
Implications of
Classical Scheduling
Results for Real=Time
Systems
John A. Stankovic
Marco Spuri hlarco Di Natale
and Giorgio C Buttazzo
Scuola Superlor t S . Anna,

very real-time systems designer should be familiar with a set of
classical scheduling theory results from the literature on com-
plexity theory and operations research. These results rarely pro-

vide direct solutions, but they do provide insight in choosing a good

Pisa. Ital!

rhs work W U I c!onc
31 hila f h t f i n t c ~ i i ~ f i o r
1% us on \ahbuti<c,!

system design and scheduling algorithm and avoiding poor or erroneous
choices.

The scheduling theory literature is so vast that we can’t pretend to be
comprehensive, but this article does present a minimum set of results and
their implications. The set includes Jackson’s rule, Smith’s rule,
McNaughton’s theorem, Liu and Layland’s rate-monotonic rule, Mok‘s
theorems, and Richard’s anomalies. Besides learning about these results,
readers should be able to answer, at least, the following questions:

What do we really know about earliest deadline scheduling?
What is known about uniprocessor real-time scheduling problems?
What is known about multiprocessing real-time scheduling problems?
What anomalous behavior can occur, and can it be avoided?
Where is the boundary between polynomial and NP-hard scheduling

What task-set characteristics cause NP-hardness?
What type of bounds analysis is useful for real-time systems?
What is the impact of overloads on the scheduling results?
How does the metric used in the theory impact the result’s usefulness

What different results exist for static and dynamic scheduling?

problems?

in a real-time system?

The scheduling problem has so many dimensions that it has no accepted
taxonomy. We divide scheduling theory between uniprocessor and mul-
tiprocessor results. In the uniprocessor section, we begin with independent
tasks and then consider shared resources and overload. In the multi-
processor section, we divide the work between static and dynamic algo-
rithms.

PRELIMINARIES
First, we need to clarify a few basic concepts. These include the differ-

ences between static, dynamic, off-line, and on-line scheduling; an

0018-9162/95/14.00 0 1995 IEEE

overview of various metrics and their implications; and
definitions for NP-complete and NP-hard, terms used
throughout the article.

generally not of interest because there is no direct assess-
ment of timing properties (deadlines or periods).
However, the weighted sum is very important when tasks
have different values that they impart to the system upon

Static versus dynamic scheduling
Most classical scheduling theory deals with static sched-

uling. In static scheduling, the scheduling algorithm has
complete knowledge of the task set and its constraints,
such as deadlines, computation times, precedence con-
straints, and future release times. This set of assumptions
is realistic for many real-time systems. For example, a sim-
ple laboratory experiment or a simple process-control
application might have a fixed set of sensors and actuators
and a well-defined environment and processing require-
ments; the static scheduling algorithm operates on this
set of tasks and produces a single schedule that is fixed for
all time. If all future release times are known when the
algorithm is developing the schedule, then it is still a sta-
tic algorithm.

A dynamic scheduling algorithm (in the context of this
article) has complete knowledge of currently active tasks,
but new taskactivations, not known to the algorithm when
it is scheduling the current set, may arrive. Therefore, the
schedule changes over time. For example, teams of robots
cleaning up a chemical spill or military command and con-
trol applications require dynamic scheduling, but as we
will see, there are few known results for real-time dynamic
scheduling algorithms.

Off-line scheduling is often equated to static schedul-
ing, but this is wrong. In building a real-time system, off-
line scheduling analysis should always be done, regardless
of whether the final runtime algorithm is static or
dynamic. In many real-time systems, designers can iden-
tify the maximum set of tasks with their worst-case
assumptions and apply a static scheduling algorithm to
produce a static schedule. This schedule is then fixed and
used on line with well-understood properties such as,
given that all assumptions remain true, all tasks will meet
their deadlines. In other cases, the off-line analysis might
produce a static set of priorities to use at runtime. The
schedule itself is not fixed, but the priorities that drive it
are fixed. (This is common in the rate-monotonic approach

T1 T 2 T 3 T4

discussed later.)
If the real-time system is operating in a

more dynamic environment, meeting the
assumptions of static scheduling (every-
thing is known a priori) is not feasible. In
this case, designers choose an algorithm
and analyze it off line for the expected
dynamic environmental conditions.
Usually, they can make less precise state-
ments about the overall performance. On
line, this same dynamic algorithm exe-
cutes.

Generally, a scheduling algorithm (pos-
sibly with some modification) can be
applied to static or dynamic scheduling
and used off or on line. The important dif-
ference is what is known about the algo-
rithm's performance in each case. For
example, consider earliest-deadline-first
(EDF) scheduling. When applied to static

-

The first schedule
minimizes the T 5

scheduling, EDF is optimal in many situations (enumer-
ated below), but when applied to dynamic scheduling on
multiprocessors, it is not optimal.

7 2 T 3 T 4 73
The second

T I schedule has a

I
d l

I I I
d 2 d 3 d4 d'5 miss their deadline.

P - 4
Maximum lateness

Figure 1. Minimizing maximum lateness example.

June 1995

either because of their direct applicability to real-time sys-
tems or to show their limited applicability (even if a nice
theoretical result exists).

Related to metrics is the complexity of the various sched-
uling problems themselves. Many scheduling results are
NP-complete or NP-hard. NP is the class of all decision prob-
lems that can be solved in polynomial time by a nondeter-
ministic machine. A recognition problemR is NP-complete
ifR E NP and all other problems inNP are polynomial trans-
formable to R. A recognition or optimization problem R is
NP-hard if all problems in NP are polynomial transformable
to R, but we can’t show that R E NP.

UNIPROCESSOR SYSTEMS
In general, we follow Lawler’s notation,’ in which the

problem definition has the form a I p I y, where CI indicates
the machine environment (in this section, a = 1, indicat-
ing a uniprocessor machine), p indicates the job charac-
teristics (preemptable, nonpreemptable, independent,
precedence constrained, deadline, etc.) and yindicates the
optimality criterion (minimizing maximum lateness, total
tardiness, etc.). Note that the optimality criterion depends
on the metric chosen, which relies strongly on the system
objectives and the task model.

Preemption versus nonpreemption:
Jackson’s Rule

Suppose there are n independent jobs (job, process, and
task are used interchangeably throughout the scheduling
literature), with eachjobj having a processing timep, and

sequence, each job will have a defined
completion time C,. Lateness of a job j is
defined as L, = C, - d,. Suppose we want to
minimize the maximum lateness, assum-
ing the jobs are executed nonpreemptively;
that is, we want to solve the problem

, a due date d,. For any given scheduling

four real-time
system requires I

a more
sophisticated
programming
model, one of the
first extensions
that might be
needed is the
introduction of
release times.

1 I nopmtn I ~ m a x

where 1 stands for single machine, nopmtn
stands for nonpreemption and the objec-
tive function to minimize is

Avery simple solution to this problem, the earliest-due-
date (EDD) algorithm, is

Theorem 1 (Jackson’s Rule2). Any sequence is
optimal that puts the jobs in order of nondecreasing
due dates.

The proof of the theorem can be given by a simple inter-
change argument’ (presenting that argument is beyond
the scope of this article). At first, this result may not seem
too useful in real-time systems design, which often requires
that no task miss its deadline. But this is a static scheduling
algorithm, and if the maximum lateness is greater than
zero, the designer knows he must increase system com-
puting power to meet the requirement of missing no dead-
lines. EDD is also optimal in many other situations. Note

that since all tasks are known and ready to execute at time
zero, preemption would not improve the situation.

If our real-time system requires a more sophisticated
programming model, one of the first extensions that might
be needed is the introduction of release times. We say that
a job j has release time r, if its execution cannot start before
time r,. Unfortunately, the above problem extended with
release times

is NP-hard.3

preemption at any instant. In fact, the problem
In this case, we obtain great benefit by permitting job

1 I P”, rj I - L a x

is easy; that is, an algorithm for its solution exists and has
polynomial complexity. Again, the algorithm is based on
Jackson’s rule, slightly modified to account for release
times:

Theorem 2. Any sequence that at any instant sched-
ules the job with the earliest due date among all the eli-
gible jobs (that is, those whose release time is less than
or equal to the current time) is optimal with respect to
minimizing maximum lateness.

Again, the result can be easily proved by an interchange
argument. The proof obtained is very similar to the “time
slice swapping” technique Dertouzos4 and MokS used to
show the optimalityof EDF and the least-laxity-first (LLF)
algorithms, respectively.

These results imply that when practical considerations
do not prevent its use, preemption is usually more benefi-
cial than nonpreemption in terms of scheduling complex-
ity. Unfortunately, dealing with shared resources in
real-time systems requires addressing critical sections, and
one technique-creating nonpreemptable code-again
creates an NP-hard problem.

These theorems also imply that minimizing maximum
lateness is optimal even when all deadlines must be met,
because the maximum lateness can be required to be less
than or equal to zero. In fact, Liu and Layland,‘j in their
well-known paper on this aspect of EDF scheduling for a
set of independent periodic processes, showed that full
processor utilization is always achievable. They gave a very
simple necessary-and-sufficient condition for task schedu-
1 ab i 1 i ty :

wherep, is the processing time and T, is the period of taskj.
The EDF algorithm has also been shown to be optimal

under various stochastic conditions. All of these results
imply that EDF works well under many different situa-
tions. EDF variations are now being used in multimedia
applications, robotics, and real-time databases. However,
none of the above classical EDF results allows for prece-
dence constraints, shared resources, or overloads.

Computer

Another important area, real-time scheduling of peri-
odic tasks, often uses the rate-monotonic algorithm. This
algorithm assigns each task a static priority inversely pro-
portional to its period; that is, tasks with the shortest peri-
ods get the highest priorities. For a fixed set of independent
periodic tasks with deadlines the same as the periods, we
know:

Theorem 4 (M0k5). When there are mutual exclu-
sion constraints, it is impossible to find a totally on-line
optimal runtime scheduler.

The proof is simply given by an adversary argument,
and Mok also showed a much more negative result:

Theorem 3 (Liu and Layland6). A set of n inde-
pendent, periodicjobs can be scheduled by the rate
monotonic policy if c:=,p,/T, 5 n(2Iln- l) , where T,
andp, are the period and worst-case execution time,
respectively.

For large n we obtain a 69 percent utilization bound,
meaning that as long as CPU utilization is less than 69 per-
cent, all tasks will make their deadlines. This is often
referred to as the schedulability test. If periodic task dead-
lines can be less than the period, the above rule is no longer
optimal. Rather, we must use a deadline-monotonic pol-
icy7 where the periodic process with the shortest deadline
is assigned the highest priority. This scheme is optimal in
the sense that if any static priority scheme can schedule
this set of periodic processes, then the deadline-monotonic
algorithm can. Note that deadline monotonic is not the
same as pure EDF scheduling because tasks may have dif-
ferent periods and the assigned priorities are fixed. The
rate-monotonic algorithm has been extended in many
ways, the most important deals with shared resources (see
the next section), and schedulability tests have been for-
mulated for the deadline-monotonic algorithm.8

The rate-monotonic scheduling algorithm has been cho-
sen for the Space Station Freedom Project and the FAA
Advanced Automation System (AAS). It also influenced
the specification ofthe IEEE Futurebus+. The DoD’s 1991
Software Technology Strategy says that rate-monotonic
scheduling has a “major payoff,” and “system designers
can use this theory to predict whether task deadlines will
be met long before the costly implementation phase of a
project begins.” In 1992, the Acting Deputy Administrator
of NASA stated, “Through the development of Rate
Monotonic Scheduling, we now have a system that will
allow [Space Station] Freedom’s computers to budget
their time, to choose between avarietyof tasks, and decide
not onlywhich one to do first but how much time to spend
in the process.” Rate monotonic is also useful for simple
applications, such as real-time control of a simple experi-
ment with 20 sensors whose data must be processed peri-
odically or of a chemical plant with many periodic tasks
and few alarms. These alarms can be treated as periodic
tasks whose minimum interarrival time is equal to its
period; then static scheduling, using the rate-monotonic
algorithm, can be applied.

Shared resources
Multitasking applications commonly share resources. In

general-purpose systems, resource sharing can be accom-
plished by, for example, mutual exclusion primitives, but in
real-time systems, a straightforward application of this
solution does not hold. Defining a runtime scheduler as
totally on line if it has no knowledge about the future arrival
times of the tasks, the following has been proven:

Theorem 5 (M0k5). The problem of deciding
whether it is possible to schedule a set of periodic
processes that use semaphores only to enforce mutual
exclusion is NP-hard.

A transformation of the three-partition
problem to this scheduling problem proves
the theorem.

In Mok‘s opinion, “the reason for the NP-
hardness of the above scheduling problem
lies in the possibility that there are mutu-
ally exclusive scheduling blocks which
have different computation times.” This
point of view is confirmed by ease of min-
imizing the maximum lateness of n inde-
pendent unit-time jobs with arbitrary
release times’:

he rate- T monotonic
scheduling
algorithm has
been chosen for
the Space Station
Freedom Project
and the FAA
Advanced
Automation
System.

Moreover, the problem is still easy if we add precedence
constraints and minimize the maximum completion time
(makespan) :

1 I nopmtn,prec, r,,p, = 1 I La, ~

The solution uses forbidden regions, intervals of time dur-
ing which no task can start if the schedule is to be feasi-
ble. The idea is that because of the nonpreemption,
scheduling a task at a certain point in time could force
some other later task to miss its deadline.

At this point, several choices are possible. One, followed
by Mok, is to enforce the use of mutually exclusive sched-
uling blocks having the same computation time. Another,
followed by Sha et al.’” and Baker,” is to efficiently find a
suboptimal solution with a clever allocation policy, guar-
anteeing at the same time a minimum level of performance.

The idea in Mok‘s solution, called kernelized monitor, is
to assign the processor in time quantums of length q such
that

where /(CS,) is the length of the ith critical section. In other
words, system granularity is increased. Furthermore,
ready times and deadlines can be previously modified I

according to some partial order on tasks. Adjusting the
EDF scheduler with the forbidden-region technique, the
following theorem can be proven:

Theorem 6 (M0k5). If a feasible schedule exists for 1
an instance of the process model with precedence con-
straints and critical sections, then the kernelized mon-
itor scheduler can be used to produce a feasible
schedule.

Sha et a1.l0 introduced the priority ceiling protocol
~ (PCP), an allocation policy for shared resources thatworks

with a rate monotonic scheduler. Chen and Linl* extended
PCP to an EDF scheduler.

The main goal of PCP and similar protocols is to bound
the (usually uncontrolled) priority inversion, a situation

in which lower priorityjobs block a higher
priorityjob for an indefinite period (recall
that a block can occur if a job tries to enter
a critical section already locked by another
job). A priority inversion bound lets us
evaluate the worst-case blocking times a more general

situation that and account for them in the schedulabil-
allows multiunit ity guaranteeing formulas-in other
resources, both words, evaluate the worst-case perfor-
static and mance loss.
dynamic priority PCP seeks to prevent multiple priority
schemes, and inversions by early blocking of tasks that
sharing of could cause them and to minimize a pri-
runtime stacks. ority inversion’s length by allowing a tem-

porary rise in the blocking task’s priority.
This is done by (1) defining a critical sec-
tion’s ceiling as the priority of the highest

priority task that currently locks or could lock the section
and (2) locking a critical section only if the requesting
task’s priority is higher than the ceiling of all currently
locked sections. In case of blocking, the task holding the
lock inherits the requesting task’s priority until it leaves
the critical section.

Sha et a1.Io also showed that PCP has the following prop-
erties:

~

tack resource
policy handles S

Ajob can be blocked at most once before it enters its first

PCP prevents the occurrence of deadlocks.
critical section.

Of course, the first property is used to evaluate the jobs’
worst-case blocking times.

Baker” describes a similar protocol, the stack resource
policy. SRP handles a more general situation that allows
multiunit resources, both static and dynamic priority
schemes, and sharing of runtime stacks. The protocol
relies on two conditions:

To prevent deadlocks, a job should not be permitted to
start until the resources currently available are suffi-
cient to meet its maximum requirements.
To prevent multiple priority inversions, ajob should not
be permitted to start until the resources currently avail-
able are sufficient to meet the maximum requirement
of any single job that might preempt it.

tic schedules developed with off-line heuristics. Both
approaches avoid blocking over shared resources by sched-
uling competing tasks at different points in time.

Overload and value
EDF and LLF are optimal with respect to different met-

rics, but Locke’sI6 experiments show that these algorithms
perform very poorly in overload conditions. That’s because
they give the highest priority to processes that are close to
missing their deadlines.

Atypical phenomenon that may happen with EDF when
the system is overloaded is the “domino effect,” since the
first task that misses its deadline may cause all subsequent
tasks to miss their deadlines. In such a situation, EDF does
not provide any type of guarantee on which tasks will meet
their timing constraints. This is a very undesirable behav-
ior in practical systems, since in real-world applications
intermittent overloads may occur due to exceptional situ-
ations, such as modifications in the environment, arrival
of a burst of tasks, or cascades of system failures. As a real
world example, this situation could cause a flexible man-
ufacturing application to produce no completed products
by their deadlines.

To gain control over tardy tasks in overload conditions,
we usually associate a value with each task that reflects its
importance within the set. Sets of tasks with values can
be scheduled by Smith’s rule.

Theorem 7 (Smith’s rule17). Finding an optimal
schedule for

is given by any sequence that puts jobs in order of non-
decreasing ratios p, = pJ/wJ.

Smith’s rule resembles the common shortest-process-
ing-time-first rule and is equivalent to SPT when all tasks
have equal weights. However, it is not sufficient to solve
the problem of scheduling with general precedence con-
straints. The problems

turn out to be NP c~mple t e ,~ and the same is true even for
the simpler ones

The idea is to block a job early if there is any chance of
either deadlock or priority inversion. This earlier block-
ing saves unnecessary context switches and permits sim-
ple, efficient implementation by means of a stack.

In summary, dealingwith shared resources is of utmost
importance in a real-time system. The classical methods
described are good for handling uniprocessor resources,
but many researchers feel these techniques do not work
well in multiprocessors or distributed systems. These sys-
tems typically use on-line planning algorithm^'^ or sta-

Interesting solutions have been found for particular
precedence relations; in fact, optimal polynomial algo-
rithms have been found for

1 I chain I XC,

1 I series-parallel I CC,

Computer

Unfortunately, in real-time systems the precedence con-
straints imposed on tasks are often more general. A heuris-
tic proposed in the Spring project combined deadline- and
cost-driven algorithms with rules to dynamically revise val-
ues and deadlines in accordance with precedence relations.18

A number of heuristic EDF algorithms have also been
proposed to deal with EDF o ~ e r l o a d s , ~ ~ ~ ~ ~ thus improving
the performance of EDF.

have shown that there’s an upper bound on
the performance of any on-line (preemptive) algorithm
working in overload conditions. They measured an on-line
algorithm’s “goodness” with respect to a clairvoyant sched-
uler (one that knows the future) by means of the competi-
tive factor, which is the ratio r of the cumulative value
achieved by the on-line algorithm to the cumulative value
achieved by the clairvoyant schedule. The value associated
with each task is equal to the task’s execution time if the
task request is successfully scheduled to completion; a value
of zero is given to tasks that do not terminate within their
deadline. Using this metric, they proved the following:

Baruah et

preemptive and have a partial order among
themselves, resource constraints (even a single resource
constraint), and a single deadline show that most of the
problems are NP-complete. To delineate the boundary
between polynomial and NP-hard problems and to pre-

Theorem 8 (Baruah et There does not exist
an on-line scheduling algorithm with a competitive fac-
tor greater than 0.25.

That is, no on-line scheduling algorithm can guarantee
a cumulative value greater than one fourth the value
obtainable by a clairvoyant scheduler. These bounds are
true for any load but can be refined for a given load. For
example, if the load is less than 1, the bound is 1; as the
load just surpasses 1, the bound immediately drops to
0.385. For loads greater than 1 up to 2, the bound gradu-
ally drops from 0.385 to 0.25, and for all loads greater than
2, the bound is 0.25.

However, the above bound is achieved under very
restrictive assumptions: all tasks in the set have zero lax-
ity, the overload has an arbitrary (but finite) duration, task
execution time is arbitrarily small, and taskvalue is equal
to computation time. Since tasks are much less restrictive
in most real-world applications, the one-fourth bound has
only theoretical validity. More work is needed to derive
other bounds based on more knowledge of the task set.

Summary of uniprocessor results
Many basic algorithms and theoretical results have been

developed for uniprocessor scheduling. A number are
based on earliest deadline or rate-monotonic scheduling
and have been extended to handle precedence and
resource sharing. Thus, real-time system designers have
a wealth of information concerning uniprocessor sched-
uling, but they need more results on overload and fault-
tolerant scheduling (although fault tolerance usually
requires multiple processors as well). We also need-to
name a few issues-a more integrated, comprehensive
scheduling approach that addresses periodic and aperi-
odic tasks, preemptive and nonpreemptive tasks in the
same system, tasks with values, and combined CPU and
I/O scheduling. For example, the A-7E aircraft’s opera-
tional flight program, which has 75 periodic and 172 ape-
riodic processes with significant synchronization
requirements, could use rate-monotonic extensions that
integrate periodic and aperiodic tasks.

MULTIPROCESSOR REAL-TIME
SCHEDULING

More and more real-time systems are relying on multi-
processors. Unfortunately, we know less about real-time
scheduling for multiprocessor-based systems than for
uniprocessors. This is partly because complexity results
show that most real-time multiprocessing scheduling is
NP-hard. Also, because of our minimal experience with
such systems, the number of existing heuristics is relatively
low. Despite the negative implications of complexity analy-
sis, designers need to understand certain results:

Understanding the boundary between polynomial and
NP-hard problems can provide insights into developing
useful heuristics that can be used as a design tool or as
an on-line scheduling algorithm.
Understanding the algorithms that achieve some of the
polynomial results can again provide a basis for such
heuristics.
Understanding the fundamental limitations of on-line
algorithms will help designers create robust systems
and avoid misconceptions and serious scheduling
anomalies.

Deterministic (static) scheduling
In this section, we present multiprocessing scheduling

results for deterministic (static) scheduling with and with-
out preemption.

Table 1. Summary of basic multiprocessor scheduling theorems.

Theorem
number Processors Resources Ordering Computation time Complexity

9 2 0 Arbitrary Unit Polynomial

10 2 0 Independent Arbitrary N P-co m p lete

11 2 0 Arbitrary 1 or 2 units N P-co m pl ete

12 2 1 Forest Unit N P-co m plete

13 3 1 Independent Unit NP-complete

14 N 0 Forest Unit Polynomial
15 N 0 Arbitrary Unit NP-complete

Theorem 9 (Coffman and Grahamzz). The mul-
tiprocessor scheduling problem with two processors,
no resources, arbitrary partial order relations, and every
task having a unit computation time is polynomial.

Theorem 10 (Garey and Johnsonz3). The multi-
processor scheduling problem with two processors, no
resources, independent tasks, and arbitrary computa-
tion times is NP-complete.

Theorem 11 (Garey and Johnsonz3). The multi-
processor scheduling problem with two processors, no
resources, arbitrary partial order, and task computa-
tion times of either 1 or 2 units of time is NP-complete.

Theorem 12 (Garey and Johnsonz3). The multi-
processor scheduling problem with two processors, one
resource, a forest partial order, and each computation
time of every task equal to 1 is NP-complete.

Theorem 13 (Garey and Johnsonz3). The multi-
processor scheduling problem with three or more
processors, one resource, all independent tasks, and
each taskcomputation time equal to 1 is NP-complete.

Theorem 14 (HuZ4). The multiprocessor scheduling
problem with n processors, no resources, a forest par-
tial order, and each task having a unit computation
time is polynomial.

Theorem 15 (Ullmanz5). The multiprocessing
scheduling problem with n processors, no resources,
arbitrary partial order, and each task having a unit
computation time is NP-complete.

From these theorems we can see that for nonpreemp-
tive multiprocessing scheduling almost all problems are
NP-complete, implying that heuristics must be used for
such problems. Basically, we see that nonuniform task
computation time and resource requirements cause NP-
completeness immediately. These results imply that
designs using only local resources (such as object-based
systems and functional language-based systems) and unit-
time-slot scheduling have significant advantages as far as
scheduling complexity is concerned. Of course, few if any
real-time systems have unit tasks, and any attempt to carve

a process into unit times creates difficult maintenance
problems and can waste processing cycles when tasks con-
sume less than the allocated unit of time. Also, the above
results assume a single deadline for all tasks. If each task
has a deadline, the problem is exacerbated.

PREEMPTIVE MULTIPROCESSING REAL-TIME SCHED-
ULING. Generally, the scheduling problem is easier if tasks
are preemptable, but in certain situations, there is no
advantage to preemption. The following classical results
pertain to multiprocessing scheduling where tasks are pre-
emptable; that is,

Theorem 16 (McNaughtoP). For any instance of the
multiprocessing scheduling problem with P identical
machines, preemption allowed, and minimizing the
weighted sum of completion times, there exists a sched-
ule with no preemption for which the value of the sum of
computation times is as small as for any schedule with a
finite number of preemptions.

Here we see that, for a given metric, there may be no
advantage to preemption. However, to find such a sched-
ule with or without preemption is NP-hard. Note that if
the metric is the sum of completion times, the shortest-
processing-time-first greedy approach solves the problem
and is not NP. Here again, preemption offers no advan-
tage. This result can have an important implication when
creating a static schedule. We certainly prefer to minimize
preemption for practical reasons at runtime, so knowing
there is no advantage to preemption, a designer would not
create a static schedule with any preemptions.

Theorem 17 (Lawlerl). The multiprocessing prob-
lem of scheduling P processors with task preemption
allowed and with minimization of the number of late
tasks is NP-hard.

This theorem indicates that one of the most common
forms of real-time multiprocessing scheduling-that is,

where U, are the late tasks-requires heuristics.

Computer

Dynamic multiprocessor scheduling
There are so few real-time classical scheduling results

for dynamic multiprocessing scheduling that we treat pre-
emptive and nonpreemptive cases together.

In a uniprocessor, dynamic earliest-deadline schedul-
ing is optimal under certain conditions. Is this algorithm
optimal in a multiprocessor? The answer is no.

Theorem 18 (Mok5). Earliest-deadline scheduling
is not optimal in the multiprocessor case.

To illustrate why this is true, consider the
following example. We have three tasks to
execute on two processors. The task char-
acteristics, given by task number (compu-
tation time, deadline), are Tl(l,l), T2(1,2),
and T3(3,3.5). Scheduling by earliest dead-
line would execute TI on P1 and T,on P2,
and T3 would miss its deadline. However,
if we schedule T3 first, on P1, and then TI
and T, on P2, all tasks make their dead-
lines. An optimal algorithm does exist for
the static version of this problem (all tasks

ier testing than for the preemptive model; also, blocking
can be avoided. The main disadvantage of the nonpre-
emptive model is (usually) less-efficient processor use.
Heuristics also exist for a preemptive m0de1.l~ The advan-
tages of a preemptive model are high use and low latency 1
to newly invoked work. The disadvantages are many con-
text switches, difficulty in understanding the runtime exe-
cution and its testing, and blocking is common. All these
heuristics, whether preemptive or nonpreemptive, are
fairly expensive in terms of absolute on-line computation

time compared to very simple algorithms
such as EDF. Thus, they sometimes
requires additional hardware support in

number of A good heuris-
tics exist for
dynamic
multiprocessor
scheduling, and
we are beginning
to see stochastic
analysis of these
conditions.

exist at the same time) if one considers
both deadlines and computation time,*'
but this algorithm is too complicated to present here.

Now, if dynamic earliest-deadline scheduling for mul-
tiprocessors is not optimal, the next question is whether
any dynamic algorithm is optimal in general. Again, the
answer is no.

Theorem 19 (M0k5). For two or more processors,
no deadline scheduling algorithm can be optimal with-
out complete a priori knowledge of deadlines, compu-
tation times, and task start times.

This implies that any of the classical scheduling theory
algorithms that require start-time knowledge cannot be
optimal if used on line. This also points out that we cannot
hope to develop an optimal, general on-line algorithm. But
optimal algorithms may exist for a given set of conditions.

One important example of this situation is assuming
that all worst-case situations exist simultaneously. If this
scenario is schedulable, then it will also be schedulable at
runtime-even if the arrival times are different-because
later arrivals can't make conditions anyworse. When such
a worst-case approach is not possible for a given system,
usually because sufficient conditions cannot be developed
or because ensuring these conditions is too costly, more
probabilistic approaches are needed.

A number of good heuristics exist for dynamic multi-
processor scheduling, and we are beginning to see sto-
chastic analysis of these conditions. It is especially
valuable to be able to create algorithms that operate with
levels of guarantee. For example, even though the system
operates stochastically and nonoptimally, it might pro-
vide a minimum level of guaranteed performance.

As mentioned, various heuristics exist for real-time mul-
tiprocessor scheduling with resource constraint~. '~
However, in general, these heuristics use a nonpreemp-
tive model. The advantages of a nonpreemptive model are
few context switches, better understandability, and eas-

terms of a scheduling chip.
As mentioned earlier, overload and per-

formance bounds analysis are important
issues. Now assume we have a situation
with sporadic tasks, preemption permit-
ted. Also assume that if the task meets its
deadline, then a value equal to the execu-
tion time is obtained; otherwise, no value
is obtained. The system has two processors
and operates in both normal and overload
conditions.

Theorem 20 (Baruah, et No on-line sched-
uling algorithm can guarantee a cumulative value
greater than one half for the dual processor case.

For uniprocessor bounds results (presented in the sec-
tion on overload and value), the implications of this the-
orem are very pessimistic. As before, some of the
pessimism arises because of assumptions concerning lack
of knowledge of the task set. In reality, we do have signif-
icant knowledge. (We know the arrival of new instances of
periodic tasks, or because of flow control, we may know
that the maximum arrival rate is capped or the minimum
laxity of any task in the system is greater than some value).
If we can exploit this knowledge, the bounds may not be
so pessimistic, but we do need more algorithms that
directly address multiprocessing system performance in
overload conditions.

Multiprocessing anomalies
Designers should be aware of several important anom-

alies, called Richards anomalies, so that they can avoid
them. Assume that a set of tasks are optimally scheduled
on a multiprocessorwith some priority order, a fixed num-
ber of processors, fixed execution times, and precedence
constraints.

Theorem 21 (Graham2*). For the stated problem,
changing the priority list, increasing the number of
processors, reducing execution times, or weakening
the precedence constraints can increase the schedule
length.

This result implies that if tasks have deadlines, then the
accompanying increase in schedule length due to the
anomaly can invalidate a previously valid schedule, and
tasks can now miss deadlines. Initially, it's counter intu-
itive to think that adding resources (for example, an extra

processor) or relaxing constraints (less precedence among
tasks or fewer execution time requirements) can make
things worse. But that’s the insidious nature of timing con-
straints and multiprocessing scheduling. An example can
best illustrate why this theorem is true. Consider an opti-
mal schedule where we now reduce the time required for
the first task T1 on the first processor. This means that the
second task T2 on that processor can begin earlier.
However, doing this may now cause some task on another
processor to block over a shared resource and miss its
deadline. If T2 had not executed earlier, then no blocking
would have occurred, and all tasks would have made their
deadlines because it was originally an optimal schedule.
(See Figure 2.)

Note that for most on-line scheduling algorithms, we
must deal with the problem of tasks completing before
their worst-case times. A simple solution that avoids the
anomaly is to have tasks that complete early simply idle,
but this can be very inefficient. Algorithms such as Shen’sI4
strive to reclaim this idle time, while carefully addressing

1 the anomalies so that they will not occur.

Summary of multiprocessor results
Most multiprocessor scheduling problems are NP, but

for deterministic scheduling this is not a major problem.
We can use a polynomial algorithm and develop an opti-
mal schedule if the specific problem is not NP-complete, or
we can use off-line heuristic search techniques based on
classical theory implications. These off-line techniques
usually need to find only feasible schedules, not optimal
ones. Many heuristics perform well in the average case
and only deteriorate to exponential complexity in the
worst (rare) case. Good design tools would allow users to
provide feedback and redesign the task set to avoid the
rare case. So the static, multiprocessor, scheduling prob-
lem is largelysolved in the sense that we know how to pro-
ceed. However, good tools with implemented heuristics
are still necessary, and many extensions that treat more
sophisticated tasks and system characteristics are still pos-
sible. On-line multiprocessing scheduling must rely on
heuristics and would be substantially helped by special

Tasks are statically
allocated:
Task 1 and Task 2
on processor 1;
Task 3, Task 4 and
Task 5 on processor 2. t

Schedule length

Task 2 and Task 4 share
the same resource in
exclusive mode

t
Schedule length

Figure 2. One example of Richard’s anomalies.

scheduling chips. Any such
heuristics must avoid
Richard’s an0ma1ies.I~
Better results for operation
in overloads, better bounds
that account for typical a
priori knowledge found in
real-time systems, and
algorithms that can guar-
antee various performance
levels are required.
Dynamic multiprocessing
scheduling is in its infancy.

On-line multiprocess-
ing scheduling
must rely on
heuristics and
would be substan-
tially helped by
special scheduling
chips.

AS WE’VE SHOWN, CLASSICAL SCHEDULING THEORY PROVIDES
a basic set of results for real-time system designers. Many
results are known for uniprocessors, but for multiproces-
sors, we need new results that deal more directlywith rel-
evant metrics and realistic task characteristics. Of course,
real-time system designers must still take the basic, avail-
able facts and apply them to their problems, which in

I many cases is a difficult engineering problem.

Acknowledgment ~

This work has been supported, in part, by NSF under
grants IRI 9208920 and CDA 8922572, by ONR under
grant N00014-92-5-1048, and by the IRI of Italy.

References
1. E.L. Lawler, “Recent Results in the Theory of Machine Sched-

uling,” Mathematical Programming: The State ofthe Art, A.
Bachen et al., eds., Springer-Verlag, New York, 1983, pp. 202-
233.

2. J.R. Jackson, “Scheduling a Production Line to Minimize
Maximum Tardiness,” Research Report 43, Management Sci-
ence Research Project, Univ. of Calif., Los Angeles, 1955.

3 . J.K. Lenstra and A.H.G. Rinnooy Kan, “Optimization and
Approximation in Deterministic Sequencing and Scheduling:
A Survey,”Ann. Discrete Math., No. 5,1977, pp. 287-326.

4. M.L. Dertouzos, “Control Robotics: The Procedural Control
of Physical Processes,” Information Processing 74, North-Hol-
land, 1974.

5. A.K. Mok, “Fundamental Design Problems of Distributed Sys-
tems for the Hard Real-Time Environment,” PhD thesis, Dept.
of Electrical Engineering and Computer Science, MIT, Cam-
bridge, Mass., May 1983.

6. C.L. Liu and J.W. Layland, “Scheduling Algorithms for Mul-
tiprogramming in a Hard Real-Time Environment,” JACM,
Vol. 20, No. 1,1973, pp. 46-61.

7. J. Leung and J. Whitehead, “On the Complexity of Fixed Pri-
ority Scheduling of Periodic, Real-Time Tasks,”Performance
Evaluation, Vol. 2, No. 4, 1982, pp. 237-250.

8. N. Audsleyet al., “Hard Real-Time Scheduling: The Deadline
Monotonic Approach,” Proc. IEEE Workshop on Real-Time
Operating Systems, 1992.

9. M.R. Gareyet al., “Scheduling Unit-Time Tasks withkbitrary
Release Times and Deadlines,” SIAM J. Computing, Vol. 10,
No. 2, May 1981.

1 Computer

10. L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization,”IEEE
Trans. Computers,Vol. 39, No. 9, Sept. 1990, pp. 1,175-1,185.

11. T.P. Baker, “Stack-Based Scheduling ofReal-Time Processes,”
J . Real-Time Systems, Vol. 3, No. 1, Mar. 1991, pp. 67-99.

12. M. Chen and K. Lin, “Dynamic Priority Ceilings: A Concur-
rency Control Protocol for Real-Time Systems,” J. Real-Time
Systems, Vol. 2, No. 4, Nov. 1990, pp. 325-340.

13. K. Ramamritham, J. Stankovic, and P. Shiah, “Efficient Sched-
uling Algorithms for Real-Time Multiprocessor Systems,”
IEEE Trans. Parallel and Dist. Computing, Vol. 1, No. 2, Apr.

14. C. Shen, K. Ramamritham, and J. Stankovic, “Resource
Reclaiming in Multiprocessor Real-Time Systems,” IEEE
Trans. Parallel and Dist. Computing, Vol. 4, No. 4, Apr. 1993,

15. W. Zhao, K. Ramamritham, and J. Stankovic, “Preemptive
Scheduling Under Time and Resource Constraints,” special
issue on real-time systems, IEEE Trans. Computers, Vol. 36,
No. 8, Aug. 1987, pp. 949-960.

16. C.D. Locke, “Best-Effort Decision Making for Real-Time
Scheduling,” PhD thesis, Computer Science Dept., Carnegie
Mellon Univ., Pittsburgh, 1986.

17. W. Smith, “Various Optimizers for Single-Stage Production,”
Naval Research Logistics Quarterly, 3,1956, pp. 59-66.

18. S. Cheng, J. Stankovic, and K. Ramamritham, “Dynamic
Scheduling of Groups of Tasks with Precedence Constraints
in Distributed, Hard Real-Time Systems,”Proc. Real-Time Sys-
tems Symp., IEEE CS Press, 1986, 166.174.

19. P. Thambidurai and K.S. Trivedi, “Transient Overloads in
Fault-Tolerant Real-Time Systems,” Proc. Real-Time Systems
Symp., IEEE CS Press, 1989, pp. 126.133.

20. J.R. Haritsa, M. Livny, and M.J. Carey, “Earliest Deadline
Scheduling for Real-Time Database Systems,” Proc. Real-Time
Systems Symp., IEEE CS Press, 1991, pp. 232-242.

21. S. Baruah et al, “On the Competitiveness of On-Line Real-
Time Task Scheduling,” Proc. Real-Time Systems Symp., IEEE
CS Press, 1991, pp. 106-115.

22. E.G. Coffman and R. Graham, “Optimal Scheduling for Two-
Processor Systems,”ACTA Informat., 1,1972, pp. 200-213.

23. R. Garey and D. Johnson, “Complexity Bounds for Multi-
processor Scheduling with Resource Constraints,” S M J .
Computing, Vol. 4, No. 3,1975, pp. 187-200.

24. T.C. Hu, “Parallel Scheduling and Assembly Line Problems,”
Operations Research, 9, Nov. 1961, pp. 841-848.

25. J.D. Ullman, “Polynomial Complete Scheduling Problems,”
Proc. Fourth Symp. Operating System Principles, ACM, New
York, 1973, pp. 96-101.

26. R. McNaughton, “Scheduling With Deadlines and Loss Func-
tions,”ManagementScience,Vol. 6, No. 1, Oct. 1959, pp. 1-12.

27. W. Horn, “Some Simple Scheduling Algorithms,” Naval
Research Logistics Quarterly, Vol. 21, 1974, pp. 177-185.

28. R. Graham, “Bounds on the Performance of Scheduling Algo-
rithms,” Computer andJob Shop Scheduling Theory, E.G. Coff-
man, ed., John Wileyand Sons, 1976, pp. 165-227.

1990, pp. 184.194.

pp. 382-397.

John A. Stankovic, a professor in the Computer Science
Department a t the University of Massachusetts, Amherst,
and a n IEEE fellow, has held visitingpositions a t Carnegie
Mellon University, a t INRIA in France, and a t Scuola Supe-
riore S. A n n a in Pisa, Italy. His current research interests
include investigatingvarious approaches to real-time sched-

uling, developingflexible, distributed, and fau l t tolerant,
real-time operating systems, and developing and perform-
ing experimental studies on real-time active databases. He
received the BS degree in electrical engineering and the MS
and PhD degrees in computer science, allfrom Brown Uni-
versity, Providence, Rhodelsland, in 1970, 1976, and 1979,
respectively.

Marco Spuri is a doctoral student a t the Scuola Superiore
di Studi Universitari e di Perfezionamento S. Anna of Pisa.
His research interests include real-time computing, operat-
ing systems, and distributed systems. He received his Com-
puter Science degreefrom the University of Pisa, Italy, i n
1990. In the same year, he also received the diploma of the
Scuola Normale Superiore of Pisa.

Marco Di NataZe is a PhD student a t the Scuola Superi-
ore di Studi Universitari e Perfezionamento S. Anna ofPisa.
He spent the lastyear working in the Spring project a t the
University of Massachusetts at Amherst, doing research on
real-time scheduling. His main research interests are in real-
time and distributed systems and in programming and
design tools He received his electronic engineering degree
f r o m the University of Pisa, Italy, in 1991

Giorgio C. Buttmzo is a n assistantprofessor of computer
engineering a t the Scuola Superiore S. Anna of Pisa. His
research areas include real-time computing, advanced robot-
ics, sensor-based control, and neural networks. He gradu-
ated in electronic engineering a t the University of Pisa, Italy,
in 1985. He then spent ayear working on robotic artificial
perception a t the GRASP Laboratory of the University of
Pennsylvania’s Computer Science Department, where he
received the M S degree in computer science. In 1988, he
joined the Scuola Superiore S. A n n a to work on real-time
robot control architectures andobtain aPhDdegree in robot-
ics, which he received in 1991.

Readers can contact Stankovic a t the Computer Science
Dept., UniversityofMassachusetts, Amherst, MAO1003; his
e-mail address is stankovic@cs. umass.edu.

k E - 3

A longer version of this article that also discusses
precedence constrained scheduling and similarity
of real-time scheduling to bin packing is available
asTechnicaI Report 95-23 (revised Jan. 1994), from
the Dept. of Computer Science, University of
Massachusetts, Amherst, MA 01003.

http://umass.edu

