
1

Giorgio Buttazzo
g.buttazzo@sssup.it

Scuola Superiore Sant’Anna

Consider two applications, A and B, independently
developed on dedicated platforms.

A

B

Platform 1

Platform 2

A

B

New platform

How can we guarantee them when they are
concurrently executed in the same platform?

The problem

© Scuola Superiore Sant’Anna 3

0 4 8 0

5

12

10

1 (2,4)

2 (4,8)

3 (2,5)

4 (6,12)

RM schedule (S = 1) RM schedule (S = 1)
A B

1 (1,4)

3 (1,5)

2 (2,8)

4 (3,12)

RM schedule (S = 2)  assumingA+B

4 8

5 10

12

15

8 16

12

deadline miss

16

0

A

B

Example with fixed priorities

C’i =
s

Ci

3 (5,18)

Application B

B

© Scuola Superiore Sant’Anna 4

Example with EDF

1 (4,8)

2 (2,12)

Application A

A
3

2

6

1

2

1
AU 18

5
BU

1
18

17

18

5

3

2
TOTU

1 (4,8)

2 (2,12)

3 (5,18)

EDF schedule
A+B

18

deadline
miss

16A

B
12

40 8 12 16 202 6 10 14

overrun

Clearly, when multiple applications execute
on the same platform, they compete for the
same resources and may delay each others.

A

B

Resource partitioning

What we need is a mechanism able to partition the processor
in two subsystems (virtual processors), each dedicated to a
single application.

B

AV1

V2

In this way, an overrun occurring in an
application does not propagate to the others,
but only affects the application itself.

Resource Reservation

10 %

45 %
25 %

20 %

1

23

4
Each application receives a fraction i < 1
of the processor sufficient to meet its

execution requirements.

In general, what we really need is to have:

A mechanism that prevents an application
to consume more than its reserved
fraction.

In this way, the application executes as it
were executing alone on a slower
processor with speed i.

Resource partitioning

Enforcement mechanism

2

Priorities vs. Reservations

A1

A2

A3

A1

A2

A3

A1 A2 A3

A1

A2

A3

1 = 0.5

Prioritized
Access

Resource
Reservation

P2

P1

P3

READY QUEUE

50%

30%

20%
2 = 0.3

3 = 0.2

Priorities vs. Reservations

1

2

3

1

2

3

Prioritized
Access

Resource
Reservation

50%

30%

20%

Priorities vs. Reservations

Shared resource

Low priority

Medium priority

High priority

Tasks  vehicles Resource  road

Prioritized approach

Problems in overload conditions

Resource Reservation

truck
lane

car
lane

service
lane

Each type of vehicle has a reserved lane

Benefits of Res. Reservation

1. Resource allocation is easier than priority mapping.

2. It provides temporal isolation: overruns occurring in
a reservation do not affect other tasks in the
system.
 Important for modularity and scalability

3. Simpler schedulability analysis:
 Response times only depends on the application

demand and the amount of reserved resource.

4. Easier probabilistic approach

3

Implementing Reservations

CPU

server
Ready queue

scheduler

1

3

1

server

server

2b

2a

Dynamic priorities

serverscheduler

RM/DM

EDF CBS

Sporadic ServerFixed priorities

2

3

Guaranteeing Reservations

If a processor is partitioned into n reservations, we
must have that:

A
n

i
i U lub

1






CPU

server
Ready queue

scheduler

1

3

server

server

2b

2a

where A is the adopted scheduling algorithm.

1

2

3

Hard vs. Soft reservations

SOFT reservation

It guarantees that the served application receives
at least a budget Q every P.

HARD reservation

It guarantees that the served application receives
at most a budget Q every P.

16

Constant Bandwidth Server

 It assigns deadlines to tasks as the TBS, but keeps track
of job executions through a budget mechanism.

 When the budget is exhausted it is immediately
replenished, but the deadline is postponed to keep the
demand constant.

Maximum budget: Qs

Server period: Ts

Server bandwidth: Us = Qs/Ts

CBS parameters

assigned
by the user

maintained
by the server

Current budget: qs (initialized to 0)

Server deadline: ds (initialized to 0)

17

Basic CBS rules

Arrival of job Jk at time rk  assign ds

if (rk + qs /Us  ds) then recycle (qs, ds)

else ds = rk + Ts

qs = Qs

ds = ds + Ts

qs = Qs

Budget exhausted  postpone ds

The server
remains active

18

Example of Soft CBS

CBS: Qs = 2, Ts = 6

1

2

ape

4

0

12 24

16

0

8 14

d0

6

d1

r1

d2

1

d3 d4

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

2620

8 16 20

r1

4

19

Problem of Soft CBS

CBS: Qs = 1, Ts = 4

1

s

4 12 240

8 12

d0

5

d1 d2

1

d3 d4

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

2420

8 16 20

16

d5 d6

4 16

1 1 1

If more bandwidth is allocated during idle intervals, the server
deadline goes far away (deadline aging) and the executions
tend to become less regular.

20

Example with Hard CBS

CBS: Qs = 1, Ts = 4

1

s

4 12 240

8 12

d0

5

d1 d2

1

d3 d4

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

2420

8 16 20

16

d5 d6

4 16

1 1

The deadline aging problem can be avoided by suspending the
server when qs = 0 and recharging the budget at ds:

1

28

28

Hierarchical scheduling

Resource reservation can be used to develop
hierarchical systems, where each component is
implemented within a reservation:

Local Scheduler

Global Scheduler

Local Scheduler

Component 1 Component N
  

Application 1

Computing Platform

Application N

Hierarchical scheduling

In general, a component can also be divided in other
sub-components

Local Scheduler

Global Scheduler

Local Scheduler

Component 1 Component N
  

Computing Platform

Local Scheduler Local Scheduler

CPU

Global scheduler

S1S2S3S4

123
Local scheduler

89
Local scheduler

  

Server S1Server S4

Hierarchical scheduling

Global scheduler: the one managing the system ready queue

Local schedulers: the ones managing the servers queues

Hierarchical Analysis

Local Scheduler

Global Scheduler

Local Scheduler

Component 1 Component N
  

Application 1

Computing Platform

Application N

Global analysis: Servers must be schedulable by the global
scheduler running on the physical platform.

Local analysis: Applications must be scheduled by the local
schedulers running on the components.

5

ttdbft )(,0

Under EDF, the analysis of an application within a
reservation is done through the Processor Demand
Criterion:

The difference is that in an interval of length t the
processor is only partially available.

Under Fixed Priority Systems (FPS), the analysis is
done through the Workload Analysis:

:],0(,...,1 iDtni  ttWi )(

Analysis under RR

To describe the time available in a reservation, we
need to identify, for any interval [0, t], the minimum
time allocated in the worst-case situation.

Supply bound function sbf(t):

minimum amount of time available in reservation
Rk in every time interval of length t.

Analysis under RR

Example: Static time partition

sbf(t)

0 2 4 6 8 10 12 14 16 18 20 22 24 t

Example of reservation providing 4 units every 10
(bandwidth = 0.4).

t0 2 4 6 8 10 12 14 16 18 20

4

8

)()(,0 tsbftdbft 

Hence the Processor Demand Criterion can be
reformulated as follows:

t

dbf(t)

t sbf(t)

Analysis under RR

)()(,0 tlsbftdbft 

A simpler sufficient test, can be derived by replacing
sbf(t) with a lower bound, called linear supply bound
function lsbf(t):

sbf(t)

t

dbf(t)

t

lsbf(t)

Analysis under RR Supply bound function

)}(,0max{)( ttlsbf 

A linear supply bound function has the following form:

t

lsbf(t)





 = bandwidth
 = service delay

6

Given a generic supply function sbf(t), the bandwidth
 is the equivalent slope computed for long
intervals:

sbf(t)

t

t

tsbf
t

)(
lim






Deriving  and 

While the delay  is the highest intersection with the
time axis of the line of slope  touching the sbf(t):

sbf(t)

t







 

 
)(

sup
0

tsbf
t

t



Deriving  and 



t

sbf(t)

sbf(t)


Example: Periodic Server

sbf(t)

For a periodic server with budget Qs and period Ps
running at the highest priority, we have:

s

s

P

Q
 ss QP 

Qs

Ps – Qs

Ps

Qs

sbf(t)

For a periodic server with budget Qs and period Ps
running at unknown priority, we have:

Qs

2(Ps – Qs)

Ps

Qs

Example: Periodic Server

s

s

P

Q
)(2 ss QP 

Observation

It is worth comparing the following supply functions:

t



t



Supply
function of a
full processor

Supply function
of a fluid partition
with bandwidth 

Supply function of a real
partition with bandwidth 
of a periodic server Q,P

In a periodic server with bandwidth , we have that:

t



t



PQ 

)1(2)(2  PQP The delay  is proportional
to the server period P

Observation

7

Note that, for a given bandwidth , reducing P
reduces the delay  and improves schedulability,
tending to a fluid reservation, but …

t

Observation

smaller P

smaller periods generates
higher runtime overhead

If  is the context switch overhead, we have:

Taking overhead into account



QP

0eff



minP 





 



 1

2)1(2 minmin P

Allocated bandwidth:

Effective bandwidth:

P

Q


PP

Q
eff

 




)1(2  P

Hence reducing the server period P reduces the delay
, but also reduces the effective bandwidth eff that
can be exploited:

P

Effective bandwidth

/

eff

 QoS1

QoS2

QoS3

1 1

2 2

3 3

Reservation interface

Note that the (, ) parameters offer an alternative
interface, which is independent of the implementation
mechanism (static partitions or Q-P server):

1

2

3

Avoiding resource wastes

truck
lane

car
lane

service
lane

A reservation can be wasted because of

 occasional load reduction due to early terminations

 wrong bandwidth allocation at design time

 application changes due to environmental changes

Example of sporadic waste

time

demanded
bandwidth

avg

allocated
bandwidth

under utilized

correctly utilized
over utilized

8

Bandwidth allocation error

time

bandwidth
allocation

error

Resource is insufficient
(application is delayed)

The application
demands less

(resource is wasted)

Bandwidth
allocation error

Demanded
Bandwidth

Allocated
Bandwidth



Resource Reclaiming

R1

R2

Unused bandwidth in a reservation can be used to
satisfy extra occasional needs in another reservation:

Budget reclaiming

3 2 2 1 2

3 4 4

3

1

CASH: Capacity Sharing algorithm

 When a job finishes and qs > 0, the residual budget is put in
a global queue of spare capacities (the CASH queue), with
a deadline equal to the server deadline.

 A server first uses the capacity in the CASH queue with the
earliest deadline dq  ds, otherwise qs is used.

 Idle times consume the capacity in the CASH queue with
the earliest deadline.

1

2

3 2 2 1 2

3 4 5

1 1 2 1

3

3 4 5

3 2 2 1 2 3

3

3

Capacity Sharing algorithm

1

2

CASH queue

Handling wrong allocations

There are situations in which the reservation error is
caused by a wrong bandwidth allocation:

time

resource
needs

any reservation is not appropriate

safe but
not efficient

efficient but
not enough

Need for adaptivity

In these cases, the only solution is to design the
system to be adaptive so that reservations can be
changed based on runtime requirements:

time

resource
needs

9

QoS1

QoS2

QoS3

1 1

2 2

3 3

Adaptive QoS Management

Reservation parameters can be changed at run time
by a Reservation Manager (Global adaptation):

1

2

3

Reservation Manager
demand

 

Local adaptation

A local adaptation approach is also possible for a task
to comply with the assigned reservation:

i
Reservation

Ci Ti Si

Local PolicyLocal Policy probes

Real-Time
System

Shared Resources

CPU

server
Ready queue

scheduler

1

3

server

server

2b

2a

2

3

R

Tasks are usually not independent as they share
resources (e.g., data structures, peripherals,
common memory areas).

 Resource sharing may break isolation:

Problems with Reservations

1

deadline miss

server
S2

2

wait

normal blocking due
to reasource sharing

extra blocking due to
budget exhaustion

Ts

 Resource sharing may break isolation:

Problems with Reservations

1

deadline miss

server
S2

2

wait

Ts

The major problem is that
the resource is locked but
no task is actually using it

10

Reactive approaches

Possible approaches

Proactive approaches

Let the budget finishes and react with a given strategy:

 Overrun
 Without payback

 With payback

 Proxy execution (BWI)

Prevent the budget to finish inside a critical section:

 Check and wait (SIRAP)

 Check and recharge (BROE)

Overrun without Payback

When the budget exhausts inside a critical section, do
nothing.

1

server
S2

2

Ts

wait

Isolation is broken!

The budget goes negative

Overrun without Payback

Let k be the length of the critical section to be entered.
In the worst-case the server consumes Qs +k budget units

server
S2

2

Ts

wait k

k

Overrun with Payback

When the budget exhausts inside a critical section, do
nothing. Payback at the next budget replenishment.

1

server
S2

2

Ts

wait

Budget payback

Isolation is broken!

The budget goes negative

Note that the worst-case bandwidth consumption does not change

Proxy Execution

When the budget exhausts inside a critical section, inherit the
bandwidth of another server

1

server
S2

2

Ts

wait

2 1

server
S1

Proactive Approaches

 Let k be the length of the critical section to be entered,
and qs be the budget of the server at the lock time;

 Proactive approaches are based on a budget check
before locking the resource (i.e., qs  k ?);

 The scheduler requires the knowledge of k at run-time.

qs  k ? NO qs  k ? YES

11

Check and wait

SIRAP

If (qs  k) then enter, else wait for the next replenishment.

checking point

1

server
S2

2
Ts

Note that off-line we must guarantee that Qs  max{k}.

SIRAP

checking point

1

server
S2

2
Ts

 Penalizes the response-time of the task wishing
to access the resource;

 Potentially inserts idle-time (unused budget).

Check and recharge

If (qs  k) then enter, else recharge the budget at full value
and proportionally postpone the server deadline.

checking point

1

server
S2

2

BROE

Note that off-line we must guarantee that Qs  max{k}.

BROE

 Performs better than SIRAP in most situations;

 BROE works only with EDF-scheduled reservation
servers.

checking point

1

server
S2

2

server
S2

2

Ts

BROE

 BROE is designed to guarantee a bounded-delay
partition (, ).

 A budget recharge of X time units reflects as a
proportional deadline shift of X/

X/

BROE

Note that a deadline shift of X/ guarantees that the
server never consumes a bandwidth higher than ,
provided that





ij

ji 1





DD

xQ


xxQ

D
xQ

DD 





Q

D In fact, since

The deadline increment D that guarantees a bandwidth 
with a budget (Q + x) can be found by imposing:

thus:

12

BROE Design Goals

Overcome to the problem of budget depletion inside
critical sections

 Avoiding budget overruns;

 Ensuring bandwidth isolation (i.e., each server

must consume no more than ߙ ൌ
ொ

௉
of the processor

bandwidth);

 Guaranteeing a bounded-delay partition to the
served tasks.

BROE

 When the budget is not enough to complete the
critical section, BROE performs a full budget
replenishment;

 To contain the server bandwidth, the budget
replenishment must be reflected in a proportional
deadline postponement

 To bound the service delay, the server must be
suspended until a proper time.

BROE: bandwidth guarantee

 To guarantee real-time workload executing upon a
reservation server, the server must ensure a
bounded-delay service

BROE: bounded-delay

ܳ ܳ

ܲ

∆ൌ 2ሺܲ െ ܳሻ

 The budget replenishment and the corresponding
deadline postponement can easily result in a
violation of the worst-case delay ∆ൌ 2ሺܲ െ ܳሻ, if
not properly handled!

BROE: bounded-delay

BROE: bounded-delay

server

1

 Consider a BROE server with Q=4 and P=8

 ߬ଵ accesses a resource having ߜ ൌ 2

BROE: bounded-delay

server

1

 Consider a BROE server with Q=4 and P=8

 ߬ଵ accesses a resource having ߜ ൌ 2

13

 Consider a BROE server with Q=4 and P=8

 ߬ଵ accesses a resource having ߜ ൌ 2

 The worst-case delay ∆ൌ 2ሺܲ െ ܳሻ is violated!

BROE: bounded-delay

server

1
ܲ ൌ 8 ܲ ൌ 8

11 ൐ 2 ܲ െ ܳ ൌ 8

The worst‐case the delay can be potentially unbounded!

 How to solve this problem?

 The idea is to prevent the server to execute “too
earlier” with respect to its deadline, after a budget
replenishment

BROE: bounded-delay

server

1
ܲ ൌ 8 ܲ ൌ 8

11 ൐ 2 ܲ െ ܳ ൌ 8

 If the server is “not executing too earlier”, it is not
possible to violate the worst-case delay ∆

BROE: bounded-delay

server

1

6 ൏ ∆ൌ 2 ܲ െ ܳ =8

no server suspension
is needed

Depending on the execution state, BROE decides to
suspend the server or not

 For how long the server must be suspended?

BROE: bounded-delay

server

1
ܲ ൌ 8 ܲ ൌ 8

The slack is greater than (P-Q)
This execution
must be delayed

BROE: bounded-delay

server

1

explicit server
suspension

tr d

d - tr


 rtd

tq)(


)(tq

dtr 

6
5.0

1
8 rt

How to compute time tr such that the bandwidth in [tr, d] is
exactly ?

BROE: bounded-delay

server

1
tr d

P


 rtd

tq)(


)(tq

dtr 

explicit server
suspension

d - tr

How to compute time tr such that the bandwidth in [tr, d] is
exactly ?

14

BROE: bounded-delay

server

1
ܲ ൌ 8ܲ ൌ 8

∆ൌ 2 ܲ െ ܳ

Note that, thanks to the suspension, the worst-case service
delay is still  = 2(P - Q):

explicit server
suspension

BROE Design Goals

Overcome to the problem of budget depletion inside
critical sections

• Avoiding budget overruns;

• Ensuring bandwidth isolation (i.e., each server

must consume no more than ߙ ൌ
ொ

௉
of the processor

bandwidth);

• Guaranteeing a bounded-delay partition to the
served tasks.

BROE: goals

BROE Resource Access Policy

Consider a BROE server having budget Q and period P. The
current budget at time t is denoted as q(t).

BROE: rules

When a task wishes to access a resource ܴ௞ of length k at time t:

 if ݍ ݐ ൒ ,௞ߜ	 enter the critical section (there is enough budget);

 else compute a recharging time ௥ݐ ൌ ݀	 െ	
௤ሺ௧ሻ

ఈ

 If ݐ ൏ ,௥ݐ the server is suspended until time ,௥ݐ the budget is
replenished to Q and the deadline is shifted to ݀ ൌ ௥ݐ ൅ ܲ

 Otherwise, the budget is immediately replenished to Q and
݀ ൌ ௥ݐ ൅ ܲ

 The BROE resource access policy can work only with EDF
due to the proportional deadline shift. The support for FP is
currently an open problem;

 To perform the budget check, BROE requires the
specification of the worst-case holding time for the shared
resources;

 BROE is intrinsically designed for the worst-case: the
budget check can cause a scheduling decision that could be
unnecessary.

BROE: constraints

 The BROE server is a scheduling mechanism providing
resource reservation including the support for shared
resources

 Hard reservation implementing the Hard-CBS algorithm;

 Resource access protocol that guarantees both bandwidth
isolation and bounded-delay to the served application.

BROE: recap

 In general, the BROE budget check has to be performed
using the Resource Holding Time (RHT) of a shared
resource;

 RHT = budget consumed from the lock of a resource until its
unlock

Resource Holding Time

15

 In general, the BROE budget check has to be performed
using the Resource Holding Time (RHT) of a shared
resource;

 RHT = budget consumed from the lock of a resource until its
unlock

Resource Holding Time

1

2
lock unlock

RHT

s

 Interference from high-priority task has to be accounted in
the budget consumed when a resource is locked

Resource Holding Time

1

2
lock unlocks

server
budget

 RHT = Critical Section WCET + Worst-case Interference

 The interference is caused by the task preemptions

Resource Holding Time

1

2
lock unlock

RHT

s

 If resources are accessed in a non-preemptive manner, the
RHT is equal to the worst-case critical section length;

 Trade-off: lower threshold for the budget check, but greater
task blocking due to non-preemptive blocking

Resource Holding Time

1

2
lock unlock

RHT

non-preemptive blocking

s

Consider 2 BROE servers: (Q1 = 4, P1 = 8) (Q2 = 5, P2 = 10)

BROE: example

S2

2

S1

1

42 6 8 100 12 14 16 18 20 22 24

42 6 8 100 12 14 16 18 20 22 24

26

26

4
5.0

2
8 rt

16
5.0

2
20 rt

6
5.0

2
10 rt

Implementation Issues

 Goal: Implementation of a two-level Hierarchical Scheduling
Framework using the BROE algorithm.

Server scheduling
according to EDF

16

Implementation Issues

 Goal: Implementation of a two-level Hierarchical Scheduling
Framework using the BROE algorithm.

BROE Server:
Hard‐CBS + resource

access policy

Implementation Issues

 Goal: Implementation of a two-level Hierarchical Scheduling
Framework using the BROE algorithm.

Local scheduler: can be
either EDF and FP

Implementation Issues

 Multi-layer scheduling infrastructure

EDF Scheduler

Hard CBS

BROE Resource Access Policy

EDF/FP Scheduler

Classical Resource Sharing

CPU

Task Task Task Task

Implementation Issues

 Ready queue structure

VCPU 1

VCPU 2

VCPU 3

VCPU n

TASK
1.1

TASK
1.2

TASK
1.3

TASK
1.4

TASK
2.1

TASK
2.2

TASK
3.1

TASK
n.1

TASK
n.2

TASK
n.3

EDF
order

FP
order

EDF
order

Implementation Issues

 OS with tick: the kernel comes into operation periodically,
even if there are no scheduling events to be handled;

 OS tick-less: the kernel come into operation only when is
needed, i.e., in correspondence of scheduling events.

 Example: budget management for reservation

 We look at tick-less RTOS implementation on small
microcontrollers.

Implementation Issues

 EDF scheduling implementation needs a timing reference
having both

 High-resolution;

 Long life-time (to handle absolute deadlines).

It Requires 64‐bit data structure for time representation

 Dealing with 64-bit data structures in small microcontrollers
imposes a significant overhead in the scheduler
implementation.

17

Implementation Issues

 Circular timer: avoid an absolute timing reference. The
notion of time is relative with respect to a free running timer.

 Let T the lifetime of the free running timer.

 It is possible to handle temporal events having a maximum
spread of T/2.

Implementation Issues

 Consider two events ݁ଵ and ݁ଶ.

 Let ሺ݁ଵሻݐ be the absolute time of an event, and ሺ݁ଵሻݎ its
relative representation by using the circular timer.

 To compare two events having ሺ݁ଵሻݐ 	െ ሺ݁ଶሻݐ ൏ ܶ/2

 If ሺݎሺ݁ଵሻ െ ሺ݁ଶሻሻݎ ൐ 0 then ሺ݁ଵሻݐ ൐ ሺ݁ଶሻݐ

 If ሺݎሺ݁ଵሻ െ ሺ݁ଶሻሻݎ ൏ 0 then ሺ݁ଵሻݐ ൏ ሺ݁ଶሻݐ

 If ሺݎሺ݁ଵሻ െ ሺ݁ଶሻሻݎ ൌൌ 0 then ሺ݁ଵሻݐ ൌ ሺ݁ଶሻݐ

Implementation Issues

 Warning: a relative representation becomes inconsistent
after T/2!

 Inactive servers: It is necessary to perform a periodic check
of inconsistent deadlines;

 A special timer has to be reserved for that job.

The implementation of EDF requires 2 timers:
• Free running timer
• Periodic timer for deadline consistency

Implementation Issues

 Hard-CBS Server: its implementation requires to manage
two main operations

 Budget enforcement;

 Budget recharge.

server

8 12

5

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

24204 16

Implementation Issues

 Budget enforcement: when then server starts to execute at
time ,ݐ set up an one-shot timer with the current budget .ሻݐሺݍ

 If a preemption occurs, the timer is reconfigured; otherwise,
it will fire to notify a budget exhaustion.

server

8 12

5

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

24204 16

Implementation Issues

 Budget recharge: when a server exhaust its budget, it has
to be suspended until its deadline, where the budget will be
recharged.

 A deadline-ordered queue of suspended server has to be
provided. Another one-shot timer triggers the budget
recharge event for the first server in the queue.

server

8 12

5

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

24204 16

18

Implementation Issues

 Budget recharge: when a server exhaust its budget, it has
to be suspended until its deadline, where the budget will be
recharged.

 A deadline-ordered queue of suspended server has to be
provided. Another one-shot timer triggers the budget
recharge event for the first server in the queue.

VCPU 1
d=10

VCPU 3
d=40

VCPU 6
d=120

One‐Shot
Timer
d=10

Queue of suspended servers
waiting for budget replenishment

Implementation Issues

 Hard-CBS Server: its implementation requires to manage
two main operations

 Budget enforcement;

 Budget recharge.

The implementation of the Hard CBS requires 2
timers:
• One‐shot timer for budget enforcement
• One‐shot timer for budget recharge

Implementation Issues

 BROE server suspension: can be implemented exploiting
the budget recharge queue

 “If ݐ ൏ ,௥ݐ the server is suspended until time ”௥ݐ

VCPU 1
d=10

VCPU 3
d=40

VCPU 6
d=120

One‐Shot
Timer
d=10

Queue of suspended servers
waiting for budget replenishment

Implementation Issues

 BROE server suspension: can be implemented exploiting
the budget recharge queue

 “If ݐ ൏ ,௥ݐ the server is suspended until time ”௥ݐ

VCPU 1
d=10

VCPU 3
d=40

VCPU 6
d=120

One‐Shot
Timer
d=10

Queue of suspended servers
waiting for budget replenishment

VCPU 2
࢚࢘=50

