Component-Based
Software Design

Giorgio Buttazzo
g.buttazzo@sssup.it

ggetis

Real-Time Systems Laboratory

Scuola Superiore Sant’/Anna

Context

Embedded systems are becoming more complex
every day:

» more functions
» higher performance
> higher efficiency

» new hardware platforms

%..;s Increasing complexity

functions SED

4., Hardware Performance

in a cell phone SIS N , 102 | Instructions per second s
] e = ’ s
500 - =5 !
. ® Intel i7 (6 cores)
101
400 1 ® Xbox 360 (3 cores)
300 10° |
200 -
M 68000
1 106 - °
100 1 >“Intel 8080
0 —_— 104 — - :
1980 1990 2000 2010 2020 year 1970 1980 1990 2000 2010 2020 Year
Koetis Software Complexity 2 I And the Result is ...
¢ | Lines of code s Boot time (seconds) °
10° 4 “ 120 -
Windows Vista. e Windows 8
Windows XP ¢ ® Windows 7 -~
Windows 2000 e o © Linux36
107 A Wwindows NT 4.0 @ YT 90 -
Windows 98 e ® |inux 2.6.0 o
Windows 3.1 @ ® linux 2.4.2
6 4
10 ® Linux 2.0 60
® Linux 1.1.0
Unix e
5 4
10 o Ms-DOS31 30
MS-DOS 1.0
104 — i 0 — - :
1970 1980 1990 2000 2010 2020 year 1970 1980 1990 2000 2010 2020 Year

c.... Itincreases with upgrades

Boot time (minutes)

Windows 7

Windows 8

0 . : . : . : . . .

0 200K 400K 600K 800K 1w files
upgraded

£ N ECU growth in a car

ECU = Electronic Control Unit

every function is encoded
in a different ECU

60 -
40

204 ¢

1980 1990 2000 2010 2020 year

..., Advantages of separation

Separating functions in dedicated ECUs allows:
» easier development
> easier testing
» easier certification

» easier maintenance

%.,.. Problems of separation

With the increasing number of ECUs, there are
problems of space, weight, energy.

4., How to add more functions?

1 —— ECUs
150 - /
7 Nno more space /I
120 7
| /
ro-=s
90 | e ~ ECUs
] current situation: 70 ECUs / h
60 group more
| functions in
30 | the same ECU
0

1980 1990 2000 2010 2020 year

R ris That's nice, but

N

New platform

ECU,

» How can we test and certify a function in the
presence of other applications?

ECU,

» How can we guarantee behavior and performance
to get certification?

g O Additional problems

multicore

single core ° platform
platform - - =
single core °
platform

» How do we partition the applications on the
available cores?

» How does the Worst-Case Execution Time (WCET)
scale on multicore architecture?

R, The problem

When multiple applications run on the same
platform, they interfere with each other due to the
use of shared resources.

Interference: phenomenon for which the execution
of a task affects the one of other tasks.

In the following, we will
= identify the causes of interference

= present possible solutions

4., Interference mechanisms

Tasks may interfere for different reasons:

» Time: concurrent access to shared resources, as
processing units and communication channels.

» Space: due to sharing the same memory space
(Cache, DRAM, Hard Disk).

» Energy: sharing the energy source (battery).

» Temperature: eating up each other.

Bopis Why do we care?

Because interference has different negative effects:
» It decreases efficiency and schedulability

» It reduces predictability

» It jeopardizes safety

» It complicates the analysis

Booris A simple example
Application A Application B
G~ —® Oalln®

P, P, P, P,

CPU 1: speed =1

CPU 2: speed =1

Applications A + B
AOSEISOL

Platform: speed =2

= Priorities must be assigned

= Task interference can
jeopardize predictability

Xoeis Priority explosion!

How many priority @ P, ’ @ P, {

assignments satisfy
@ »

both priority orders? @ P,
There are 6 priority assignments that satisfy both priority orders:

@
®
@)

OO
@©OOO
OO
@O
OO

... ~ Non trivial questions

e How do computation times scale in the new
platform?

e Which priority order do we choose?

¢ Do they all lead to a feasible schedule?

¢ Are they different in terms of performance?

e How can we reduce the reciprocal interference?

oo Let’s go into details

CITI CiTi
Pr(m) [2 4 Py (%) [2 5
P (%) [4 8 Pu (1) |6 12

kﬁf\—/ Mﬂ_ —y
A B
! !

RM schedule (S =1)

A
vea b B | weo bm b= b

4 5 10
T2 (48) L_o:;_A:Lr ’4(6-“)1 = |
0 4 8 0 12

i Now let’s groups them

How computation times scale in the new platform?

i Now let’s groups them

If the new platform has a fixed priority scheduler,
what is the best priority order?

G T speed = 2
@ 2 4 CT G T J—
A Assume for i i
L@ 48 simplicity Pl@ 1 4 Pl@ 14 @4@4@4 @5 @5 @5
speed =1 — P () |2 8 P28l @s @s @5 @ @+ @
o s ™ a@ts “@[15] @ @ @r @ @z @
1 1 H 3
B{@ 2 s Pe @ |3 12 P@LEE @e @2 @ @2 @ @
Nl
(@ |6 12 A+B A+B
speed = 1 RM ordering (optimal)
21 22
Example on 2 cores
RM schedule (S =1) RM schedule (S = 1) u=1 RM schedule (S = 1) u=09 RM schedule (S =1)
A B A B
T (24 L_A—J:t—h'—ﬁ T3 (25) ‘:t—ﬁh‘:tﬁ—h'—_ﬁk T (24) ‘:l—h'—__l—hl—ﬁ T3 (29) ‘:lm
5 10 4 5 10
we | mm m onen| e | w0 | mm el o] e mm |
0 4 8 0 12 0 4 8 0 12
. 4 {4
A+B RM schedule (S=2) = assuming C’; = ?' [Rate Monotonic — First Fit or Best Fit
CACKN R ST R . L L
A”/T @5) ! ’ ? 1 u=09 Corel (S=1) U=1 Core2 (S=1)
B “u 8 : o N whm b b v
2 (2, 2 8 8 . miss
8 ., 16 deadline miss Ty - — Ty | — L:‘::!
14(3'12)‘!\- Hm.”L 0 5 10 e o

2 % Course outline - 1

1. Motivation and examples
2. Brief summary of uniprocessor analysis

3. Interference analysis and techniques to reduce it
= Temporal isolation
= Resource reservations servers
= Hierarchical component-based systems
= Schedulability analysis of single components
= Resource sharing protocols for hierarchical systems

4. Energy-aware scheduling

Course outline - 2

Multiprocessor scheduling

Architecture issues and modeling
Performance analysis

Scheduling paradigms

Task allocation and feasibility bounds

Processor abstraction and interface

Efficient algorithms for the interface design.
Multiprocessor abstractions.

Applications models.

Application partitioning and resource allocation

- Course outline - 3

7. Standards for component-based development
= ARINC: a standard for avionic systems.
= AUTOSAR a standard for automotive systems

8. Component-oriented programming and models
= introduction to C++ patterns
= UML models of components
= code generation using patterns under Eclipse-EMF

9. Hypervisors
= The Xen project

= Guaranteeing real-time constraints on hypervisor-
based systems

