Reducing
Execution Interference

Giorgio Buttazzo
g.buttazzo@sssup.it

gzetis

Real-Time Systems Laboratory

Scuola Superiore Sant’Anna

o The problem

New platform

Platform 1
Platform 2 °

Consider two applications, A and B, independently
developed on dedicated platforms.

How can we guarantee them when they are
concurrently executed in the same platform?

Clearly, when multiple applications execute a
on the same platform, they compete for the
same resources and may delay each others. t

What we need is a mechanism able to partition the processor
in two subsystems (virtual processors), each dedicated to a

single application.
In this way, an overrun occurring in an n

application does not propagate to the others, h
but only affects the application itself. °

4.,,. Example with fixed priorities Ko ris Example with EDF
RM schedule (S =1) RM schedule (S = 1) Appllcatlon A Appllcatlon B
A B 5
A [n@d 11 2 B (618 Ug=r
weolm fm | e bm e lem Y726 s 18
5 10 1, (212)
fz(“'*‘)(!ft:}fu:!f ’4‘6“’| e L _2.5 17 _,
2 T 378 T 18
A+B RM schedule (§=2) = assuming C’; = % A+B EDF schedule
/(”’HHHH' (R S N s B
A Bl | o ‘:l ‘:l ‘:l A overrun 1
T, (2,12) o .
T, @8 3 i rr/de-»adllne
(32)| ' deadline miss B wew| mmely T
'E4 1. ,—‘ 0 2 4 6 8 10 12 18 20
o Resource partitioning o Resource Reservation

In general, what we really need is to have:

S 10 %
Resource partitioning 20 %

Each application receives a fraction o; < 1
of the processor sufficient to meet its

execution requirements. 25 9%

45 %
Enforcement mechanism

A mechanism that prevents an application
to consume more than its reserved
fraction.

In this way, the application executes as it
were executing alone on a slower
processor with speed a;.

4,,,. Priorities vs. Reservations

4, Priorities vs. Reservations

Tasks = vehicles Resource = road

High priority m
Medium priority -

Shared resource

A lp
Prioritized p ! reovouee | Ar Ay Ag Prioritized
Access 2 P2 = Access
3 — P3
AL — =05 =%, A o ﬂim
Resource 30% A Resourqe . 20%
Reservation 2 =/ ;=03 2 Reservation ‘2 —— S
20% 20%
Ay —— a3=0.2 e L A T | n n @,
%.,.. Priorities vs. Reservations 2 is Prioritized approach

Problems in overload conditions

Resource Reservation

) -
L ~elis

Each type of vehicle has areserved lane

G-
D (WP [IS

«.... Benefits of Res. Reservation

1. Resource allocation is easier than priority mapping.

2. It provides temporal isolation: overruns occurring in
a reservation do not affect other tasks in the
system.

» Important for modularity and scalability

3. Simpler schedulability analysis:

» Response times only depends on the application
demand and the amount of reserved resource.

4. Easier probabilistic approach

4.,.. Implementing Reservations

o
o
Ready queue
o
—e— []1] (cru)

scheduler
: }—» server

scheduler server
Fixed priorities RM/DM
Dynamic priorities EDF CBS

Sporadic Server

4., Guaranteeing Reservations

Ready queue

scheduler

o

o
@ server 2
O3

server

If a processor is partitioned into n reservations, we

must have that: n .
Z a < Uy,
i=1

where A is the adopted scheduling algorithm.

%,,,. Hard vs. Soft reservations

SOFT reservation

It guarantees that the served application receives
at least a budget Q every P.

HARD reservation

It guarantees that the served application receives
at most a budget Q every P.

4., Constant Bandwidth Server

> It assigns deadlines to tasks as the TBS, but keeps track
of job executions through a budget mechanism.

» When the budget is exhausted it is immediately
replenished, but the deadline is postponed to keep the
demand constant.

CBS parameters

Maximum budget: Qg
Server period: T
Server bandwidth: Us = Qs/Ts

assigned
by the user

Current budget: gs (initialized to 0) maintained
Server deadline: ds (initialized to0) | by the server

Basic CBS rules

Arrival of job J, at time r, = assign d,
if (r,+q,/Us < d) then recycle (q,, d,)
else d, = r + T,

la-o

Budget exhausted

{ds = d,+ T,
ds = Qs

= postpone d,

The server
remains active

%...,, Example of Soft CBS

CBS:Q,=2,T,=6

% Problem of Soft CBS

If more bandwidth is allocated during idle intervals, the server
deadline goes far away (deadline aging) and the executions
tend to become less regular.

T

0 4 12 20 24
do d; d; fjs d, dg ds

5 1 1 1 1
W | N

e e L LA B s e ms s s o B s s s

CBS:Q,=1,T,=4

The deadline aging problem can be avoided by suspending the
server when g, = 0 and recharging the budget at d:

T
1‘| | |]|] 1
e Tttt
0 4 8 12 16 20
d d, d, dy d, dg ds
5 1 1 1 1
TS
4 8 12 16 20 24 28

a
i‘”#‘.k.‘k‘.k.‘m

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

CBS:Q,=1,T,=4

Hierarchical scheduling

Resource reservation can be used to develop
hierarchical systems, where each component is
implemented within a reservation:

Applicaion 1 Application N

O O\ "/ O 6\
c 7 O 0
i - . -

Local Scheduler

Component 1 Component N

\—\,—1

Global Scheduler

Local Scheduler

Computing Platform

Hierarchical scheduling

In general, a component can also be divided in other
sub-components

Sy O N 0\

G’ (%
T T

\ Local Scheduler \

Local Scheduler

Component 1 Component N

Global Scheduler

\

\ Local Scheduler \

Co®

Local Scheduler

Computing Platform

Hierarchical scheduling

Global scheduler: the one managing the system ready queue

Hierarchical Analysis

Global analysis: Servers must be schedulable by the global
scheduler running on the physical platform.

Server S,

Local schedulers: the ones managing the servers queues

Server S;

Local analysis:

Applications must be scheduled by the local
schedulers running on the components.

Local scheduler Local scheduler

Sa|Ss|S,]S, @

Global scheduler

Local Scheduler

Component 1

\—\

Ap;ﬂiciltE)n 1 Appliﬁ:aiion N
(6 _© 6 O o
__ O > O 0 “

- — - -

Local Scheduler

Component N

,—l

1 1
Global Scheduler

Computing Platform

z S Analysis under RR

Under EDF, the analysis of an application within a
reservation is done through the Processor Demand

Criterion:
Vt>0, dbf(t) < t

Under Fixed Priority Systems (FPS), the analysis is
done through the Workload Analysis:

Vi=L.,n 3te(0,D]:W,(t) < t

The difference is that in an interval of length t the
processor is only partially available.

z S Analysis under RR

To describe the time available in a reservation, we
need to identify, for any interval [0,t], the minimum
time allocated in the worst-case situation.

Supply bound function sbf(t):

minimum amount of time available in reservation
R, in every time interval of length t.

... Example: Static time partition

Example of reservation providing 4 units every 10
(bandwidth = 0.4).

vvvvvvvvvvvvvvvvvvvvvvvv

L pis Analysis under RR

Hence the Processor Demand Criterion can be
reformulated as follows:

vt>0, dbf (t) <sbf ()

A simpler sufficient test, can be derived by replacing
sbf(t) with a lower bound, called linear supply bound
function Isbf(t):

Vt>0, dbf(t) < Isbf(t)

t sbf{t)
_ Isbf{t)

'— dbfi(t)

sbf(t) t shf(t)
8
4 +— dbf(t)
0246 8 1OI£2I£4I16 18 20 t 0—
e T i
oris Analysis under RR Ropis Supply bound function

A linear supply bound function has the following form:

Isbf (t) = max{0, a(t—A)}

bandwidth
service delay

o
Isbf{(t) A

Xopis Deriving o and A

Given a generic supply function sbf(t), the bandwidth
o is the equivalent slope computed for long
intervals:

too sbf(t)

Xopis Deriving o and A

While the delay A is the highest intersection with the
time axis of the line of slope a touching the sbf{(t):

A= sup{t—m}
t>0 a Sbf(t)
sbfit)
o }/sbf(t)
A t

..., Example: Periodic Server

For a periodic server with budget Q, and period P,
running at the highest priority, we have:

..., Example: Periodic Server

For a periodic server with budget Q, and period P,
running at unknown priority, we have:

P, a= % A= P -Q, P, a= % A= 2(P,-Q,)
ISR == | N ==
sbf(t) sbfi(t)
Qs Qs
PS_QS 2(Ps_Qs)
; . Observation o o Observation

It is worth comparing the following supply functions:

Supply Supply function Supply function of a real
function of a | | of a fluid partition | partition with bandwidth o
full processor | = with bandwidth o of a periodic server Q,P

In a periodic server with bandwidth o, we have that:

{ Q=aP
_ _0)= _ The delay A is proportional
A=2(P-Q)=2P(-0a) == to the server period P

s Observation

Note that, for a given bandwidth o, reducing P
reduces the delay A and improves schedulability,
tending to a fluid reservation, but ...

smaller periods generates

4,,.. 1aking overhead into account

If o is the context switch overhead, we have:
P Q

i_l—\ I‘I 1 }\ ’

Hence reducing the server period P reduces the delay
A, but also reduces the effective bandwidth o that
can be exploited:

et

a

G‘/(X

o
higher runtime overhead analler P Allocated bandwidth: ¢ = % A=2P(1-a)
T _ . Q-o o
Py Effective bandwidth: @ = —— = a——
e P P
e 0y >0 = P =7 mp A, =2P, (1-a)= 20[1‘“j
“ t
> Effective bandwidth ;- P Reservation interface

Note that the (o, A) parameters offer an alternative
interface, which is independent of the implementation
mechanism (static partitions or Q-P server):

. ¢ ¢
. 8§ ——as
T3 9 9 QoS,

4., Avoiding resource wastes

B [(WD NS
OB (=D (WD [5

Areservation can be wasted because of
» occasional load reduction due to early terminations
» wrong bandwidth allocation at design time

» application changes due to environmental changes

%,.,;. Example of sporadic waste

demanded
bandwidth

allocated
bandwidth

avg At

I time

under utilized
correctly utilized
I over utilized

%.,.. Bandwidth allocation error

ol Resource Reclaiming

Bandwidth ~_ Demanded Allocated Unused bandwidth in a reservation can be used to
allocation error ~ Bandwidth ~ Bandwidth satisfy extra occasional needs in another reservation:
: Resource is insufficient
bandwidth R1
e noaton (application is delayed) o A
error / \ A Py
-\ ‘ 1 1
1 1
time : L :
R2 ! v !
: A :
1 \ 1
The application L = !
demands less NZ —
(resource is wasted)
; Budget reclaiming %,.,;. Capacity Sharing algorithm
3 2 2 1 2 3
Ty 3 2 2 1 2 3
3 4 4 1 Tl
Ty 3 4 5 3
T2
CASH: Capacity Sharing algorithm
» When a job finishes and g4 > 0, the residual budget is put in
a global queue of spare capacities (the CASH queue), with ﬁ S 3 $ S ﬁ
a deadline equal to the server deadline. | | > P" — P" — h ——— Fﬂ ““““““
> A server first uses the capacity in the CASH queue with the h)>" ils ’—Fs
earliest deadline d, < d,, otherwise ggisused. | | A A+
> Idle times consume the capacity in the CASH queue with CASHqueue il 1 ilr\l iz 1 ll
the earliest deadline. | | T T e e e
Handling wrong allocations , S Need for adaptivity

There are situations in which the reservation error is
caused by a wrong bandwidth allocation:

=m) any reservation is not appropriate

resource safe but
needs not efficient
efficient but
not enough

time

In these cases, the only solution is to design the
system to be adaptive so that reservations can be
changed based on runtime requirements:

resource
needs

time

L., Adaptive QoS Management

Reservation parameters can be changed at run time
by a Reservation Manager (Global adaptation):

demand

——>| Reservation Manager |

z Local adaptation

A local adaptation approach is also possible for a task
to comply with the assigned reservation:

Resource Reservation
under
Resource Sharing

Ti
F | | T c T s Reservation .
T , | ~ @J @J | | L Qos, v o o —— ((Sj C? ____ System
o ff o _ probes
Ty | — g g : > QoS, i |
Tg ;"_> ,a@/,g/ ;’7_> QoS,
Ao Shared Resources

Ve G server
g
)
server
o3
server

Tasks are usually not independent as they share
resources (e.g., data structures, peripherals,
common memory areas).

Ready queue

scheduler

%.,... Problems with Reservations

e Resource sharing may break isolation:

normal blocking due extra blocking due to
to reasource sharing budget exhaustion

deadline miss
wait I —
S R | ... SIN———— NS S
T — ; | —
T
server — :
S,

%.,... Problems with Reservations

e Resource sharing may break isolation:

The major problem is that
the resource is locked but
no task is actually using it

deadline miss
wait |4/V
(S P I e ———— 1
|7 — - |
il
server — ;
S,

o Possible approaches 4., Overrun without Payback
Reactive approaches When the budget exhausts inside a critical section, do
Let the budget finishes and react with a given strategy: nothing.

» Overrun
= Without payback ! [Isolation is broken!]
= With payback
> Proxy execution (BWI) T | S e s I N
wait
Proactive approaches T2 1 BN
Prevent the budget to finish inside a critical section: server e S T —
» Check and wait (SIRAP) S,
» Check and recharge (BROE) 5
The budget goes negative

%,,.. Overrun without Payback 4, Overrun with Payback
Let &, be the length of the critical section to be entered. When the budget exhausts inside a critical section, do
In the worst-case the server consumes Q, +3, budget units nothing. Payback at the next budget replenishment.

/’!\[Isolation is broken!]

Note that the worst-case bandwidth consumption does not change

server server C
Y e =
d< v &\L The budget goes negative/ \

- Budget payback
Xooris Proxy Execution %,,;. Proactive Approaches
When the budget exhausts inside a critical section, inherit the > Let &, be the length of the critical section to be entered,
bandwidth of another server and g, be the budget of the server at the lock time;
wait » Proactive approaches are based on a budget check
T 5T before locking the resource (i.e., g = 6, ?);
P > The scheduler requires the knowledge of ¢, at run-time.
server)
Sl T T T \<v T T T T T T T T T
R ==E) —— | S i
T — — -
— : e Lo @
server 1 ...
SZ § § - X \‘\\ \\,,‘,\\

Kootis SIRAP

Check and wait
If (g5 2 &) then enter, else wait for the next replenishment.

Note that off-line we must guarantee that Q, > max{¢g}.

checking point

T I—y—y—\

Kootis SIRAP

» Penalizes the response-time of the task wishing
to access the resource;

» Potentially inserts idle-time (unused budget).

checking point

T1 ’—y—y—\

e) — :
o o
server server
S : S
o BROE . BROE

Check and recharge

If (g5 > 9 then enter, else recharge the budget at full value
and proportionally postpone the server deadline.

Note that off-line we must guarantee that Q, > max{d}.

checking point

————— L e |
T —_
server]

s e

» Performs better than SIRAP in most situations;

» BROE works only with EDF-scheduled reservation
servers.

checking point

seé\;erl = \ﬂ\——— = ‘ B

BROE

» BROE is designed to guarantee a bounded-delay
partition (o, A).

» A budget recharge of X time units reflects as a
proportional deadline shift of X/a

L J——

server
S

L s T T T T T T T T T T

Recis BROE

Note that a deadline shift of X/o. guarantees that the
server never consumes a bandwidth higher than o,
provided that

a; +Z:aj <1

j#i

In fact, since D= Q

o
The deadline increment AD that guarantees a bandwidth o
with a budget (Q + x) can be found by imposing:

Q+x =a thus: AD:D—Q+X:D
D+ AD a

X X
Q. x_x
a o «a

11

Kotis BROE

BROE Design Goals

Overcome to the problem of budget depletion inside
critical sections

» Avoiding budget overruns;

» Ensuring bandwidth isolation (i.e., each server
must consume no more than a = % of the processor
bandwidth);

» Guaranteeing a bounded-delay partition to the
served tasks.

%.... BROE: bandwidth guarantee

» When the budget is not enough to complete the
critical section, BROE performs a full budget
replenishment;

» To contain the server bandwidth, the budget
replenishment must be reflected in a proportional
deadline postponement

» To bound the service delay, the server must be
suspended until a proper time.

%.... BROE: bounded-delay

» To guarantee real-time workload executing upon a
reservation server, the server must ensure a
bounded-delay service

Q A=2(P-Q) Q

vvvvvvvvvvvvvvvvvvvvv

%.... BROE: bounded-delay

» The budget replenishment and the corresponding
deadline postponement can easily result in a
violation of the worst-case delay A= 2(P — Q), if
not properly handled!

%.... BROE: bounded-delay

» Consider a BROE server with Q=4 and P=8

» T, accesses a resource having § = 2

v ——

server

uuuuuuuuuuuuuuu

%.,.. BROE: bounded-delay

» Consider a BROE server with Q=4 and P=8

» 1, accesses a resource having § = 2

T, (e

server

vvvvv

12

..., ~BROE: bounded-delay

» Consider a BROE server with Q=4 and P=8
» T, accesses a resource having § = 2

» The worst-case delay A= 2(P — Q) is violated!

The worst-case the delay can be potentially unbounded! }

11>2(P-Q) =8

T1

T T T T T T

P=38 P=8

server

... ~ BROE: bounded-delay

» How to solve this problem?

» The idea is to prevent the server to execute “too
earlier” with respect to its deadline, after a budget
replenishment

11>2(P—-Q) =8

T]_.

server

..., BROE: bounded-delay

> If the server is “not executing too earlier”, it is not
possible to violate the worst-case delay A

Depending on the execution state, BROE decides to
suspend the server or not

no server suspension
is needed

\ 6 < A=2(P-Q)=8

le

server

..., BROE: bounded-delay

» For how long the server must be suspended?

This execution
must be delayed The slack is greater than (P-Q)

\ o
P
T 4Ty
P = P=8
server ~

BROE: bounded-delay

How to compute time t, such that the bandwidth in [t, d] is
exactly o?

q(t) PN tr=d—@

d-t, @

explicit server d-t 1
suspension T tr = 8_ﬁ =6
T
1 LN L B S R B B
t
server

..., BROE: bounded-delay

How to compute time t, such that the bandwidth in [t, d] is
exactly a?

qc) =a = t =d a®
d-t, a
explicit server d- tr
suspension o P
t, d

server |

13

BROE: bounded-delay

Note that, thanks to the suspension, the worst-case service
delay is still A=2(P-Q):

BROE: goals

BROE Design Goals

Overcome to the problem of budget depletion inside
critical sections

/Avoiding budget overruns;

Ensuring bandwidth isolation (i.e., each server

explicit server
suspension A= 2P — Q) must consume no more than a = % of the processor
bandwidth);
P=8 P8 Guaranteeing a bounded-delay partition to the
served tasks.
server
Xoris BROE: rules E BROE: constraints

BROE Resource Access Policy

Consider a BROE server having budget Q and period P. The
current budget at time t is denoted as q(t).

When a task wishes to access a resource R;, of length ¢ at time t:
= if q(t) = &y, enter the critical section (there is enough budget);

= else compute a recharging time t, =d — %

= If t < t,, the server is suspended until time t,, the budget is
replenished to Q and the deadline is shifted to d = t, + P

= Otherwise, the budget is immediately replenished to Q and
d=t.+P

» The BROE resource access policy can work only with EDF
due to the proportional deadline shift. The support for FP is
currently an open problem;

» To perform the budget check, BROE requires the
specification of the worst-case holding time for the shared
resources;

» BROE is intrinsically designed for the worst-case: the
budget check can cause a scheduling decision that could be
unnecessary.

BROE: recap

» The BROE server is a scheduling mechanism providing
resource reservation including the support for shared
resources

» Hard reservation implementing the Hard-CBS algorithm;

» Resource access protocol that guarantees both bandwidth
isolation and bounded-delay to the served application.

Resource Holding Time

> In general, the BROE budget check has to be performed
using the Resource Holding Time (RHT) of a shared
resource;

» RHT = budget consumed from the lock of a resource until its
unlock

14

%.... Resource Holding Time

» In general, the BROE budget check has to be performed
using the Resource Holding Time (RHT) of a shared
resource;

» RHT = budget consumed from the lock of a resource until its
unlock

%.,.. Resource Holding Time

» Interference from high-priority task has to be accounted in
the budget consumed when a resource is locked

server
budget

... Resource Holding Time

» RHT = Critical Section WCET + Worst-case Interference

» The interference is caused by the task preemptions

... Resource Holding Time

> If resources are accessed in a non-preemptive manner, the
RHT is equal to the worst-case critical section length;

» Trade-off: lower threshold for the budget check, but greater
task blocking due to non-preemptive blocking

non-| preemptlve blocking

‘ LI wvvvvvvvl T

S lock unlock S- lock unlock
] | : ¢
1'51 “““ ’T1 “““““ —
RHT RHT
Roosis BROE: example %...s Implementation Issues
Consider 2 BROE servers: (Q;=4,P;=8) (Q;=5,P,=10) > Goal: Implementation of a two-level Hierarchical Scheduling
2 Framework using the BROE algorithm.
Cog2_4 t=20- =16
05
8 | @ 9 ” { /'

Virtual Virtual Virtual

1 2 3

Global
Scheduler

Processor Unit

15

4.... Implementation Issues

» Goal: Implementation of a two-level Hierarchical Scheduling
Framework using the BROE algorithm.

&}V’\T/’

[Scheduler] [Scheduler |

BROE Server:
Hard-CBS + resource
access policy

Global
Scheduler

Processor Unit

4.... Implementation Issues

» Goal: Implementation of a two-level Hierarchical Scheduling
Framework using the BROE algorithm.

Local scheduler: can be

Scheduler either EDF and FP

Processor Unit

4., Implementation Issues

» Multi-layer scheduling infrastructure

Y

Classical Resource Sharing

EDF/FP Scheduler
BROE Resource Access Policy
Hard CBS

EDF Scheduler

4., Implementation Issues

» Ready queue structure

B @@ ® @)
}55,;
EDF
<
order m

4., Implementation Issues

» OS with tick: the kernel comes into operation periodically,
even if there are no scheduling events to be handled,;

» OS tick-less: the kernel come into operation only when is
needed, i.e., in correspondence of scheduling events.

» Example: budget management for reservation

» We look at tick-less RTOS implementation on small
microcontrollers.

4., Implementation Issues

» EDF scheduling implementation needs a timing reference
having both

» High-resolution;

» Long life-time (to handle absolute deadlines).

\ 4

It Requires 64-bit data structure for time representation

»> Dealing with 64-bit data structures in small microcontrollers
imposes a significant overhead in the scheduler
implementation.

16

+.,.. Implementation Issues

» Circular timer: avoid an absolute timing reference. The
notion of time is relative with respect to a free running timer.

» LetT the lifetime of the free running timer.

It is possible to handle temporal events having a maximum
spread of T/2.

%,,.. Implementation Issues

» Consider two events e; and e,.

> Let t(e;) be the absolute time of an event, and r(e;) its
relative representation by using the circular timer.

» To compare two events having |t(e;) —t(ey)| <T/2
> If (r(e)) — r(ez)) > 0 then t(e;) > t(ey)
> If (r(e) — r(ez)) < 0 then t(e;) < t(ey)
> If (r(e;) — r(ey)) == 0 then t(ey) = t(e;)

4., Implementation Issues

» Warning: a relative representation becomes inconsistent
after T/2!

» Inactive servers: It is necessary to perform a periodic check
of inconsistent deadlines;

» A special timer has to be reserved for that job.

The implementation of EDF requires 2 timers:

¢ Free running timer
¢ Periodic timer for deadline consistency

4., Implementation Issues

» Hard-CBS Server: its implementation requires to manage
two main operations

» Budget enforcement;

» Budget recharge.

4., Implementation Issues

» Budget enforcement: when then server starts to execute at
time t, set up an one-shot timer with the current budget q(t).

» If a preemption occurs, the timer is reconfigured; otherwise,
it will fire to notify a budget exhaustion.

5
] S S SO S ST ST
4 8 12 16 20 24

s

0 2 4 6 8 10 12 14 16 18 20 22 24 26

4., Implementation Issues

» Budget recharge: when a server exhaust its budget, it has
to be suspended until its deadline, where the budget will be
recharged.

» A deadline-ordered queue of suspended server has to be
provided. Another one-shot timer triggers the budget
recharge event for the first server in the queue.

5
server I—‘
=

17

..., Implementation Issues

» Budget recharge: when a server exhaust its budget, it has
to be suspended until its deadline, where the budget will be
recharged.

» A deadline-ordered queue of suspended server has to be
provided. Another one-shot timer triggers the budget
recharge event for the first server in the queue.

One-Shot
Timer
d=10
VCPU 1 VCPU 3 VCPU 6
—————— d=10 d=40 d=120
)

1|
Queue of suspended servers
waiting for budget replenishment

4.... Implementation Issues

» Hard-CBS Server: its implementation requires to manage
two main operations

» Budget enforcement;

» Budget recharge.

The implementation of the Hard CBS requires 2
timers:

e One-shot timer for budget enforcement
¢ One-shot timer for budget recharge

4., Implementation Issues

» BROE server suspension: can be implemented exploiting
the budget recharge queue

> “Ift < t,, the server is suspended until time t,."

One-Shot
Timer
d=10
0 VCPU 1 VCPU 3 VCPU 6
S—e--- d=10 d=40 d=120

L J
T
Queue of suspended servers
waiting for budget replenishment

4., Implementation Issues

» BROE server suspension: can be implemented exploiting
the budget recharge queue

> “Ift < t,, the server is suspended until time t,.”

One-Shot
Timer
d=10

Queue of suspended servers
waiting for budget replenishment

18

