1570472015

Real-time scheduling
for
multiprocessor systems

%.,.. ~MP scheduling is difficult

“The simple fact that a task can use only one
processor even when several processors are free at the
same time adds a surprising amount of difficulty to the
scheduling of multiple processors™ [Liu 1969]

CPUL 1

CPU2

CPU3

Ao Classification

Multiprocessor scheduling algorithms can be classified
according to two orthogonal criteria:

priority

) High utjlization bound
Dynamic High overhead

Job
static
Task || o overhead
static || o utilization{bound migration

None Partial Full

4,,,. Classification (by migration)

Algorithms can be distinguished by migration constraints:

» No migration

Tasks are statically allocated to processors and never
migrate (Partitioned scheduling).

» Partial migration

Tasks can only perform a limited humber of migrations or
can migrate on a subset of processors (Semi-partitioned
scheduling).

» Full migration

Tasks are dynamically allocated to processors and can
migrate at any time on any processor (Global scheduling).

%,.,,, Classification (by priority)

Algorithms can be also distinguished by the way priorities are
assigned to tasks:

» Fixed

priority is statically assigned to tasks and is fixed for all the
jobs of a task (e.g., Rate Monotonic, Deadline Monotonic).

» Job-static

different jobs can have different priority, which is fixed for
the entire job execution (e.g., EDF).

» Dynamic

priority can change during job execution (e.g., Least Laxity
First).

4., Partitioned Scheduling

Once tasks are allocated to processors, they can be handled by
uniprocessor scheduling algorithms:

~ Application

‘78 70%y

Task allocation to processors

| | | |
¥ ¥ ¥ v

1570472015

EY Partitioned Scheduling

Partitioned scheduling reduces to:

Uniprocessor

Bin Packing 4+ scheduling

NP-hard in the Well known
strong sense

!

Various heuristics used:
FF, NF, BF, FFDU, BFDD, etc.

Since migration is forbidden, processors may be underutilized.

Partitioned Scheduling

» Each processor manages its own ready queue
» The processor for each task is determined off-line
» The processor cannot be changed at run time

O [ER—C)
= 8100 RR—(m)
o ()

Task allocation

Work conserving scheduler
= The m highest priority tasks are always those executing.

= No processor is ever idle when a task is ready to execute.

g Global scheduling g Global scheduling
» The system manages a single queue of ready tasks Example (Global Rate Monotonic)
» The processor is determined at run time SG T
. . . . = Consider the following task set: T 36
> During execution a task can migrate to another processor 5 7 10
T3 8 | 12
= The task set has to be scheduled on Ti 6 |15
3 identical processors (m = 3) T 3 18
= Priority are assigned according to
T T, T T T H
’ Rate Monotonic
=) P,>P,>P,>P,>P,
g Global scheduling g Global scheduling

Example (Global-RM)

When a task finishes its execution (e.g., t;), the next one
in the queue (t,) is scheduled on the available CPU:

1570472015

Global scheduling

Example (Global-RM)

When a higher priority task arrives (e.g., t;), it preempts
the task with lowest priority among the executing ones (t,):

e

_ s[u]slu]w

Global scheduling

Example (Global-RM)

When another task ends its execution (e.g., t,), the
preempted task (t,) can resume its execution.

_ [s[ululw

Note that t, migrated
from P1 to P2

g P Global scheduling
Processor-level T13,6) T(7,10) T3(8,12)
representation T,(6,15) Tg(3,18)

P1 T, Ty T | T,
P2 Ty | Ty | | T Ty
P3 Ty | Ts | | T3
all T Trz 1% T, Tg
0 2 4 6 8 10 12 14 16 18

2opis Global scheduling
Task-level representation
(3,6) Ty . —
(7,10) T,
(8,12) T3
(6,15) Ty
(3,18) Ts
0 2 4 6 8 10 12 14 16 18

Hybrid approaches

Different restrictions can be imposed on task migration:

» Job migration
Tasks are allowed to migrate, but only at jobs boundaries.

» Semi-partitioned scheduling

Some tasks are statically allocated to processors, others
are split into chunks (subtasks) that are allocated to
different processors.

» Clustered scheduling

A task can only migrate within a predefined subset of
processors (cluster).

4., Semi-partitioned scheduling

» Tasks are statically allocated to processors, if possible.

» Remaining tasks are split into chunks (subtasks), which
are allocated to different processors.

G Ty
T Tsy
1/ 3,6 05
| 7|10 07 Ta Tsa
T3] 9 |15 | 06
T 8|20 04 2 T
T 3
Ts| 15|30 | 05
u=27 P1 P2 P3

1570472015

L..,. Semi-partitioned scheduling

> Note that subtasks are not independents,
but are subject to a precedence constraint: | tg; Ts,

20is Clustered scheduling

» A task can only migrate within a predefined subset of
processors (cluster).

This precedence must be managed! _
//V\\ ﬁOOO __ uster
C EE—@HE (O (¢ BE-| |~
| g N —"
0O 2 @
@/ [& 00
- \\\// =~ —>__> Cluster 2
(S v
Xoris Schedulability bound s, A negative result

Given a set ' of n periodic tasks with total utilization U to be
scheduled by an algorithms A on a set of m identical
processors, find a bound U,(n,m) such that,

if U < U,(n,m), then T is schedulable by A.

A necessary condition
A task set can be schedulable only if U < m.

In fact, it is clear that if U > m, the total demand in the
hyperperiod H will certainly exceed the total available time
(that is UH > mH), hence some task will miss its deadline.

An algorithm A is optimal in the sense of schedulability iff

The schedulability bound of global-EDF and global-RM is
equal to 1, independently of the number m of available
processors.

This means that given a platform of m identical
processors, there exist applications with U > 1 that are
not schedulable by global-EDF and global-RM.

To prove this result it suffices to identify an application T’
with utilization U = 1+¢ (¢ is a constant arbitrarily small)
that is not schedulable by global-EDF and global-RM.

T_z 1 T1) ¢ an unfeasible schedule
with a total utilization

arbitrarily close to 1

m+1 tasks

global schedule 7, 1 |T-1] ¢
Te | T | T |1

P1

P2

P3

Pm

U,(n,m) = m.
g - Dhall's effect 22, Partitioned
G Ty G T Ui
m processors TL1 (T e EDF and RM produce m processors To 1 [T-1) & Note that a feasible

™

partitioned schedule
exists on just 2
processors

Bl T
m+1 tasks z

Tl 1 | T-1]| &
Tpr | T | T

1570472015

%.... Dhall's effect implications

» Dhall's Effect shows the limitation of global EDF
and RM: both utilization bounds tend to 1,
independently of the value of m.

» Researchers lost interest in global scheduling for
~25 years, since late 1990s.

» Such a limitation is related to EDF and RM, not to
global scheduling in general.

Global vs. partitioned

On the other hand, there are task sets that are schedulable
only with a global scheduler.

c T
Example: 7t | 1 2 |[]
T, 2 3 10
2] 3 |[]
mlal & [wlnls]
| T | ul| T |
o 1 2 3 4 5

Global vs. partitioned

But there are also task sets that are schedulable only with a
partitioned scheduler.

i Ti
Example: T | 4 | 6 D\\
T, | 712] B]
T34 12 DDQ: P2
T, 10|24 D/
nlm (&) w [&] o [&] o [w
P2 ‘ T2 | .T4. ‘ T2 ‘ T4 ‘

All 4! = 24 global priority assignments lead to deadline miss.

g - Global vs. partitioned
Example of unfeasible schedule with priorities: P, > P, >P,>P,
Ci Ti
T | 4 6 []
T, 712]
0412 [[]
T, | 10 24 |[] T, misses
its deadline
mla Bl s [[o f&l u |
P2 | T2 ‘Ts| Ty | 2 \i‘ T ‘

4.,;, Global scheduling: pros & cons

¥ Automatic load balance among processors

+ Can better manage dynamic workloads

+ Lower average response time (see queueing theory)
+ More efficient reclaiming of unused processors

¥ More efficient overload management

+ Lower number of preemptions

X High migration cost: can be mitigated by proper HW (e.g.,
MPCore’s Direct Data Intervention)

X Less schedulability results - Further research needed

L P Evaluation metrics

» Percentage of schedulable task sets
— Over a randomly generated load
— Depends on the task generation method

» Processor speedup factor S

An algorithm A has a speedup factor S if any task set
feasible on a given platform can be scheduled by A on a
platform in which all processors are S times faster.

» Run-time complexity

» Sustainability and predictability properties
Schedulability is preserved for more relaxed constraints

1570472015

oo Sustainability

A scheduling algorithm is sustainable iff
schedulability of a task set is preserved when

1. decreasing execution requirements

2. increasing periods of inter-arrival times

3. increasing relative deadlines

» Baker and Baruah [ECRTS, 2009] showed that:
Global EDF for sporadic tasks is sustainable with
respect to points 1 and 2.

Task Allocation
Algorithms

Xopis Task allocation

How tasks are executed on the various processors?

~—

T3 ‘

- BN
\ T5))
! B

‘CPUl‘ ‘CPUZ‘ ‘CPUS‘ ‘CPU4‘J

Application

P

Xopis Task allocation

» Static partitioning
The processor where a task has to be executed is
determined off-line and cannot be changed at run time.

» Dynamic allocation

The processor where a task has to be executed is
determined at runtime and can be changed during
execution (task migration).

Hybrid approaches

Clustered: a task can dynamically be assigned only
in a subset of processors (cluster).

Semi-partitioned: some tasks can be split in parts allocated
to different processors.

v

How to allocate tasks?

Tasks can be allocated based on their utilization.

C,=3 T,=12
T % 1 —] U;=025

U,=05
0 3 6
C,=3 T,=4 —
T3 [—\ 1 U,=0.75
0 34

4., The Bin Packing problem

Pack n objects of different size a,, a,, ..., a, into the minimum
number of bins (containers) of fixed capacity c.

ol

n
Volume V = Zai

i=1

{v=30
c=10

combinatorial
NP-hard problem

1570472015

40, ;s Practical examples

» How to fit vehicles into railcars

» How to store files into CDs

» How to fill minibuses with
groups of people that must
stay together.

» How to cut pieces of pipes
from pipes of given length to
minimize wastes. ¢ 500

4., Bin Packing algorithms

They can be distinguished into

Online
= |tems arrive one at a time (in unknown order);

= Each item must be put in a bin before considering
the next item.

Off line

= All items are given upfront, so they can be put into
bins in any order.

EOPPN Definitions

M, number of bins used by an algorithm A

M, minimum number of bins used by the optimal algorithm
Performance ratio

M, (Lower bound) Number of bins required for sure by
any algorithm

M,, (Upper bound) Number of bins that cannot be
exceeded for sure by any algorithm

My < My < M, € My,

2,05 An easy lower bound

n
Given a set of n items of volume \/ = zai
i1

No algorithm can use less than M, bins, where M = (V—‘
c

In fact,

» if Vis a multiple of c, that is V = kc for some integer k > 0,
then M cannot be less than k = V/c.

» if Vis not a multiple of ¢, that is kc < V < (k+1)c, then M
cannot be less than k +1 = ceiling(V/c).

An easy upper bound

n
Given a set of n items of volume \/ = zai
i1
AY

No algorithm can use more than M, bins, where M, = H
c

Proof

The worst-case sequence that maximizes waste is a
sequence of n items of size ¢/2 + ¢

V=n(c/2 +¢) A

2+e

Mono 2 &SM |
c

Optimal algorithm

Note that optimality implies clairvoyance for online sequences.

ol

V=30

My=3
c=10

My =3

1570472015

%.... Bin Packing algorithms

Since the optimal solution is NP-hard, several heuristic
algorithms have been proposed:

* Next Fit (NF)
Place each item in the same bin as the last item. If it does
not fit, start a new bin.

« First Fit (FF)
Place each item in the first bin that can contain it.

Xopis Next Fit

Place each item in the same bin as the last item. If it does not
fit, start a new bin.
size

» o o

N

ol [

» Best Fit (BF) V=30 _
Places each item in the bin with the smallest empty space. My =5
c=10
* Worst Fit (WF)
Places each item in the used bin with the largest empty M, =3
space, otherwise start a new bin.
First Fit Best Fit

Place each item in the first bin that can contain it.

size

ENENC

Places each item in the bin with the smallest empty space.

size

52 O o

V=30 Mg = 4 V=30 Mg = 4
c=10 c=10
M, =3 M, =3
R pis Worst Fit R pis Comparison

Places each item in the used bin with the largest empty space,
otherwise start a new bin.

ol

V=30

My = 4
c=10

Mo =3

Suppose the current situation is represented in blue and a
new item of size 2 arrives:

new item — [

NF FF]

BF] WF

1570472015

Xoopis Observations

The performance of each algorithm strongly depends on the
input sequence

however:

NF has a poor performance since it does not exploit the
empty space in the previous bins

FF improves the performance by exploiting the empty space

Xoopis First Fit Decreasing

If all items are known off-line, sort the items in decreasing
order, then use First Fit.
size

» o o

available in all the used bins. V=30 Mo =3
FFD
BF tends to fill the used bins as much as possible. c=10
WF tends to balance the load among the used bins. Mo =3
Boris Another example R pis Optimal solution
We need a set of pipes Optimal
. . 2 2 size 2,2,3,3,3,3,4,4,4,6,7,7
of the following lengths: 3 . M, = 4
4 3
1 ml
7 2
But on the market we can 12

>

only buy pipes of 12 meters: ¢ 0

How can we cut the pipes to minimize the wasted material?

V=48
{ =) M, —(VW— 4
c =12 C

2., Heuristic solutions
First Fit
size 2,2,3,3,3,3,4,4,4,6,7,7
Mee = 6
aatanl
First Fit Decreasing
size 7,7,6,4,4,4,3,3,3,3,2,2
Meep =5

HH(HHHHHHHW

4., Performance evaluation

The worst-case performance of an algorithm A with respect to
the optimal algorithm and for any possible sequence can be
measured by the

Competitive ratio

If o is a sequence of items, the competitive ratio of a bin
packing algorithm A is defined as

MA(O-)}

o= max{ M, (o)

o

1570472015

..., ~Some theoretical result

Any online algorithm uses at least 4/3 times the optimal
number of bins: 4

M, = §M°

NF and WF never use more than 2 M, bins.
FF and BF never use more than (1.7 M, + 1) bins.
FFD never uses more than (4/3 M, + 1) bins.

FFD never uses more than (11/9 M, + 4) bins.

20 is BP for task allocation

Note that the ratio M,/M, is not a good metric to compare
different task allocation algorithms, because:

» since the problem is NP hard, M, cannot be computed in
polynomial or pseudo-polynomial time;

» it does not take into account the number of tasks and the
task set utilization.

» even if M, is known, we would not get a tight bound on the
number of processors needed to schedule a task set.
In fact, for a set of n=10m tasks, each with utilization 0.5 + &,
we would have My=10m, and Mg <1.7M;+1 =17m+1.

That is, the ratio suggests to use (17m + 1) , when U = 5m.
So the solution would be higher than M, = ceiling(2U) = 10m .

i Definitions

To derive useful allocation bounds as a function of task
utilizations, we need some definitions:

I' setofntasks:T'={ty, ..., 7.}
@ setof mprocessors: ¢ ={P,, ..., P}
u; utilization of task t;

n
U total task set utilization U = Zui
i-1

n; number of tasks currently allocated on processor P;

U; total utilization of processor P Uj = Zui

7;€P;

i Definitions

Worst-case achievable utilization

The worst-case achievable utilization for a scheduler S and an
allocation algorithm A is a real number UV%;A such that:

= any task set with utilization U < U\,SV;A is schedulable by
S using A;

= it is always possible to find a task set with utilization U > U5
that is not schedulable by S using A.

%, First-Fit allocation algorithm

%, First-Fit decreasing algorithm

int first_fit_allocation(l, ,S)
¢ for (i=1; i<=n; i++) { // for each task i
J=1; // try from proc P1
while (Ischedulable(i,j,S) && (G <m)) j++;
if (§ < m) return(UNSCHEDULABLE);
allocate(i,j); // assign task i to Pj
}
return(SCHEDULABLE) ;
}

schedulable(i,j,S) returns 1if (U + U; < U‘f,'cFF), 0 otherwise

allocate(i,j) assigns t; to P]- and updates UJ- = UJ- + U

Like FF, but it initially sorts the task by decreasing utilizations:

int first_fit_allocation(T, g,S)
{ sort_by_decreasing_u(@); // u_ 1l >= u_ 2 >=_._.
for (i=1; i<=n; i++) { // for each task i
J=1; // try from proc P1
while (!schedulable(i,j,S) && (J <m)) j++;
if (§ < m) return(UNSCHEDULABLE);
allocate(i,j); // assign task i to Pj
}
return(SCHEDULABLE) ;
¥

10

1570472015

L..,. ~Some utilization bounds

[Lopez-Diaz-Garcia, 2000]

Any task set with total utilizaton U < (m+1)/2 is
schedulable in a multiprocessor made up of m processors
using FF allocation and EDF scheduling on each processor.

Proof

Note that (m+1) periodic tasks with utilization 0.5 can be
scheduled on m processors, but (M+1) tasks with utilization
0.5+¢ cannot be scheduled on m processors, independently of
the allocation algorithms used.

4., Some utilization bounds

[Oh & Baker, 1998]

Any task set with total utilizaton U < m(2Y2 — 1) is
schedulable in a multiprocessor made up of m processors
using FF allocation and RM scheduling on each processor.

22, Comparison 22, A better EDF bound
URM = 0.414 m ‘ ‘ UEDF = (m+1)/2 ‘ A better EDF bound can be found if tasks are not allowed to
Uue have arbitrary utilization u; €[0,1], but can have a maximum
6| EDF utilization o, that is:
>) RM Vi 0<u <a<l
4 —
3 Q,DAA Let # be the maximum number of tasks of utilization ¢ that fit
in one processor. Then, for the EDF schedulability it must be
2+ Pa<1, hence f< 1/a. But since g is an integer, it must be:
14
T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 M
EDF schedulability 22, EDF schedulability

Note that if (n < #m), then n tasks are always schedulable on
m processors.

B
6 - -
5 —
4 | _n‘§4m
3 n_s.Sm
2 n<2m,
1 | n<m
0 ‘1)4 1'/3 1/2 1 a

[Lopez-Diaz-Garcia, 2000]

If (n>pm) and Vi U; < ¢, a task set is schedulable by
EDF using FF allocation if

» pm+1
p+1
Note that: 1
m+
> if @=1,then f=1, and Ui = ——=
> if a0, then f— =, and USSP > m

11

1570472015

R, A better RM bound

A better RM bound can also be found assuming that tasks can
have a maximum utilization o, thatis: Vi 0<u;<a<1

Let S be the maximum number of tasks of utilization ¢ that fit
in one processor. Then, for the RM schedulability it must be
that fa < B (2YF-1), that is:

< 1
log,(a+1)

But since £ is an integer, it must be:

o) |

20is RM schedulability

[Lopez-Diaz-Garcia, 1999]

When each task has utilization U; < ¢, a task set is
schedulable by RM using FF allocation if

U< ﬂ(m _1)(21/(ﬁ+1) _1) + (n _ﬂ(m_l))(zll(n—ﬁ(m—l)) _1)

Note that:
» ifa=1 =1 =

UM = (m-1)(2Y* -1 + (n—-m+1) (2" —1)

> ifa—>0 (B> o) = UM 5min2

4., Other utilization bounds

[Andersson-Baruah-Jonsson, 2001]

When each task has utilization u; < m/(3m-2), the task
set is feasible by global RM scheduling if

2
us<-_1
3m-2

12

