC Alpha

AMD Athlon
Xbox 360 (3 cores)

Intel i7 (6 cores)
AMD Phenom
(6 cores)

Software Complexity

year
104

105

106

107

108
Lines of code

1990 2000 20101980 20201970

MS-DOS 1.0

Windows 3.1

Windows 2000
Windows XP Windows 7

Windows Vista

Unix

Windows NT 4.0
Linux 3.6

Linux 2.6.0

Linux 2.4.2

Linux 2.6.29
Windows 98

MS-DOS 3.1

Linux 1.1.0

Linux 2.0

Windows 8

And the Result is …

year
0

30

60

90

120
Boot time (seconds)

1990 2000 20101980 20201970

2

It increases with upgrades

files
upgraded

0

2

4

6

8
Boot time (minutes)

1

3

5

7

200K0 400K 600K 800K 1M

Windows 7

Windows 8

ECU growth in a car

1990 2000 20101980
year

2020

ECUs

0

20

40

60

80

100

every function is encoded
in a different ECU

ECU = Electronic Control Unit

Advantages of separation

Separating functions in dedicated ECUs allows:

 easier development

 easier testing

 easier certification

 easier maintenance

Problems of separation

With the increasing number of ECUs, there are
problems of space, weight, energy.

How to add more functions?

1990 2000 20101980 year2020
0

30

60

90

120

150
ECUs
Functions

no more space

current situation: 70 ECUs

Functions

group more
functions in
the same ECU

ECUs

That's nice, but

How can we test and certify a function in the
presence of other applications?

How can we guarantee behavior and performance
to get certification?

A

B

ECU1

ECU2

A

B

New platform

3

Additional problems

A

B

multicore
platformsingle core

platform

single core
platform

How do we partition the applications on the
available cores?

How does the Worst-Case Execution Time (WCET)
scale on multicore architecture?

A A

B
A

B

14

The problem

When multiple applications run on the same
platform, they interfere with each other due to the
use of shared resources.

Interference: phenomenon for which the execution
of a task affects the one of other tasks.

In the following, we will

 identify the causes of interference

 present possible solutions

15

Interference mechanisms

 Time: concurrent access to shared resources, as
processing units and communication channels.

 Space: due to sharing the same memory space
(Cache, DRAM, Hard Disk).

 Energy: sharing the energy source (battery).

 Temperature: eating up each other.

Tasks may interfere for different reasons:

16

Why do we care?

Because interference has different negative effects:

 It decreases efficiency and schedulability

 It reduces predictability

 It jeopardizes safety

 It complicates the analysis

17

A simple example

3 41 2

Application A

CPU 1: speed = 1

Application B

P1 P2 P3 P4

CPU 2: speed = 1

43

21

Applications A + B

Platform: speed = 2

 Priorities must be assigned

 Task interference can
jeopardize predictability

P1

P3

P2

P4

18

Priority explosion!

There are 6 priority assignments that satisfy both priority orders:

1

2

3

4

1

2

3

4

1

2

3

4 1

2

3

41

4

2

3

1

2

4

3

1

2

A
P1

P2

3

4

B
P3

P4

How many priority
assignments satisfy
both priority orders?

4

19

 How do computation times scale in the new
platform?

 Which priority order do we choose?

 Do they all lead to a feasible schedule?

 Are they different in terms of performance?

 How can we reduce the reciprocal interference?

Non trivial questions

20

0 4 8 0

5

12

10

1 (2,4)

2 (4,8)

3 (2,5)

4 (6,12)

RM schedule (S = 1) RM schedule (S = 1)
A B

4

Let’s go into details

1

2

A

P1

P2

Ci Ti

2 4

4 8

3

4

B

P3

P4

Ci Ti

2 5

6 12

21

Now let’s groups them

How computation times scale in the new platform?

3

4

B

Ci Ti

2 5

6 12

speed = 1

1

2

A

Ci Ti

2 4

4 8

speed = 1
Ci’ = s

Ci

Assume for
simplicity 1

2

A+B

P1

P2

Ci Ti

4

2 8

3

4

P3

P4

1 5

3 12

1

speed = 2

22

Now let’s groups them

1

2

A+B

P1

P2

Ci Ti

1 4

2 8

3

4

P3

P4

1 5

3 12

1

2

3

4

1

2

3

4

1

2

4

1

3

4

1

2

3

4

1

2

3

4

1

2

3

4

4

8

5

12

4

5

8

12

4

5

12

8

5

4

8

12

5

4

12

8

5

12

4

8

If the new platform has a fixed priority scheduler,
what is the best priority order?

RM ordering (optimal)

23

0 4 8 0

5

12

10

1 (2,4)

2 (4,8)

3 (2,5)

4 (6,12)

RM schedule (S = 1) RM schedule (S = 1)
A B

1 (1,4)

3 (1,5)

2 (2,8)

4 (3,12)

RM schedule (S = 2)  assumingA+B

4 8

5 10

12

15

8 16

12

deadline miss

16

0

A

B

All together are not feasible!

C’i =
s

Ci

24

0 4 8 0

5

12

10

1 (2,4)

2 (4,8)

3 (2,5)

4 (6,12)

RM schedule (S = 1) RM schedule (S = 1)
A B

0

4 8

5 10

8

120

4

Example on 2 cores

Core 1 (S = 1) Core 2 (S = 1)

Rate Monotonic – First Fit or Best Fit

2

4

1

3

miss

U = 0.9 U = 1

U = 1 U = 0.9

5

Course outline - 1

1. Motivation and examples

2. Brief summary of uniprocessor analysis

3. Interference analysis and techniques to reduce it
 Temporal isolation

 Resource reservations servers

 Hierarchical component-based systems

 Schedulability analysis of single components

 Resource sharing protocols for hierarchical systems

4. Energy-aware scheduling

Course outline - 2

5. Multiprocessor scheduling
 Architecture issues and modeling

 Performance analysis

 Scheduling paradigms

 Task allocation and feasibility bounds

6. Processor abstraction and interface
 Efficient algorithms for the interface design.

 Multiprocessor abstractions.

 Applications models.

 Application partitioning and resource allocation

Course outline - 3

7. Standards for component-based development
 ARINC: a standard for avionic systems.

 AUTOSAR a standard for automotive systems

8. Component-oriented programming and models
 introduction to C++ patterns

 UML models of components

 code generation using patterns under Eclipse-EMF

9. Hypervisors
 The Xen project

 Guaranteeing real-time constraints on hypervisor-
based systems

