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Context

Embedded systems are becoming more complex
every day:

more functions

 higher performance

 higher efficiency

 new hardware platforms

Increasing complexity
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It increases with upgrades
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ECU growth in a car
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ECU = Electronic Control Unit

Advantages of separation

Separating functions in dedicated ECUs allows:

 easier development

 easier testing

 easier certification

 easier maintenance

Problems of separation

With the increasing number of ECUs, there are
problems of space, weight, energy.

How to add more functions?
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That's nice, but

How can we test and certify a function in the
presence of other applications?

How can we guarantee behavior and performance
to get certification?
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Additional problems
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How do we partition the applications on the
available cores?

How does the Worst-Case Execution Time (WCET)
scale on multicore architecture?
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The problem

When multiple applications run on the same
platform, they interfere with each other due to the
use of shared resources.

Interference: phenomenon for which the execution
of a task affects the one of other tasks.

In the following, we will

 identify the causes of interference

 present possible solutions
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Interference mechanisms

 Time: concurrent access to shared resources, as
processing units and communication channels.

 Space: due to sharing the same memory space
(Cache, DRAM, Hard Disk).

 Energy: sharing the energy source (battery).

 Temperature: eating up each other.

Tasks may interfere for different reasons:
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Why do we care?

Because interference has different negative effects:

 It decreases efficiency and schedulability

 It reduces predictability

 It jeopardizes safety

 It complicates the analysis
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A simple example
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 Priorities must be assigned

 Task interference can 
jeopardize predictability
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Priority explosion!

There are 6 priority assignments that satisfy both priority orders:
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 How do computation times scale in the new
platform?

 Which priority order do we choose?

 Do they all lead to a feasible schedule?

 Are they different in terms of performance?

 How can we reduce the reciprocal interference?

Non trivial questions

20

0 4 8 0

5

12

10

1 (2,4)

2 (4,8)

3 (2,5)

4 (6,12)

RM schedule (S = 1) RM schedule (S = 1)
A B

4

Let’s go into details
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Now let’s groups them

How computation times scale in the new platform?
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Now let’s groups them
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If the new platform has a fixed priority scheduler,
what is the best priority order?

RM ordering (optimal)
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Example on 2 cores

Core 1  (S = 1) Core 2  (S = 1)
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Course outline - 1

1. Motivation and examples

2. Brief summary of uniprocessor analysis

3. Interference analysis and techniques to reduce it
 Temporal isolation

 Resource reservations servers

 Hierarchical component-based systems

 Schedulability analysis of single components

 Resource sharing protocols for hierarchical systems

4. Energy-aware scheduling

Course outline - 2

5. Multiprocessor scheduling
 Architecture issues and modeling

 Performance analysis

 Scheduling paradigms

 Task allocation and feasibility bounds

6. Processor abstraction and interface
 Efficient algorithms for the interface design.

 Multiprocessor abstractions.

 Applications models.

 Application partitioning and resource allocation

Course outline - 3

7. Standards for component-based development
 ARINC: a standard for avionic systems.

 AUTOSAR a standard for automotive systems

8. Component-oriented programming and models
 introduction to C++ patterns

 UML models of components

 code generation using patterns under Eclipse-EMF

9. Hypervisors
 The Xen project

 Guaranteeing real-time constraints on hypervisor-
based systems


