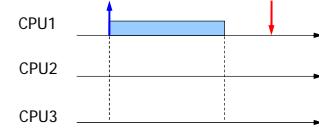


Real-time scheduling for multiprocessor systems

MP scheduling is difficult

"The simple fact that a task can use only one processor even when several processors are free at the same time adds a surprising amount of difficulty to the scheduling of multiple processors" [Liu 1969]



Classification

Multiprocessor scheduling algorithms can be classified according to two orthogonal criteria:

priority		
Dynamic	Job static	Task static
High utilization bound High overhead		
Low overhead Low utilization bound		
None	Partial	Full
migration		

Classification (by migration)

Algorithms can be distinguished by migration constraints:

- **No migration**
Tasks are statically allocated to processors and never migrate (**Partitioned scheduling**).
- **Partial migration**
Tasks can only perform a limited number of migrations or can migrate on a subset of processors (**Semi-partitioned scheduling**).
- **Full migration**
Tasks are dynamically allocated to processors and can migrate at any time on any processor (**Global scheduling**).

Classification (by priority)

Algorithms can be also distinguished by the way priorities are assigned to tasks:

- **Fixed**
priority is statically assigned to tasks and is fixed for all the jobs of a task (e.g., **Rate Monotonic**, **Deadline Monotonic**).
- **Job-static**
different jobs can have different priority, which is fixed for the entire job execution (e.g., **EDF**).
- **Dynamic**
priority can change during job execution (e.g., **Least Laxity First**).

Partitioned Scheduling

Once tasks are allocated to processors, they can be handled by uniprocessor scheduling algorithms:

Partitioned Scheduling

Partitioned scheduling reduces to:

Bin Packing + Uniprocessor scheduling

NP-hard in the strong sense
Various heuristics used: FF, NF, BF, FFDU, BFDD, etc.

Well known

Since migration is forbidden, processors may be underutilized.

Partitioned Scheduling

- Each processor manages its own ready queue
- The processor for each task is determined off-line
- The processor cannot be changed at run time

Global scheduling

- The system manages a single queue of ready tasks
- The processor is determined at run time
- During execution a task can migrate to another processor

Global scheduling

Example (Global Rate Monotonic)

- Consider the following task set:
- The task set has to be scheduled on 3 identical processors ($m = 3$)
- Priority are assigned according to Rate Monotonic

$\rightarrow P_1 > P_2 > P_3 > P_4 > P_5$

	C_i	T_i
τ_1	3	6
τ_2	7	10
τ_3	8	12
τ_4	6	15
τ_5	3	18

Global scheduling

Work conserving scheduler

- The m highest priority tasks are always those executing.
- No processor is ever idle when a task is ready to execute.

Global scheduling

Example (Global-RM)

When a task finishes its execution (e.g., τ_1), the next one in the queue (τ_4) is scheduled on the available CPU:

Global scheduling

Example (Global-RM)

When a higher priority task arrives (e.g., τ_1), it preempts the task with lowest priority among the executing ones (τ_4):

Global scheduling

Example (Global-RM)

When another task ends its execution (e.g., τ_2), the preempted task (τ_4) can resume its execution.

Note that τ_4 migrated from P1 to P2

Global scheduling

Processor-level representation

	τ_1 (3, 6)	τ_2 (7, 10)	τ_3 (8, 12)
τ_4 (6, 15)			
τ_5 (3, 18)			

Global scheduling

Task-level representation

Hybrid approaches

Different restrictions can be imposed on task migration:

- **Job migration**
Tasks are allowed to migrate, but only at jobs boundaries.
- **Semi-partitioned scheduling**
Some tasks are statically allocated to processors, others are split into chunks (subtasks) that are allocated to different processors.
- **Clustered scheduling**
A task can only migrate within a predefined subset of processors (cluster).

Semi-partitioned scheduling

- Tasks are statically allocated to processors, if possible.
- Remaining tasks are split into chunks (subtasks), which are allocated to different processors.

C_i	T_i	u_i	
τ_1	3	6	0.5
τ_2	7	10	0.7
τ_3	9	15	0.6
τ_4	8	20	0.4
τ_5	15	30	0.5

$U = 2.7$

Semi-partitioned scheduling

➤ Note that subtasks are not independent, but are subject to a precedence constraint: $\tau_{51} \rightarrow \tau_{52}$

This precedence must be managed!

Clustered scheduling

➤ A task can only migrate within a predefined subset of processors (cluster).

Schedulability bound

Given a set Γ of n periodic tasks with total utilization U to be scheduled by an algorithms A on a set of m identical processors, find a bound $U_A(n,m)$ such that,

if $U \leq U_A(n,m)$, then Γ is schedulable by A .

A necessary condition

A task set can be schedulable only if $U \leq m$.

In fact, it is clear that if $U > m$, the total demand in the hyperperiod H will certainly exceed the total available time (that is $UH > mH$), hence some task will miss its deadline.

An algorithm A is optimal in the sense of schedulability iff $U_A(n,m) = m$.

A negative result

The schedulability bound of global-EDF and global-RM is equal to 1, independently of the number m of available processors.

This means that given a platform of m identical processors, there exist applications with $U > 1$ that are not schedulable by global-EDF and global-RM.

To prove this result it suffices to identify an application Γ with utilization $U = 1+\varepsilon$ (ε is a constant arbitrarily small) that is not schedulable by global-EDF and global-RM.

Dhall's effect

m processors τ_1 τ_2 \vdots τ_m τ_{m+1}

	C_i	T_i	U_i
τ_1	1	$T-1$	ε
τ_2	1	$T-1$	ε
\vdots			
τ_m	1	$T-1$	ε
τ_{m+1}	T	T	1

EDF and RM produce an unfeasible schedule with a total utilization arbitrarily close to 1

Partitioned

m processors τ_1 τ_2 \vdots τ_m τ_{m+1}

	C_i	T_i	U_i
τ_1	1	$T-1$	ε
τ_2	1	$T-1$	ε
\vdots			
τ_m	1	$T-1$	ε
τ_{m+1}	T	T	1

Note that a feasible partitioned schedule exists on just 2 processors

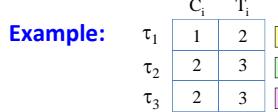
Dhall's effect implications

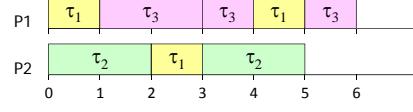
Example:

- Dhall's Effect shows the limitation of global EDF and RM: both utilization bounds tend to 1, independently of the value of m .
- Researchers lost interest in global scheduling for ~25 years, since late 1990s.
- Such a limitation is related to EDF and RM, not to global scheduling in general.

Global vs. partitioned

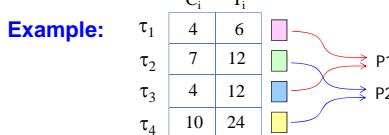
On the other hand, there are task sets that are schedulable only with a **global** scheduler.

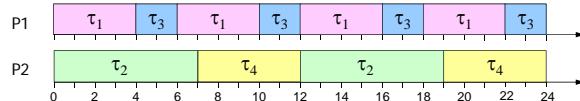
Example: 



Global vs. partitioned

But there are also task sets that are schedulable only with a **partitioned** scheduler.

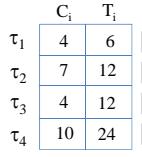
Example: 

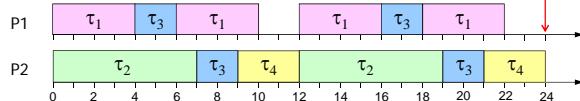


All 4! = 24 global priority assignments lead to deadline miss.

Global vs. partitioned

Example of unfeasible schedule with priorities: $P_1 > P_2 > P_3 > P_4$

Example: 



Global scheduling: pros & cons

- ✓ Automatic load balance among processors
- ✓ Can better manage dynamic workloads
- ✓ Lower average response time (see queueing theory)
- ✓ More efficient reclaiming of unused processors
- ✓ More efficient overload management
- ✓ Lower number of preemptions
- ✗ High migration cost: can be mitigated by proper HW (e.g., MPCore's Direct Data Intervention)
- ✗ Less schedulability results → Further research needed

Evaluation metrics

- Percentage of schedulable task sets
 - Over a randomly generated load
 - Depends on the task generation method
- Processor speedup factor S

An algorithm A has a speedup factor S if any task set feasible on a given platform can be scheduled by A on a platform in which all processors are S times faster.
- Run-time complexity
- Sustainability and predictability properties
 - Schedulability is preserved for more relaxed constraints

 Sustainability

A scheduling algorithm is **sustainable** iff schedulability of a task set is preserved when

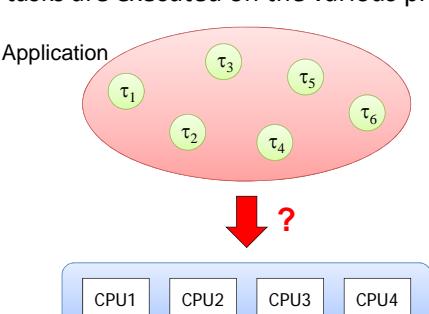
1. decreasing execution requirements
2. increasing periods of inter-arrival times
3. increasing relative deadlines

➤ Baker and Baruah [ECRTS, 2009] showed that: Global EDF for sporadic tasks is sustainable with respect to points 1 and 2.

Task Allocation Algorithms

 Task allocation

How tasks are executed on the various processors?



 Task allocation

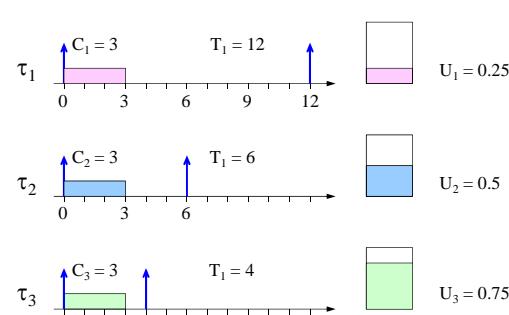
➤ **Static partitioning**
The processor where a task has to be executed is determined off-line and cannot be changed at run time.

➤ **Dynamic allocation**
The processor where a task has to be executed is determined at runtime and can be changed during execution (**task migration**).

➤ **Hybrid approaches**
Clustered: a task can dynamically be assigned only in a subset of processors (cluster).
Semi-partitioned: some tasks can be split in parts allocated to different processors.

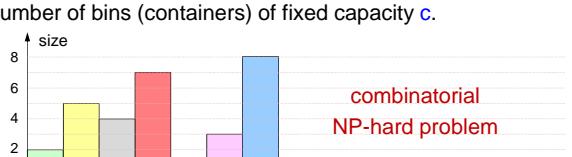
 How to allocate tasks?

Tasks can be allocated based on their utilization.

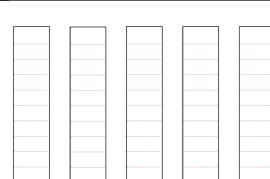


 The Bin Packing problem

Pack n objects of different size a_1, a_2, \dots, a_n into the minimum number of bins (containers) of fixed capacity c .



Volume $V = \sum_{i=1}^n a_i$

$$\begin{cases} V = 30 \\ c = 10 \end{cases}$$


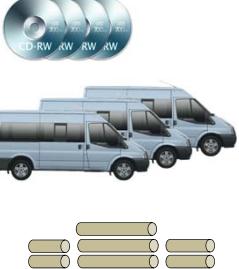
Practical examples

➤ How to fit vehicles into railcars

➤ How to store files into CDs

➤ How to fill minibuses with groups of people that must stay together.

➤ How to cut pieces of pipes from pipes of given length to minimize wastes.



Bin Packing algorithms

They can be distinguished into

Online

- Items arrive one at a time (in unknown order);
- Each item must be put in a bin before considering the next item.

Off line

- All items are given upfront, so they can be put into bins in any order.

Definitions

M_A number of bins used by an algorithm A

M_0 minimum number of bins used by the optimal algorithm

Performance ratio $\rho = \frac{M_A}{M_0}$

M_{lb} (**Lower bound**) Number of bins required for sure by any algorithm

M_{ub} (**Upper bound**) Number of bins that cannot be exceeded for sure by any algorithm

$M_{lb} \leq M_0 \leq M_A \leq M_{ub}$

An easy lower bound

Given a set of n items of volume $V = \sum_{i=1}^n a_i$

No algorithm can use less than M_{lb} bins, where $M_{lb} = \left\lceil \frac{V}{c} \right\rceil$

In fact,

- if V is a multiple of c , that is $V = kc$ for some integer $k > 0$, then M cannot be less than $k = V/c$.
- if V is not a multiple of c , that is $kc < V < (k+1)c$, then M cannot be less than $k+1 = \text{ceiling}(V/c)$.

An easy upper bound

Given a set of n items of volume $V = \sum_{i=1}^n a_i$

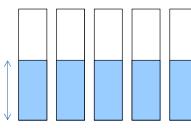
No algorithm can use more than M_{ub} bins, where $M_{ub} = \left\lceil \frac{2V}{c} \right\rceil$

Proof

The worst-case sequence that maximizes waste is a sequence of n items of size $c/2 + \varepsilon$

$V = n(c/2 + \varepsilon)$

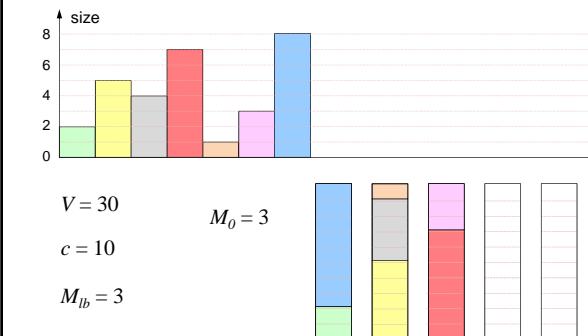
$M = n = \frac{2V}{c + 2\varepsilon} \leq \frac{2V}{c} \leq \left\lceil \frac{2V}{c} \right\rceil$



Optimal algorithm

Note that optimality implies clairvoyance for online sequences.

size



$V = 30$

$c = 10$

$M_0 = 3$

$M_{lb} = 3$

Bin Packing algorithms

Since the optimal solution is NP-hard, several heuristic algorithms have been proposed:

- **Next Fit (NF)**
Place each item in the same bin as the last item. If it does not fit, start a new bin.
- **First Fit (FF)**
Place each item in the first bin that can contain it.
- **Best Fit (BF)**
Places each item in the bin with the smallest empty space.
- **Worst Fit (WF)**
Places each item in the used bin with the largest empty space, otherwise start a new bin.

Next Fit

Place each item in the same bin as the last item. If it does not fit, start a new bin.

$V = 30$ $M_{NF} = 5$
 $c = 10$
 $M_0 = 3$

First Fit

Place each item in the first bin that can contain it.

$V = 30$ $M_{FF} = 4$
 $c = 10$
 $M_0 = 3$

Best Fit

Places each item in the bin with the smallest empty space.

$V = 30$ $M_{BF} = 4$
 $c = 10$
 $M_0 = 3$

Worst Fit

Places each item in the used bin with the largest empty space, otherwise start a new bin.

$V = 30$ $M_{WF} = 4$
 $c = 10$
 $M_0 = 3$

Comparison

Suppose the current situation is represented in blue and a new item of size 2 arrives:

NF **FF** **BF** **WF**

Observations

The performance of each algorithm strongly depends on the input sequence

however:

- NF** has a poor performance since it does not exploit the empty space in the previous bins
- FF** improves the performance by exploiting the empty space available in all the used bins.
- BF** tends to fill the used bins as much as possible.
- WF** tends to balance the load among the used bins.

First Fit Decreasing

If all items are known off-line, sort the items in decreasing order, then use First Fit.

$V = 30$ $M_{FFD} = 3$
 $c = 10$
 $M_0 = 3$

Another example

We need a set of pipes of the following lengths:

Length (m)	Number
2	2
3	4
4	3
6	1
7	2

But on the market we can only buy pipes of 12 meters:

How can we cut the pipes to minimize the wasted material?

$$\begin{cases} V = 48 \\ c = 12 \end{cases} \rightarrow M_0 = \left\lceil \frac{V}{c} \right\rceil = 4$$

Optimal solution

Optimal

$M_0 = 4$

Heuristic solutions

First Fit

$M_{FF} = 6$

First Fit Decreasing

$M_{FFD} = 5$

Performance evaluation

The **worst-case performance** of an algorithm A with respect to the optimal algorithm and for any possible sequence can be measured by the

Competitive ratio

If σ is a sequence of items, the competitive ratio of a bin packing algorithm A is defined as

$$\varphi_A = \max_{\sigma} \left\{ \frac{M_A(\sigma)}{M_0(\sigma)} \right\}$$

 Some theoretical result

Any online algorithm uses at least $4/3$ times the optimal number of bins:

$$M_{on} \geq \frac{4}{3} M_0$$

NF and **WF** never use more than $2 M_0$ bins.

FF and **BF** never use more than $(1.7 M_0 + 1)$ bins.

FFD never uses more than $(4/3 M_0 + 1)$ bins.

FFD never uses more than $(11/9 M_0 + 4)$ bins.

 BP for task allocation

Note that the ratio M_A/M_0 is not a good metric to compare different task allocation algorithms, because:

- since the problem is NP hard, M_0 cannot be computed in polynomial or pseudo-polynomial time;
- it does not take into account the number of tasks and the task set utilization.
- even if M_0 is known, we would not get a tight bound on the number of processors needed to schedule a task set.

In fact, for a set of $n = 10m$ tasks, each with utilization $0.5 + \varepsilon$, we would have $M_0 = 10m$, and $M_{FF} < 1.7 M_0 + 1 = 17m + 1$.

That is, the ratio suggests to use $(17m + 1)$, when $U = 5m$. So the solution would be higher than $M_{ub} = \text{ceiling}(2U) = 10m$.

 Definitions

To derive useful allocation bounds as a function of task utilizations, we need some definitions:

Γ set of n tasks: $\Gamma = \{\tau_1, \dots, \tau_n\}$
 \wp set of m processors: $\wp = \{P_1, \dots, P_m\}$
 u_i utilization of task τ_i
 U total task set utilization $U = \sum_{i=1}^n u_i$
 n_j number of tasks currently allocated on processor P_j
 U_j total utilization of processor P_j $U_j = \sum_{\tau_i \in P_j} u_i$

 Definitions

Worst-case achievable utilization

The worst-case achievable utilization for a scheduler S and an allocation algorithm A is a real number U_{wc}^{S-A} such that:

- any task set with utilization $U \leq U_{wc}^{S-A}$ is schedulable by S using A ;
- it is always possible to find a task set with utilization $U > U_{wc}^{S-A}$ that is not schedulable by S using A .

 First-Fit allocation algorithm

```

int first_fit_allocation( $\Gamma, \wp, S$ )
{
    for (i=1; i<=n; i++) { // for each task i
        j = 1; // try from proc P1
        while (!schedulable(i, j, S) && (j < m)) j++;
        if (j < m) return(UNSCHEDULABLE);
        allocate(i, j); // assign task i to Pj
    }
    return(SCEDULABLE);
}

schedulable(i, j, S) returns 1 if  $(u_i + U_j \leq U_{wc}^{S-FF})$ , 0 otherwise
allocate(i, j) assigns  $\tau_i$  to  $P_j$  and updates  $U_j = U_j + u_i$ 

```

 First-Fit decreasing algorithm

Like FF, but it initially sorts the task by decreasing utilizations:

```

int first_fit_allocation( $\Gamma, \wp, S$ )
{
    sort_by_decreasing_u( $\Gamma$ ); //  $u_1 \geq u_2 \geq \dots$ 
    for (i=1; i<=n; i++) { // for each task i
        j = 1; // try from proc P1
        while (!schedulable(i, j, S) && (j < m)) j++;
        if (j < m) return(UNSCHEDULABLE);
        allocate(i, j); // assign task i to Pj
    }
    return(SCEDULABLE);
}

```

Some utilization bounds

[Lopez-Diaz-Garcia, 2000]

Any task set with total utilization $U \leq (m+1)/2$ is schedulable in a multiprocessor made up of m processors using FF allocation and EDF scheduling on each processor.

Proof

Note that $(m+1)$ periodic tasks with utilization 0.5 can be scheduled on m processors, but $(m+1)$ tasks with utilization $0.5+\epsilon$ cannot be scheduled on m processors, independently of the allocation algorithms used.

Some utilization bounds

[Oh & Baker, 1998]

Any task set with total utilization $U \leq m(2^{1/2} - 1)$ is schedulable in a multiprocessor made up of m processors using FF allocation and RM scheduling on each processor.

Comparison

$U_{wc}^{RM} = 0.414 m$ $U_{wc}^{EDF} = (m+1)/2$

m	U _{wc} ^{EDF}	U _{wc} ^{RM}
1	0.5	0.414
2	1.0	0.828
3	1.5	1.242
4	2.0	1.656
5	2.5	2.070
6	3.0	2.484
7	3.5	2.898
8	4.0	3.312
9	4.5	3.726
10	5.0	4.140
11	5.5	4.554

A better EDF bound

A better EDF bound can be found if tasks are not allowed to have arbitrary utilization $u_i \in [0,1]$, but can have a maximum utilization α , that is:

$$\forall i \quad 0 \leq u_i \leq \alpha \leq 1$$

Let β be the maximum number of tasks of utilization α that fit in one processor. Then, for the EDF schedulability it must be $\beta\alpha \leq 1$, hence $\beta \leq 1/\alpha$. But since β is an integer, it must be:

$$\beta = \left\lfloor \frac{1}{\alpha} \right\rfloor$$

EDF schedulability

Note that if $(n \leq \beta m)$, then n tasks are always schedulable on m processors.

alpha	beta	Condition
0	0 to 6	n <= 4m
1/4	0 to 6	n <= 4m
1/4	0 to 5	n <= 3m
1/3	0 to 5	n <= 3m
1/3	0 to 4	n <= 2m
1/2	0 to 4	n <= 2m
1/2	0 to 2	n <= m
1	0 to 2	n <= m

EDF schedulability

[Lopez-Diaz-Garcia, 2000]

If $(n > \beta m)$ and $\forall i \quad u_i \leq \alpha$, a task set is schedulable by EDF using FF allocation if

$$U \leq \frac{\beta m + 1}{\beta + 1}$$

Note that:

- if $\alpha = 1$, then $\beta = 1$, and $U_{wc}^{EDF-FF} = \frac{m+1}{2}$
- if $\alpha \rightarrow 0$, then $\beta \rightarrow \infty$, and $U_{wc}^{EDF-FF} \rightarrow m$

A better RM bound

A better RM bound can also be found assuming that tasks can have a maximum utilization α , that is: $\forall i \ 0 \leq u_i \leq \alpha \leq 1$

Let β be the maximum number of tasks of utilization α that fit in one processor. Then, for the RM schedulability it must be that $\beta\alpha \leq \beta(2^{1/\beta}-1)$, that is:

$$\beta \leq \frac{1}{\log_2(\alpha+1)}$$

But since β is an integer, it must be:

$$\beta = \left\lfloor \frac{1}{\log_2(\alpha+1)} \right\rfloor$$

RM schedulability

[Lopez-Diaz-Garcia, 1999]

When each task has utilization $u_i \leq \alpha$, a task set is schedulable by RM using FF allocation if

$$U \leq \beta(m-1)(2^{1/(\beta+1)} - 1) + (n - \beta(m-1))(2^{1/(n-\beta(m-1))} - 1)$$

Note that:

➤ if $\alpha = 1$ ($\beta = 1$) \Rightarrow

$$U_{wc}^{RM-FF} = (m-1)(2^{1/2} - 1) + (n-m+1)(2^{1/(n-m+1)} - 1)$$

➤ if $\alpha \rightarrow 0$ ($\beta \rightarrow \infty$) \Rightarrow $U_{wc}^{RM-FF} \rightarrow m \ln 2$

Other utilization bounds

[Andersson-Baruah-Jonsson, 2001]

When each task has utilization $u_i \leq m/(3m-2)$, the task set is feasible by global RM scheduling if

$$U \leq \frac{m^2}{3m-2}$$