
15/04/2015

1

MP scheduling is difficult

“The simple fact that a task can use only one
processor even when several processors are free at the
same time adds a surprising amount of difficulty to the
scheduling of multiple processors” [Liu 1969]

CPU1

CPU2

CPU3

Classification

Multiprocessor scheduling algorithms can be classified
according to two orthogonal criteria:

migration

priority

None Partial Full

Dynamic

Job
static

Task
static

Low overhead
Low utilization bound

High utilization bound
High overhead

Classification (by migration)

Algorithms can be distinguished by migration constraints:

 No migration

Tasks are statically allocated to processors and never
migrate (Partitioned scheduling).

 Partial migration

Tasks can only perform a limited number of migrations or
can migrate on a subset of processors (Semi-partitioned
scheduling).

 Full migration

Tasks are dynamically allocated to processors and can
migrate at any time on any processor (Global scheduling).

Classification (by priority)

Algorithms can be also distinguished by the way priorities are
assigned to tasks:

 Fixed

priority is statically assigned to tasks and is fixed for all the
jobs of a task (e.g., Rate Monotonic, Deadline Monotonic).

 Job-static

different jobs can have different priority, which is fixed for
the entire job execution (e.g., EDF).

 Dynamic

priority can change during job execution (e.g., Least Laxity
First).

Task allocation to processors

Once tasks are allocated to processors, they can be handled by
uniprocessor scheduling algorithms:

Partitioned Scheduling

Application

15/04/2015

2

Partitioned Scheduling

+
NP-hard in the
strong sense

Various heuristics used:
FF, NF, BF, FFDU, BFDD, etc.

Well known

Partitioned scheduling reduces to:

Bin Packing
Uniprocessor
scheduling

Since migration is forbidden, processors may be underutilized.

P1

P2

P3

14

5

23

1

2

 Each processor manages its own ready queue

 The processor for each task is determined off-line

 The processor cannot be changed at run time

5

Ta
sk

 a
llo

ca
tio

n

Partitioned Scheduling

Global scheduling

 The system manages a single queue of ready tasks

 The processor is determined at run time

 During execution a task can migrate to another processor

P1

P2

P3

12345

1

2

3

Global scheduling

Example (Global Rate Monotonic)

1
2
3
4
5

3 6

7 10

8 12

6 15

3 18

Ci Ti

 Consider the following task set:

 The task set has to be scheduled on
3 identical processors (m = 3)

 Priority are assigned according to
Rate Monotonic

P1 > P2 > P3 > P4 > P5

Global scheduling

P1

P2

P3

12345

1

2

3

Work conserving scheduler

 The m highest priority tasks are always those executing.

 No processor is ever idle when a task is ready to execute.

Global scheduling

Example (Global-RM)

When a task finishes its execution (e.g., 1), the next one
in the queue (4) is scheduled on the available CPU:

P1

P2

P3

2

4

3

2345

15/04/2015

3

Global scheduling

Example (Global-RM)

When a higher priority task arrives (e.g., 1), it preempts
the task with lowest priority among the executing ones (4):

P1

P2

P3

1245

1

2

3

3

Global scheduling

Example (Global-RM)

When another task ends its execution (e.g., 2), the
preempted task (4) can resume its execution.

P1

P2

P3

4

Note that 4 migrated
from P1 to P2

3

1

145 3

Global scheduling

P2

P1

P3 3

2

1

1all

4

5

1

4

2

3

1 4

0 2 4 6 8 10 12 14 16 18

13
2 4

Processor-level
representation

1 (3, 6) 3 (8, 12)
5 (3, 18)4 (6, 15)
2 (7, 10)

5

Global scheduling

1

2

3

4

5(3,18)

(6,15)

(8,12)

(7,10)

(3,6)

Task-level representation

0 2 4 6 8 10 12 14 16 18

Hybrid approaches

Different restrictions can be imposed on task migration:

 Job migration

Tasks are allowed to migrate, but only at jobs boundaries.

 Semi-partitioned scheduling

Some tasks are statically allocated to processors, others
are split into chunks (subtasks) that are allocated to
different processors.

 Clustered scheduling

A task can only migrate within a predefined subset of
processors (cluster).

552

51

Semi-partitioned scheduling

 Tasks are statically allocated to processors, if possible.

 Remaining tasks are split into chunks (subtasks), which
are allocated to different processors.

1
2
3
4
5

3 6 0.5

7 10 0.7

9 15 0.6

8 20 0.4

15 30 0.5

Ci Ti ui

U = 2.7 P2P1 P3

1
2 3

4

15/04/2015

4

Semi-partitioned scheduling

P1

P2

P3

14

3

2

1

2

 Note that subtasks are not independents,
but are subject to a precedence constraint:

3

51

52

51 52

This precedence must be managed!

Clustered scheduling

P1

P2

P3

1

4 5

2

 A task can only migrate within a predefined subset of
processors (cluster).

3

P4

Cluster 1

Cluster 2Ta
sk

 a
llo

ca
tio

n

Schedulability bound

Given a set  of n periodic tasks with total utilization U to be
scheduled by an algorithms A on a set of m identical
processors, find a bound UA(n,m) such that,

if U  UA(n,m), then  is schedulable by A.

In fact, it is clear that if U > m, the total demand in the
hyperperiod H will certainly exceed the total available time
(that is UH > mH), hence some task will miss its deadline.

A task set can be schedulable only if U  m.

A necessary condition

An algorithm A is optimal in the sense of schedulability iff
UA(n,m) = m.

A negative result

The schedulability bound of global-EDF and global-RM is
equal to 1, independently of the number m of available
processors.

This means that given a platform of m identical
processors, there exist applications with U > 1 that are
not schedulable by global-EDF and global-RM.

To prove this result it suffices to identify an application 
with utilization U = 1+ ( is a constant arbitrarily small)
that is not schedulable by global-EDF and global-RM.

Dhall's effect

P1

P2

P3

Pm

m processors

m+1 tasks

1
1

1

T

T1

T

T1

T1

1






Ci Ti Ui

1

2

m

m+1

...

T

EDF and RM produce
an unfeasible schedule
with a total utilization
arbitrarily close to 1global schedule

Partitioned

m processors

m+1 tasks

1
1

1

T

T1

T

T1

T1

1






Ci Ti Ui

1

2

m

m+1

...

P1

P2
T

Note that a feasible
partitioned schedule

exists on just 2
processors

15/04/2015

5

Dhall's effect implications

 Dhall's Effect shows the limitation of global EDF
and RM: both utilization bounds tend to 1,
independently of the value of m.

 Researchers lost interest in global scheduling for
~25 years, since late 1990s.

 Such a limitation is related to EDF and RM, not to
global scheduling in general.

On the other hand, there are task sets that are schedulable
only with a global scheduler.

Example:

P1

P2

1 3 3 31

22 1

0 1 2 3 4 5 6

1

2

2

Ci Ti

1

2

3

3

32

Global vs. partitioned

But there are also task sets that are schedulable only with a
partitioned scheduler.

Example:

P1

P2 2

0 2 4 6 8 10 12 14 16 18 20 22 24

4

1 3 1 3 1 3 1 3

2 4

4

7

6

Ci Ti

1

2

3

12

124

24104

P1

P2

All 4! = 24 global priority assignments lead to deadline miss.

Global vs. partitioned Global vs. partitioned

Example of unfeasible schedule with priorities: P1 > P2 > P3 > P4

4

7

6

Ci Ti

1

2

3

12

124

24104

P1

P2 2

0 2 4 6 8 10 12 14 16 18 20 22 24

1 3 1 1 3 1

43 2 43

4 misses
its deadline

Global scheduling: pros & cons

Automatic load balance among processors

Can better manage dynamic workloads

Lower average response time (see queueing theory)

More efficient reclaiming of unused processors

More efficient overload management

Lower number of preemptions

High migration cost: can be mitigated by proper HW (e.g.,
MPCore’s Direct Data Intervention)

Less schedulability results  Further research needed

Evaluation metrics

 Processor speedup factor S
An algorithm A has a speedup factor S if any task set
feasible on a given platform can be scheduled by A on a
platform in which all processors are S times faster.

 Percentage of schedulable task sets
– Over a randomly generated load

– Depends on the task generation method

 Sustainability and predictability properties
Schedulability is preserved for more relaxed constraints

 Run-time complexity

15/04/2015

6

Sustainability

A scheduling algorithm is sustainable iff
schedulability of a task set is preserved when

1. decreasing execution requirements

2. increasing periods of inter-arrival times

3. increasing relative deadlines

 Baker and Baruah [ECRTS, 2009] showed that:
Global EDF for sporadic tasks is sustainable with
respect to points 1 and 2.

How tasks are executed on the various processors?

?

Task allocation

Application

CPU1 CPU2 CPU3 CPU4

1

2

3

4

5

6

Task allocation

 Static partitioning
The processor where a task has to be executed is
determined off-line and cannot be changed at run time.

 Dynamic allocation
The processor where a task has to be executed is
determined at runtime and can be changed during
execution (task migration).

 Hybrid approaches
Clustered: a task can dynamically be assigned only

in a subset of processors (cluster).

Semi-partitioned: some tasks can be split in parts allocated
to different processors.

How to allocate tasks?

Tasks can be allocated based on their utilization.

1

2

3

C1 = 3

C2 = 3

C3 = 3

4

6

129630

30

30

U1 = 0.25

U2 = 0.5

U3 = 0.75

T1 = 12

T1 = 6

T1 = 4

The Bin Packing problem

Pack n objects of different size a1, a2, …, an into the minimum
number of bins (containers) of fixed capacity c.

0

2

4

6

8
size

Volume 



n

i
iaV

1

V = 30

c = 10

combinatorial

NP-hard problem

15/04/2015

7

Practical examples

 How to fit vehicles into railcars

 How to store files into CDs

 How to fill minibuses with
groups of people that must
stay together.

 How to cut pieces of pipes
from pipes of given length to
minimize wastes.

Bin Packing algorithms

Online

 Items arrive one at a time (in unknown order);

 Each item must be put in a bin before considering
the next item.

They can be distinguished into

Off line

 All items are given upfront, so they can be put into
bins in any order.

Definitions

MA number of bins used by an algorithm A

M0 minimum number of bins used by the optimal algorithm

Mlb  M0  MA  Mub

Mlb (Lower bound) Number of bins required for sure by
any algorithm

Mub (Upper bound) Number of bins that cannot be
exceeded for sure by any algorithm

Performance ratio
0M

M A

An easy lower bound

Given a set of n items of volume 



n

i
iaV

1

c

V
Mlb No algorithm can use less than Mlb bins, where

In fact,

 if V is a multiple of c, that is V = kc for some integer k > 0,
then M cannot be less than k = V/c.

 if V is not a multiple of c, that is kc < V < (k+1)c, then M
cannot be less than k +1 = ceiling(V/c).

An easy upper bound

c/2 + 

Proof

The worst-case sequence that maximizes waste is a
sequence of n items of size c/2 + 

V = n(c/2 + )

c

V

c

V

c

V
nM

22

2

2







Given a set of n items of volume 



n

i
iaV

1

c

V
Mub

2
No algorithm can use more than Mub bins, where

Optimal algorithm

Note that optimality implies clairvoyance for online sequences.

0

2

4

6

8
size

V = 30

c = 10

Mlb = 3

M0 = 3

15/04/2015

8

Bin Packing algorithms

• Next Fit (NF)
Place each item in the same bin as the last item. If it does
not fit, start a new bin.

• First Fit (FF)
Place each item in the first bin that can contain it.

• Best Fit (BF)
Places each item in the bin with the smallest empty space.

• Worst Fit (WF)
Places each item in the used bin with the largest empty
space, otherwise start a new bin.

Since the optimal solution is NP-hard, several heuristic
algorithms have been proposed:

Next Fit

Place each item in the same bin as the last item. If it does not
fit, start a new bin.

0

2

4

6

8
size

V = 30

c = 10

M0 = 3

MNF = 5

First Fit

Place each item in the first bin that can contain it.

V = 30

c = 10

M0 = 3

MFF = 4

0

2

4

6

8
size

Best Fit

Places each item in the bin with the smallest empty space.

V = 30

c = 10

M0 = 3

MBF = 4

0

2

4

6

8
size

Worst Fit

Places each item in the used bin with the largest empty space,
otherwise start a new bin.

V = 30

c = 10

M0 = 3

MWF = 4

0

2

4

6

8
size

Comparison

new item

Suppose the current situation is represented in blue and a
new item of size 2 arrives:

NF

BF

FF

WF

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

15/04/2015

9

Observations

NF has a poor performance since it does not exploit the
empty space in the previous bins

FF improves the performance by exploiting the empty space
available in all the used bins.

BF tends to fill the used bins as much as possible.

WF tends to balance the load among the used bins.

The performance of each algorithm strongly depends on the
input sequence

however:

First Fit Decreasing

If all items are known off-line, sort the items in decreasing
order, then use First Fit.

V = 30

c = 10

M0 = 3

MFFD = 3

0

2

4

6

8
size

Another example

We need a set of pipes
of the following lengths:

Length (m) Number

2 2

3 4

4 3

6 1

7 2

But on the market we can
only buy pipes of 12 meters:

12

How can we cut the pipes to minimize the wasted material?

V = 48

c = 12
40 

c

V
M

Optimal solution

Optimal

2, 2, 3, 3, 3, 3, 4, 4, 4, 6, 7, 7
M0 = 4

size

Heuristic solutions

First Fit

2, 2, 3, 3, 3, 3, 4, 4, 4, 6, 7, 7

First Fit Decreasing

7, 7, 6, 4, 4, 4, 3, 3, 3, 3, 2, 2

MFF = 6

MFFD = 5

size

size

Performance evaluation

If  is a sequence of items, the competitive ratio of a bin
packing algorithm A is defined as










)(

)(
max

0 


 M

M A
A

The worst-case performance of an algorithm A with respect to
the optimal algorithm and for any possible sequence can be
measured by the

Competitive ratio

15/04/2015

10

Some theoretical result

Any online algorithm uses at least 4/3 times the optimal
number of bins:

03

4
MM on 

NF and WF never use more than 2 M0 bins.

FF and BF never use more than (1.7 M0 + 1) bins.

FFD never uses more than (4/3 M0 + 1) bins.

FFD never uses more than (11/9 M0 + 4) bins.

Note that the ratio MA /M0 is not a good metric to compare
different task allocation algorithms, because:

 since the problem is NP hard, M0 cannot be computed in
polynomial or pseudo-polynomial time;

 it does not take into account the number of tasks and the
task set utilization.

 even if M0 is known, we would not get a tight bound on the
number of processors needed to schedule a task set.

BP for task allocation

In fact, for a set of n = 10m tasks, each with utilization 0.5 + ,
we would have M0 = 10m, and MFF < 1.7 M0 + 1 = 17m + 1.

That is, the ratio suggests to use (17m + 1) , when U = 5m.
So the solution would be higher than Mub = ceiling(2U) = 10m .

Definitions





n

i
iuU

1

To derive useful allocation bounds as a function of task
utilizations, we need some definitions:

 set of n tasks:  = {1, …, n}

 set of m processors:  = {P1, …, Pm}

ui utilization of task i

U total task set utilization

nj number of tasks currently allocated on processor Pj

Uj total utilization of processor Pj 



ji P

ij uU


Definitions

The worst-case achievable utilization for a scheduler S and an
allocation algorithm A is a real number Uwc such that:

 any task set with utilization U  Uwc is schedulable by
S using A;

 it is always possible to find a task set with utilization U > Uwc
that is not schedulable by S using A.

Worst-case achievable utilization

S-A

S-A

S-A

First-Fit allocation algorithm

int first_fit_allocation(,,S)
{

for (i=1; i<=n; i++) { // for each task i

j = 1; // try from proc P1

while (!schedulable(i,j,S) && (j < m)) j++;

if (j < m) return(UNSCHEDULABLE);

allocate(i,j); // assign task i to Pj
}

return(SCHEDULABLE);
}

schedulable(i,j,S) returns 1 if (ui + Uj  Uwc), 0 otherwise

allocate(i,j) assigns i to P j and updates Uj = Uj + ui

S-FF

First-Fit decreasing algorithm

int first_fit_allocation(,,S)
{

sort_by_decreasing_u(); // u_1 >= u_2 >=...

for (i=1; i<=n; i++) { // for each task i

j = 1; // try from proc P1

while (!schedulable(i,j,S) && (j < m)) j++;

if (j < m) return(UNSCHEDULABLE);

allocate(i,j); // assign task i to Pj
}

return(SCHEDULABLE);
}

Like FF, but it initially sorts the task by decreasing utilizations:

15/04/2015

11

Some utilization bounds

[Lopez-Diaz-Garcia, 2000]

Any task set with total utilization U  (m+1)/2 is
schedulable in a multiprocessor made up of m processors
using FF allocation and EDF scheduling on each processor.

Proof

Note that (m+1) periodic tasks with utilization 0.5 can be

scheduled on m processors, but (m+1) tasks with utilization

0.5+ cannot be scheduled on m processors, independently of

the allocation algorithms used.

[Oh & Baker, 1998]

Some utilization bounds

Any task set with total utilization U  m(21/2  1) is
schedulable in a multiprocessor made up of m processors
using FF allocation and RM scheduling on each processor.

Comparison

6

5

4

3

2

1

EDF

RM

URM = 0.414 m UEDF = (m+1)/2

m0 1 2 3 4 5 6 7 8 9 10 11

Uwc
wc wc

A better EDF bound

A better EDF bound can be found if tasks are not allowed to
have arbitrary utilization ui [0,1], but can have a maximum

utilization , that is:

10  iui

Let  be the maximum number of tasks of utilization  that fit
in one processor. Then, for the EDF schedulability it must be
  1, hence   1/. But since  is an integer, it must be:


 1


EDF schedulability

6

5

4

3

2

1

0 1/4 1/3 1/2 1



Note that if (n  m), then n tasks are always schedulable on

m processors.

n  m

n  2m

n  3m

n  4m

If (n > m) and i ui  , a task set is schedulable by
EDF using FF allocation if

1

1






m

U

[Lopez-Diaz-Garcia, 2000]

EDF schedulability

Note that:

 if  = 1, then  = 1, and

 if   0, then   , and

2

1
 m

U FFEDF
wc

mU FFEDF
wc 

15/04/2015

12

A better RM bound

A better RM bound can also be found assuming that tasks can
have a maximum utilization , that is: i 0  ui    1

Let  be the maximum number of tasks of utilization  that fit
in one processor. Then, for the RM schedulability it must be
that    (21/1), that is:

)1(log

1

2 





)1(log

1

2 





But since  is an integer, it must be:

When each task has utilization ui  , a task set is
schedulable by RM using FF allocation if

)12))(1(()12)(1())1(/(1)1/(1   mnmnmU  

[Lopez-Diaz-Garcia, 1999]

RM schedulability

Note that:

 if  = 1 ( = 1) 

)12)(1()12)(1()1/(12/1   mnFFRM
wc mnmU

2lnmU FFRM
wc  if   0 (  ) 

Other utilization bounds

When each task has utilization ui  m / (3m2), the task
set is feasible by global RM scheduling if

[Andersson-Baruah-Jonsson, 2001]

23

2




m

m
U

