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very real-time systems designer should be familiar with a set of 
classical scheduling theory results from the literature on com- 
plexity theory and operations research. These results rarely pro- 

vide direct solutions, but they do provide insight in choosing a good 
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system design and scheduling algorithm and avoiding poor or erroneous 
choices. 

The scheduling theory literature is so vast that we can’t pretend to be 
comprehensive, but this article does present a minimum set of results and 
their implications. The set includes Jackson’s rule, Smith’s rule, 
McNaughton’s theorem, Liu and Layland’s rate-monotonic rule, Mok‘s 
theorems, and Richard’s anomalies. Besides learning about these results, 
readers should be able to answer, at least, the following questions: 

What do we really know about earliest deadline scheduling? 
What is known about uniprocessor real-time scheduling problems? 
What is known about multiprocessing real-time scheduling problems? 
What anomalous behavior can occur, and can it be avoided? 
Where is the boundary between polynomial and NP-hard scheduling 

What task-set characteristics cause NP-hardness? 
What type of bounds analysis is useful for real-time systems? 
What is the impact of overloads on the scheduling results? 
How does the metric used in the theory impact the result’s usefulness 

What different results exist for static and dynamic scheduling? 

problems? 

in a real-time system? 

The scheduling problem has so many dimensions that it has no accepted 
taxonomy. We divide scheduling theory between uniprocessor and mul- 
tiprocessor results. In the uniprocessor section, we begin with independent 
tasks and then consider shared resources and overload. In the multi- 
processor section, we divide the work between static and dynamic algo- 
rithms. 

PRELIMINARIES 
First, we need to clarify a few basic concepts. These include the differ- 

ences between static, dynamic, off-line, and on-line scheduling; an 
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overview of various metrics and their implications; and 
definitions for NP-complete and NP-hard, terms used 
throughout the article. 

generally not of interest because there is no direct assess- 
ment of timing properties (deadlines or periods). 
However, the weighted sum is very important when tasks 
have different values that they impart to the system upon 

Static versus dynamic scheduling 
Most classical scheduling theory deals with static sched- 

uling. In static scheduling, the scheduling algorithm has 
complete knowledge of the task set and its constraints, 
such as deadlines, computation times, precedence con- 
straints, and future release times. This set of assumptions 
is realistic for many real-time systems. For example, a sim- 
ple laboratory experiment or a simple process-control 
application might have a fixed set of sensors and actuators 
and a well-defined environment and processing require- 
ments; the static scheduling algorithm operates on this 
set of tasks and produces a single schedule that is fixed for 
all time. If all future release times are known when the 
algorithm is developing the schedule, then it is still a sta- 
tic algorithm. 

A dynamic scheduling algorithm (in the context of this 
article) has complete knowledge of currently active tasks, 
but new taskactivations, not known to the algorithm when 
it is scheduling the current set, may arrive. Therefore, the 
schedule changes over time. For example, teams of robots 
cleaning up a chemical spill or military command and con- 
trol applications require dynamic scheduling, but as we 
will see, there are few known results for real-time dynamic 
scheduling algorithms. 

Off-line scheduling is often equated to static schedul- 
ing, but this is wrong. In building a real-time system, off- 
line scheduling analysis should always be done, regardless 
of whether the final runtime algorithm is static or 
dynamic. In many real-time systems, designers can iden- 
tify the maximum set of tasks with their worst-case 
assumptions and apply a static scheduling algorithm to 
produce a static schedule. This schedule is then fixed and 
used on line with well-understood properties such as, 
given that all assumptions remain true, all tasks will meet 
their deadlines. In other cases, the off-line analysis might 
produce a static set of priorities to use at runtime. The 
schedule itself is not fixed, but the priorities that drive it 
are fixed. (This is common in the rate-monotonic approach 

T1 T 2  T 3  T4 

discussed later.) 
If the real-time system is operating in a 

more dynamic environment, meeting the 
assumptions of static scheduling (every- 
thing is known a priori) is not feasible. In 
this case, designers choose an algorithm 
and analyze it off line for the expected 
dynamic environmental conditions. 
Usually, they can make less precise state- 
ments about the overall performance. On 
line, this same dynamic algorithm exe- 
cutes. 

Generally, a scheduling algorithm (pos- 
sibly with some modification) can be 
applied to static or dynamic scheduling 
and used off or on line. The important dif- 
ference is what is known about the algo- 
rithm's performance in each case. For 
example, consider earliest-deadline-first 
(EDF) scheduling. When applied to static 

- 

The first schedule 
minimizes the T 5  

scheduling, EDF is optimal in many situations (enumer- 
ated below), but when applied to dynamic scheduling on 
multiprocessors, it is not optimal. 
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Figure 1. Minimizing maximum lateness example. 
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either because of their direct applicability to real-time sys- 
tems or to show their limited applicability (even if a nice 
theoretical result exists). 

Related to metrics is the complexity of the various sched- 
uling problems themselves. Many scheduling results are 
NP-complete or NP-hard. NP is the class of all decision prob- 
lems that can be solved in polynomial time by a nondeter- 
ministic machine. A recognition problemR is NP-complete 
ifR E NP and all other problems inNP are polynomial trans- 
formable to R. A recognition or optimization problem R is 
NP-hard if all problems in NP are polynomial transformable 
to R, but we can’t show that R E NP. 

UNIPROCESSOR SYSTEMS 
In general, we follow Lawler’s notation,’ in which the 

problem definition has the form a I p I y, where CI indicates 
the machine environment (in this section, a = 1, indicat- 
ing a uniprocessor machine), p indicates the job charac- 
teristics (preemptable, nonpreemptable, independent, 
precedence constrained, deadline, etc.) and yindicates the 
optimality criterion (minimizing maximum lateness, total 
tardiness, etc.). Note that the optimality criterion depends 
on the metric chosen, which relies strongly on the system 
objectives and the task model. 

Preemption versus nonpreemption: 
Jackson’s Rule 

Suppose there are n independent jobs (job, process, and 
task are used interchangeably throughout the scheduling 
literature), with eachjobj having a processing timep, and 

sequence, each job will have a defined 
completion time C,. Lateness of a job j is 
defined as L, = C, - d,. Suppose we want to 
minimize the maximum lateness, assum- 
ing the jobs are executed nonpreemptively; 
that is, we want to solve the problem 

, a due date d,. For any given scheduling 

four real-time 
system requires I 

a more 
sophisticated 
programming 
model, one of the 
first extensions 
that might be 
needed is the 
introduction of 
release times. 

1 I nopmtn I ~ m a x  

where 1 stands for single machine, nopmtn 
stands for nonpreemption and the objec- 
tive function to minimize is 

Avery simple solution to this problem, the earliest-due- 
date (EDD) algorithm, is 

Theorem 1 (Jackson’s Rule2). Any sequence is 
optimal that puts the jobs in order of nondecreasing 
due dates. 

The proof of the theorem can be given by a simple inter- 
change argument’ (presenting that argument is beyond 
the scope of this article). At first, this result may not seem 
too useful in real-time systems design, which often requires 
that no task miss its deadline. But this is a static scheduling 
algorithm, and if the maximum lateness is greater than 
zero, the designer knows he must increase system com- 
puting power to meet the requirement of missing no dead- 
lines. EDD is also optimal in many other situations. Note 

that since all tasks are known and ready to execute at time 
zero, preemption would not improve the situation. 

If our real-time system requires a more sophisticated 
programming model, one of the first extensions that might 
be needed is the introduction of release times. We say that 
a job j has release time r, if its execution cannot start before 
time r,. Unfortunately, the above problem extended with 
release times 

is NP-hard.3 

preemption at any instant. In fact, the problem 
In this case, we obtain great benefit by permitting job 

1 I P”, rj I - L a x  

is easy; that is, an algorithm for its solution exists and has 
polynomial complexity. Again, the algorithm is based on 
Jackson’s rule, slightly modified to account for release 
times: 

Theorem 2. Any sequence that at any instant sched- 
ules the job with the earliest due date among all the eli- 
gible jobs (that is, those whose release time is less than 
or equal to the current time) is optimal with respect to 
minimizing maximum lateness. 

Again, the result can be easily proved by an interchange 
argument. The proof obtained is very similar to the “time 
slice swapping” technique Dertouzos4 and MokS used to 
show the optimalityof EDF and the least-laxity-first (LLF) 
algorithms, respectively. 

These results imply that when practical considerations 
do not prevent its use, preemption is usually more benefi- 
cial than nonpreemption in terms of scheduling complex- 
ity. Unfortunately, dealing with shared resources in 
real-time systems requires addressing critical sections, and 
one technique-creating nonpreemptable code-again 
creates an NP-hard problem. 

These theorems also imply that minimizing maximum 
lateness is optimal even when all deadlines must be met, 
because the maximum lateness can be required to be less 
than or equal to zero. In fact, Liu and Layland,‘j in their 
well-known paper on this aspect of EDF scheduling for a 
set of independent periodic processes, showed that full 
processor utilization is always achievable. They gave a very 
simple necessary-and-sufficient condition for task schedu- 
1 ab i 1 i ty : 

wherep, is the processing time and T, is the period of taskj. 
The EDF algorithm has also been shown to be optimal 

under various stochastic conditions. All of these results 
imply that EDF works well under many different situa- 
tions. EDF variations are now being used in multimedia 
applications, robotics, and real-time databases. However, 
none of the above classical EDF results allows for prece- 
dence constraints, shared resources, or overloads. 
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Another important area, real-time scheduling of peri- 
odic tasks, often uses the rate-monotonic algorithm. This 
algorithm assigns each task a static priority inversely pro- 
portional to its period; that is, tasks with the shortest peri- 
ods get the highest priorities. For a fixed set of independent 
periodic tasks with deadlines the same as the periods, we 
know: 

Theorem 4 (M0k5). When there are mutual exclu- 
sion constraints, it is impossible to find a totally on-line 
optimal runtime scheduler. 

The proof is simply given by an adversary argument, 
and Mok also showed a much more negative result: 

Theorem 3 (Liu and Layland6). A set of n inde- 
pendent, periodicjobs can be scheduled by the rate 
monotonic policy if c:=,p,/T, 5 n(2Iln- l ) ,  where T, 
andp, are the period and worst-case execution time, 
respectively. 

For large n we obtain a 69 percent utilization bound, 
meaning that as long as CPU utilization is less than 69 per- 
cent, all tasks will make their deadlines. This is often 
referred to as the schedulability test. If periodic task dead- 
lines can be less than the period, the above rule is no longer 
optimal. Rather, we must use a deadline-monotonic pol- 
icy7 where the periodic process with the shortest deadline 
is assigned the highest priority. This scheme is optimal in 
the sense that if any static priority scheme can schedule 
this set of periodic processes, then the deadline-monotonic 
algorithm can. Note that deadline monotonic is not the 
same as pure EDF scheduling because tasks may have dif- 
ferent periods and the assigned priorities are fixed. The 
rate-monotonic algorithm has been extended in many 
ways, the most important deals with shared resources (see 
the next section), and schedulability tests have been for- 
mulated for the deadline-monotonic algorithm.8 

The rate-monotonic scheduling algorithm has been cho- 
sen for the Space Station Freedom Project and the FAA 
Advanced Automation System (AAS). It also influenced 
the specification ofthe IEEE Futurebus+. The DoD’s 1991 
Software Technology Strategy says that rate-monotonic 
scheduling has a “major payoff,” and “system designers 
can use this theory to predict whether task deadlines will 
be met long before the costly implementation phase of a 
project begins.” In 1992, the Acting Deputy Administrator 
of NASA stated, “Through the development of Rate 
Monotonic Scheduling, we now have a system that will 
allow [Space Station] Freedom’s computers to budget 
their time, to choose between avarietyof tasks, and decide 
not onlywhich one to do first but how much time to spend 
in the process.” Rate monotonic is also useful for simple 
applications, such as real-time control of a simple experi- 
ment with 20 sensors whose data must be processed peri- 
odically or of a chemical plant with many periodic tasks 
and few alarms. These alarms can be treated as periodic 
tasks whose minimum interarrival time is equal to its 
period; then static scheduling, using the rate-monotonic 
algorithm, can be applied. 

Shared resources 
Multitasking applications commonly share resources. In 

general-purpose systems, resource sharing can be accom- 
plished by, for example, mutual exclusion primitives, but in 
real-time systems, a straightforward application of this 
solution does not hold. Defining a runtime scheduler as 
totally on line if it has no knowledge about the future arrival 
times of the tasks, the following has been proven: 

Theorem 5 (M0k5). The problem of deciding 
whether it is possible to schedule a set of periodic 
processes that use semaphores only to enforce mutual 
exclusion is NP-hard. 

A transformation of the three-partition 
problem to this scheduling problem proves 
the theorem. 

In Mok‘s opinion, “the reason for the NP- 
hardness of the above scheduling problem 
lies in the possibility that there are mutu- 
ally exclusive scheduling blocks which 
have different computation times.” This 
point of view is confirmed by ease of min- 
imizing the maximum lateness of n inde- 
pendent unit-time jobs with arbitrary 
release times’: 

he rate- T monotonic 
scheduling 
algorithm has 
been chosen for 
the Space Station 
Freedom Project 
and the FAA 
Advanced 
Automation 
System. 

Moreover, the problem is still easy if we add precedence 
constraints and minimize the maximum completion time 
(makespan) : 

1 I nopmtn,prec, r,,p, = 1 I La, ~ 

The solution uses forbidden regions, intervals of time dur- 
ing which no task can start if the schedule is to be feasi- 
ble. The idea is that because of the nonpreemption, 
scheduling a task at a certain point in time could force 
some other later task to miss its deadline. 

At this point, several choices are possible. One, followed 
by Mok, is to enforce the use of mutually exclusive sched- 
uling blocks having the same computation time. Another, 
followed by Sha et al.’” and Baker,” is to efficiently find a 
suboptimal solution with a clever allocation policy, guar- 
anteeing at the same time a minimum level of performance. 

The idea in Mok‘s solution, called kernelized monitor, is 
to assign the processor in time quantums of length q such 
that 

where /(CS,) is the length of the ith critical section. In other 
words, system granularity is increased. Furthermore, 
ready times and deadlines can be previously modified I 

according to some partial order on tasks. Adjusting the 
EDF scheduler with the forbidden-region technique, the 
following theorem can be proven: 

Theorem 6 (M0k5). If a feasible schedule exists for 1 
an instance of the process model with precedence con- 
straints and critical sections, then the kernelized mon- 
itor scheduler can be used to produce a feasible 
schedule. 



Sha et a1.l0 introduced the priority ceiling protocol 
~ (PCP), an allocation policy for shared resources thatworks 

with a rate monotonic scheduler. Chen and Linl* extended 
PCP to an EDF scheduler. 

The main goal of PCP and similar protocols is to bound 
the (usually uncontrolled) priority inversion, a situation 

in which lower priorityjobs block a higher 
priorityjob for an indefinite period (recall 
that a block can occur if a job tries to enter 
a critical section already locked by another 
job). A priority inversion bound lets us 
evaluate the worst-case blocking times a more general 

situation that and account for them in the schedulabil- 
allows multiunit ity guaranteeing formulas-in other 
resources, both words, evaluate the worst-case perfor- 
static and mance loss. 
dynamic priority PCP seeks to prevent multiple priority 
schemes, and inversions by early blocking of tasks that 
sharing of could cause them and to minimize a pri- 
runtime stacks. ority inversion’s length by allowing a tem- 

porary rise in the blocking task’s priority. 
This is done by (1) defining a critical sec- 
tion’s ceiling as the priority of the highest 

priority task that currently locks or could lock the section 
and (2) locking a critical section only if the requesting 
task’s priority is higher than the ceiling of all currently 
locked sections. In case of blocking, the task holding the 
lock inherits the requesting task’s priority until it leaves 
the critical section. 

Sha et a1.Io also showed that PCP has the following prop- 
erties: 

~ 

tack resource 
policy handles S 

Ajob can be blocked at most once before it enters its first 

PCP prevents the occurrence of deadlocks. 
critical section. 

Of course, the first property is used to evaluate the jobs’ 
worst-case blocking times. 

Baker” describes a similar protocol, the stack resource 
policy. SRP handles a more general situation that allows 
multiunit resources, both static and dynamic priority 
schemes, and sharing of runtime stacks. The protocol 
relies on two conditions: 

To prevent deadlocks, a job should not be permitted to 
start until the resources currently available are suffi- 
cient to meet its maximum requirements. 
To prevent multiple priority inversions, ajob should not 
be permitted to start until the resources currently avail- 
able are sufficient to meet the maximum requirement 
of any single job that might preempt it. 

tic schedules developed with off-line heuristics. Both 
approaches avoid blocking over shared resources by sched- 
uling competing tasks at different points in time. 

Overload and value 
EDF and LLF are optimal with respect to different met- 

rics, but Locke’sI6 experiments show that these algorithms 
perform very poorly in overload conditions. That’s because 
they give the highest priority to processes that are close to 
missing their deadlines. 

Atypical phenomenon that may happen with EDF when 
the system is overloaded is the “domino effect,” since the 
first task that misses its deadline may cause all subsequent 
tasks to miss their deadlines. In such a situation, EDF does 
not provide any type of guarantee on which tasks will meet 
their timing constraints. This is a very undesirable behav- 
ior in practical systems, since in real-world applications 
intermittent overloads may occur due to exceptional situ- 
ations, such as modifications in the environment, arrival 
of a burst of tasks, or cascades of system failures. As a real 
world example, this situation could cause a flexible man- 
ufacturing application to produce no completed products 
by their deadlines. 

To gain control over tardy tasks in overload conditions, 
we usually associate a value with each task that reflects its 
importance within the set. Sets of tasks with values can 
be scheduled by Smith’s rule. 

Theorem 7 (Smith’s rule17). Finding an optimal 
schedule for 

is given by any sequence that puts jobs in order of non- 
decreasing ratios p, = pJ/wJ. 

Smith’s rule resembles the common shortest-process- 
ing-time-first rule and is equivalent to SPT when all tasks 
have equal weights. However, it is not sufficient to solve 
the problem of scheduling with general precedence con- 
straints. The problems 

turn out to be NP c~mple t e ,~  and the same is true even for 
the simpler ones 

The idea is to block a job early if there is any chance of 
either deadlock or priority inversion. This earlier block- 
ing saves unnecessary context switches and permits sim- 
ple, efficient implementation by means of a stack. 

In summary, dealingwith shared resources is of utmost 
importance in a real-time system. The classical methods 
described are good for handling uniprocessor resources, 
but many researchers feel these techniques do not work 
well in multiprocessors or distributed systems. These sys- 
tems typically use on-line planning  algorithm^'^ or sta- 

Interesting solutions have been found for particular 
precedence relations; in fact, optimal polynomial algo- 
rithms have been found for 

1 I chain I XC, 

1 I series-parallel I CC, 
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Unfortunately, in real-time systems the precedence con- 
straints imposed on tasks are often more general. A heuris- 
tic proposed in the Spring project combined deadline- and 
cost-driven algorithms with rules to dynamically revise val- 
ues and deadlines in accordance with precedence relations.18 

A number of heuristic EDF algorithms have also been 
proposed to deal with EDF o ~ e r l o a d s , ~ ~ ~ ~ ~  thus improving 
the performance of EDF. 

have shown that there’s an upper bound on 
the performance of any on-line (preemptive) algorithm 
working in overload conditions. They measured an on-line 
algorithm’s “goodness” with respect to a clairvoyant sched- 
uler (one that knows the future) by means of the competi- 
tive factor, which is the ratio r of the cumulative value 
achieved by the on-line algorithm to the cumulative value 
achieved by the clairvoyant schedule. The value associated 
with each task is equal to the task’s execution time if the 
task request is successfully scheduled to completion; a value 
of zero is given to tasks that do not terminate within their 
deadline. Using this metric, they proved the following: 

Baruah et 

preemptive and have a partial order among 
themselves, resource constraints (even a single resource 
constraint), and a single deadline show that most of the 
problems are NP-complete. To delineate the boundary 
between polynomial and NP-hard problems and to pre- 

Theorem 8 (Baruah et There does not exist 
an on-line scheduling algorithm with a competitive fac- 
tor greater than 0.25. 

That is, no on-line scheduling algorithm can guarantee 
a cumulative value greater than one fourth the value 
obtainable by a clairvoyant scheduler. These bounds are 
true for any load but can be refined for a given load. For 
example, if the load is less than 1, the bound is 1; as the 
load just surpasses 1, the bound immediately drops to 
0.385. For loads greater than 1 up to 2, the bound gradu- 
ally drops from 0.385 to 0.25, and for all loads greater than 
2, the bound is 0.25. 

However, the above bound is achieved under very 
restrictive assumptions: all tasks in the set have zero lax- 
ity, the overload has an arbitrary (but finite) duration, task 
execution time is arbitrarily small, and taskvalue is equal 
to computation time. Since tasks are much less restrictive 
in most real-world applications, the one-fourth bound has 
only theoretical validity. More work is needed to derive 
other bounds based on more knowledge of the task set. 

Summary of uniprocessor results 
Many basic algorithms and theoretical results have been 

developed for uniprocessor scheduling. A number are 
based on earliest deadline or rate-monotonic scheduling 
and have been extended to handle precedence and 
resource sharing. Thus, real-time system designers have 
a wealth of information concerning uniprocessor sched- 
uling, but they need more results on overload and fault- 
tolerant scheduling (although fault tolerance usually 
requires multiple processors as well). We also need-to 
name a few issues-a more integrated, comprehensive 
scheduling approach that addresses periodic and aperi- 
odic tasks, preemptive and nonpreemptive tasks in the 
same system, tasks with values, and combined CPU and 
I/O scheduling. For example, the A-7E aircraft’s opera- 
tional flight program, which has 75 periodic and 172 ape- 
riodic processes with significant synchronization 
requirements, could use rate-monotonic extensions that 
integrate periodic and aperiodic tasks. 

MULTIPROCESSOR REAL-TIME 
SCHEDULING 

More and more real-time systems are relying on multi- 
processors. Unfortunately, we know less about real-time 
scheduling for multiprocessor-based systems than for 
uniprocessors. This is partly because complexity results 
show that most real-time multiprocessing scheduling is 
NP-hard. Also, because of our minimal experience with 
such systems, the number of existing heuristics is relatively 
low. Despite the negative implications of complexity analy- 
sis, designers need to understand certain results: 

Understanding the boundary between polynomial and 
NP-hard problems can provide insights into developing 
useful heuristics that can be used as a design tool or as 
an on-line scheduling algorithm. 
Understanding the algorithms that achieve some of the 
polynomial results can again provide a basis for such 
heuristics. 
Understanding the fundamental limitations of on-line 
algorithms will help designers create robust systems 
and avoid misconceptions and serious scheduling 
anomalies. 

Deterministic (static) scheduling 
In this section, we present multiprocessing scheduling 

results for deterministic (static) scheduling with and with- 
out preemption. 



Table 1. Summary of basic multiprocessor scheduling theorems. 

Theorem 
number Processors Resources Ordering Computation time Complexity 

9 2 0 Arbitrary Unit Polynomial 

10 2 0 Independent Arbitrary N P-co m p lete 

11 2 0 Arbitrary 1 or 2 units N P-co m pl ete 

12 2 1 Forest Unit N P-co m plete 

13 3 1 Independent Unit NP-complete 

14 N 0 Forest Unit Polynomial 
15 N 0 Arbitrary Unit NP-complete 

Theorem 9 (Coffman and Grahamzz). The mul- 
tiprocessor scheduling problem with two processors, 
no resources, arbitrary partial order relations, and every 
task having a unit computation time is polynomial. 

Theorem 10 (Garey and Johnsonz3). The multi- 
processor scheduling problem with two processors, no 
resources, independent tasks, and arbitrary computa- 
tion times is NP-complete. 

Theorem 11 (Garey and Johnsonz3). The multi- 
processor scheduling problem with two processors, no 
resources, arbitrary partial order, and task computa- 
tion times of either 1 or 2 units of time is NP-complete. 

Theorem 12 (Garey and Johnsonz3). The multi- 
processor scheduling problem with two processors, one 
resource, a forest partial order, and each computation 
time of every task equal to 1 is NP-complete. 

Theorem 13 (Garey and Johnsonz3). The multi- 
processor scheduling problem with three or more 
processors, one resource, all independent tasks, and 
each taskcomputation time equal to 1 is NP-complete. 

Theorem 14 (HuZ4). The multiprocessor scheduling 
problem with n processors, no resources, a forest par- 
tial order, and each task having a unit computation 
time is polynomial. 

Theorem 15 (Ullmanz5). The multiprocessing 
scheduling problem with n processors, no resources, 
arbitrary partial order, and each task having a unit 
computation time is NP-complete. 

From these theorems we can see that for nonpreemp- 
tive multiprocessing scheduling almost all problems are 
NP-complete, implying that heuristics must be used for 
such problems. Basically, we see that nonuniform task 
computation time and resource requirements cause NP- 
completeness immediately. These results imply that 
designs using only local resources (such as object-based 
systems and functional language-based systems) and unit- 
time-slot scheduling have significant advantages as far as 
scheduling complexity is concerned. Of course, few if any 
real-time systems have unit tasks, and any attempt to carve 

a process into unit times creates difficult maintenance 
problems and can waste processing cycles when tasks con- 
sume less than the allocated unit of time. Also, the above 
results assume a single deadline for all tasks. If each task 
has a deadline, the problem is exacerbated. 

PREEMPTIVE MULTIPROCESSING REAL-TIME SCHED- 
ULING. Generally, the scheduling problem is easier if tasks 
are preemptable, but in certain situations, there is no 
advantage to preemption. The following classical results 
pertain to multiprocessing scheduling where tasks are pre- 
emptable; that is, 

Theorem 16 (McNaughtoP). For any instance of the 
multiprocessing scheduling problem with P identical 
machines, preemption allowed, and minimizing the 
weighted sum of completion times, there exists a sched- 
ule with no preemption for which the value of the sum of 
computation times is as small as for any schedule with a 
finite number of preemptions. 

Here we see that, for a given metric, there may be no 
advantage to preemption. However, to find such a sched- 
ule with or without preemption is NP-hard. Note that if 
the metric is the sum of completion times, the shortest- 
processing-time-first greedy approach solves the problem 
and is not NP. Here again, preemption offers no advan- 
tage. This result can have an important implication when 
creating a static schedule. We certainly prefer to minimize 
preemption for practical reasons at runtime, so knowing 
there is no advantage to preemption, a designer would not 
create a static schedule with any preemptions. 

Theorem 17 (Lawlerl). The multiprocessing prob- 
lem of scheduling P processors with task preemption 
allowed and with minimization of the number of late 
tasks is NP-hard. 

This theorem indicates that one of the most common 
forms of real-time multiprocessing scheduling-that is, 

where U, are the late tasks-requires heuristics. 
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Dynamic multiprocessor scheduling 
There are so few real-time classical scheduling results 

for dynamic multiprocessing scheduling that we treat pre- 
emptive and nonpreemptive cases together. 

In a uniprocessor, dynamic earliest-deadline schedul- 
ing is optimal under certain conditions. Is this algorithm 
optimal in a multiprocessor? The answer is no. 

Theorem 18 (Mok5). Earliest-deadline scheduling 
is not optimal in the multiprocessor case. 

To illustrate why this is true, consider the 
following example. We have three tasks to 
execute on two processors. The task char- 
acteristics, given by task number (compu- 
tation time, deadline), are Tl(l,l),  T2(1,2), 
and T3(3,3.5). Scheduling by earliest dead- 
line would execute TI on P1 and T,on P2, 
and T3 would miss its deadline. However, 
if we schedule T3 first, on P1, and then TI 
and T,  on P2, all tasks make their dead- 
lines. An optimal algorithm does exist for 
the static version of this problem (all tasks 

ier testing than for the preemptive model; also, blocking 
can be avoided. The main disadvantage of the nonpre- 
emptive model is (usually) less-efficient processor use. 
Heuristics also exist for a preemptive m0de1.l~ The advan- 
tages of a preemptive model are high use and low latency 1 
to newly invoked work. The disadvantages are many con- 
text switches, difficulty in understanding the runtime exe- 
cution and its testing, and blocking is common. All these 
heuristics, whether preemptive or nonpreemptive, are 
fairly expensive in terms of absolute on-line computation 

time compared to very simple algorithms 
such as EDF. Thus, they sometimes 
requires additional hardware support in 

number of A good heuris- 
tics exist for 
dynamic 
multiprocessor 
scheduling, and 
we are beginning 
to see stochastic 
analysis of these 
conditions. 

exist at the same time) if one considers 
both deadlines and computation time,*' 
but this algorithm is too complicated to present here. 

Now, if dynamic earliest-deadline scheduling for mul- 
tiprocessors is not optimal, the next question is whether 
any dynamic algorithm is optimal in general. Again, the 
answer is no. 

Theorem 19 (M0k5). For two or more processors, 
no deadline scheduling algorithm can be optimal with- 
out complete a priori knowledge of deadlines, compu- 
tation times, and task start times. 

This implies that any of the classical scheduling theory 
algorithms that require start-time knowledge cannot be 
optimal if used on line. This also points out that we cannot 
hope to develop an optimal, general on-line algorithm. But 
optimal algorithms may exist for a given set of conditions. 

One important example of this situation is assuming 
that all worst-case situations exist simultaneously. If this 
scenario is schedulable, then it will also be schedulable at 
runtime-even if the arrival times are different-because 
later arrivals can't make conditions anyworse. When such 
a worst-case approach is not possible for a given system, 
usually because sufficient conditions cannot be developed 
or because ensuring these conditions is too costly, more 
probabilistic approaches are needed. 

A number of good heuristics exist for dynamic multi- 
processor scheduling, and we are beginning to see sto- 
chastic analysis of these conditions. It is especially 
valuable to be able to create algorithms that operate with 
levels of guarantee. For example, even though the system 
operates stochastically and nonoptimally, it might pro- 
vide a minimum level of guaranteed performance. 

As mentioned, various heuristics exist for real-time mul- 
tiprocessor scheduling with resource constraint~. '~ 
However, in general, these heuristics use a nonpreemp- 
tive model. The advantages of a nonpreemptive model are 
few context switches, better understandability, and eas- 

terms of a scheduling chip. 
As mentioned earlier, overload and per- 

formance bounds analysis are important 
issues. Now assume we have a situation 
with sporadic tasks, preemption permit- 
ted. Also assume that if the task meets its 
deadline, then a value equal to the execu- 
tion time is obtained; otherwise, no value 
is obtained. The system has two processors 
and operates in both normal and overload 
conditions. 

Theorem 20 (Baruah, et No on-line sched- 
uling algorithm can guarantee a cumulative value 
greater than one half for the dual processor case. 

For uniprocessor bounds results (presented in the sec- 
tion on overload and value), the implications of this the- 
orem are very pessimistic. As before, some of the 
pessimism arises because of assumptions concerning lack 
of knowledge of the task set. In reality, we do have signif- 
icant knowledge. (We know the arrival of new instances of 
periodic tasks, or because of flow control, we may know 
that the maximum arrival rate is capped or the minimum 
laxity of any task in the system is greater than some value). 
If we can exploit this knowledge, the bounds may not be 
so pessimistic, but we do need more algorithms that 
directly address multiprocessing system performance in 
overload conditions. 

Multiprocessing anomalies 
Designers should be aware of several important anom- 

alies, called Richards anomalies, so that they can avoid 
them. Assume that a set of tasks are optimally scheduled 
on a multiprocessorwith some priority order, a fixed num- 
ber of processors, fixed execution times, and precedence 
constraints. 

Theorem 21 (Graham2*). For the stated problem, 
changing the priority list, increasing the number of 
processors, reducing execution times, or weakening 
the precedence constraints can increase the schedule 
length. 

This result implies that if tasks have deadlines, then the 
accompanying increase in schedule length due to the 
anomaly can invalidate a previously valid schedule, and 
tasks can now miss deadlines. Initially, it's counter intu- 
itive to think that adding resources (for example, an extra 



processor) or relaxing constraints (less precedence among 
tasks or fewer execution time requirements) can make 
things worse. But that’s the insidious nature of timing con- 
straints and multiprocessing scheduling. An example can 
best illustrate why this theorem is true. Consider an opti- 
mal schedule where we now reduce the time required for 
the first task T1 on the first processor. This means that the 
second task T2 on that processor can begin earlier. 
However, doing this may now cause some task on another 
processor to block over a shared resource and miss its 
deadline. If T2 had not executed earlier, then no blocking 
would have occurred, and all tasks would have made their 
deadlines because it was originally an optimal schedule. 
(See Figure 2.) 

Note that for most on-line scheduling algorithms, we 
must deal with the problem of tasks completing before 
their worst-case times. A simple solution that avoids the 
anomaly is to have tasks that complete early simply idle, 
but this can be very inefficient. Algorithms such as Shen’sI4 
strive to reclaim this idle time, while carefully addressing 

1 the anomalies so that they will not occur. 

Summary of multiprocessor results 
Most multiprocessor scheduling problems are NP, but 

for deterministic scheduling this is not a major problem. 
We can use a polynomial algorithm and develop an opti- 
mal schedule if the specific problem is not NP-complete, or 
we can use off-line heuristic search techniques based on 
classical theory implications. These off-line techniques 
usually need to find only feasible schedules, not optimal 
ones. Many heuristics perform well in the average case 
and only deteriorate to exponential complexity in the 
worst (rare) case. Good design tools would allow users to 
provide feedback and redesign the task set to avoid the 
rare case. So the static, multiprocessor, scheduling prob- 
lem is largelysolved in the sense that we know how to pro- 
ceed. However, good tools with implemented heuristics 
are still necessary, and many extensions that treat more 
sophisticated tasks and system characteristics are still pos- 
sible. On-line multiprocessing scheduling must rely on 
heuristics and would be substantially helped by special 

Tasks are statically 
allocated: 
Task 1 and Task 2 
on processor 1; 
Task 3, Task 4 and 
Task 5 on processor 2. t 

Schedule length 

Task 2 and Task 4 share 
the same resource in 
exclusive mode 

t 
Schedule length 

Figure 2. One example of Richard’s anomalies. 

scheduling chips. Any such 
heuristics must avoid 
Richard’s an0ma1ies.I~ 
Better results for operation 
in overloads, better bounds 
that account for typical a 
priori knowledge found in 
real-time systems, and 
algorithms that can guar- 
antee various performance 
levels are required. 
Dynamic multiprocessing 
scheduling is in its infancy. 

On-line multiprocess- 
ing scheduling 
must rely on 
heuristics and 
would be substan- 
tially helped by 
special scheduling 
chips. 

AS WE’VE SHOWN, CLASSICAL SCHEDULING THEORY PROVIDES 
a basic set of results for real-time system designers. Many 
results are known for uniprocessors, but for multiproces- 
sors, we need new results that deal more directlywith rel- 
evant metrics and realistic task characteristics. Of course, 
real-time system designers must still take the basic, avail- 
able facts and apply them to their problems, which in 

I many cases is a difficult engineering problem. 
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