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ABSTRACT

In this paper we introduce a robust earliest deadline scheduling algorithm for deal�

ing with hard aperiodic tasks under overloads in a dynamic real�time environment�

The algorithm synergistically combines many features including dynamic guarantees�

graceful degradation in overloads� deadline tolerance� resource reclaiming� and dy�

namic re�guarantees� A necessary and su�cient schedulability test is presented� and

an e�cient O�n� guarantee algorithm is proposed� The new algorithm is evaluated

via simulation and compared to several baseline algorithms� The experimental results

show excellent performance of the new algorithm in normal and overload conditions�

� INTRODUCTION

Static real�time systems are designed for worst case situations� Assuming that
all the assumptions made in the design and analysis are correct� we can say
that the level of guarantee for these systems is absolute� and all tasks will make
their deadlines� Unfortunately� static systems are not always possible because
for many applications the environment and system itself� being imperfect� vio�
late their assumptions fairly often� or because to develop a static design with
absolute guarantees is too costly� When either or both of these conditions exist�
we �nd dynamic real�time systems� In these systems� absolute guarantees are
not attained� A property of a dynamic real�time system should be a minimum
level of guarantee together with best e�ort beyond this minimum� To build a
system with a reasonable cost� we may perform on�line guarantee� where tasks

�
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are accepted based on the current load� In this way� a good processor utilization
can be achieved� as well as a predictable behavior�

Many dynamic real�time systems rely on the earliest deadline �rst 	EDF

scheduling algorithm� This algorithm has been shown to be optimal under
many di�erent conditions� In spite of this� EDF has one major negative aspect�
If overload occurs� tasks may miss deadlines in an unpredictable manner� and
in the worst case� the performance of the system can approach zero e�ective
throughput ����� By using EDF in a planning mode that performs dynamic
guarantees� an e�ective and robust version of EDF scheduling can be devel�
oped� In this paper we develop such an algorithm� called RED 	robust earliest
deadline
�

To increase 
exibility in expressing time constraints and to enhance the per�
formance of the system in overload conditions� our RED algorithm separates
deadline and importance by introducing two additional parameters into the task
model� a task value� which re
ects the importance of the task in the set� and a
deadline tolerance� which is the amount of time by which a speci�c task is per�
mitted to be late� Moreover� to introduce a minimum level of guarantee during
overloads� we consider two classes of tasks� called HARD and CRITICAL�

HARD tasks are those tasks that� once accepted� are guaranteed to com�
plete within their deadline in underload conditions�

CRITICAL tasks are those tasks that� once accepted� are guaranteed to
complete within their deadline in underload conditions and in overload
conditions�

In summary� our main contribution is the development and the evaluation of a
robust real�time scheduling algorithm which is largely a synthesis and extension
of many ideas found in the literature 	see section �
� The result is an algorithm
with the following characteristics�

it operates in normal and overload conditions with excellent dynamic per�
formance and avoids the major negative aspect of EDF scheduling�

it is used in planning mode so as to predict deadline misses� one extension
to previous work is how predictions are made in that we now can depict
the size of the overload� its duration� and its overall impact on the system�
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it includes extended timing semantics based on a deadline tolerance per
task that is suitable to many control applications� such as robotics�

it is easily and cost e�ectively implementable 	O	n
 complexity
�

it separates guarantee� dispatching and rejection policies so that it can be
easily modi�ed for di�erent situations�

it reclaims resources to improve performance� and dynamically attempts
re�guarantees when resources are reclaimed� and

the major properties of the algorithm are formally proven�

A performance study is accomplished via simulation� Our new algorithm is
compared against the standard earliest deadline algorithm and a guarantee
based earliest deadline algorithm ����� We compare the algorithms under widely
varying conditions with respect to load� arrival rates� value distributions� al�
lowed tolerances� and actual versus worst case execution times� The new algo�
rithm signi�cantly outperforms these baselines in all tested situations�

� TERMINOLOGY AND ASSUMPTIONS

Before we describe the guarantee algorithm� we �rst state our de�nitions� no�
tations� and assumptions�

J denotes a set of active aperiodic tasks Ji ordered by increasing deadline� J�
being the task with the shortest absolute deadline�

ai denotes the arrival time of task Ji� i�e�� the time at which the task is activated
and becomes ready to execute�

Ci denotes the maximum computation time of task Ji� i�e�� the worst case
execution time 	wcet
 needed for the processor to execute task Ji without
interruption�

ci denotes the dynamic computation time of task Ji� i�e�� the remaining worst
case execution time needed for the processor� at the current time� to com�
plete task Ji without interruption�

di denotes the absolute deadline of task Ji� i�e�� the time before which the task
should complete its execution� without causing any damage to the system�
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Di denotes the relative deadline of task Ji� i�e�� the time interval between the
arrival time and the absolute deadline�

mi denotes the deadline tolerance of task Ji� i�e�� the maximum time that task
Ji may execute after its deadline� and still produce a valid result�

vi denotes the task value� i�e� the relative importance of task Ji with respect
to the other tasks in the set�

fi denotes the estimated �nishing time of task Ji� i�e�� the time according to
the current schedule at which task Ji should complete its execution and
leave the system�

Li denotes the laxity of task Ji� i�e�� the maximum time task Ji can be delayed
before its execution begins�

Ri denotes the residual time of task Ji� i�e�� the length of time between the
�nishing time of Ji and its absolute deadline�

It is easy to verify the following relationships among the parameters de�ned
above�

di � ai �Di 	���


Li � di � ai � Ci 	���


Ri � di � fi 	���


f� � t� c�� fi � fi�� � ci �i � � 	���


In our more robust model� an aperiodic task Ji is completely characterized by
specifying its worst case execution time Ci� its class� its relative deadline Di�
its deadline tolerance mi� and its value vi� In the following� we assume that
the task class can be derived from the task value� In particular� tasks with
maximum value vi � Vmax will be considered as CRITICAL�

In summary� an aperiodic task set will be denoted as follows�

J � fJi	Ci� Di�mi� vi
� i � � to ng

Within this framework� di�erent policies are used for handling aperiodic tasks
in a robust fashion� In particular� tasks are scheduled based on their deadline�
guaranteed based on Ci� Di�mi� vi� and rejected based on vi�
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Throughout our discussion� we assume that a set of aperiodic tasks is scheduled
on a uniprocessor system by the Earliest Deadline First 	EDF
 scheduling algo�
rithm� according to a preemptive scheduling discipline� so that the processor is
always assigned to the task whose deadline is the earliest� Moreover� we assume
that arrival times are not known a priori� Groups of tasks with precedence con�
straints can also be handled by EDF by modifying their deadlines and release
times so that both deadlines and precedence relations are meet ��� ����

� SCHEDULABILITY ANALYSIS

We formulate the dynamic� on�line� guarantee test in terms of residual time�
which is a convenient parameter to deal with both normal and overload con�
ditions� We �rst present the main results without the notion of deadline tol�
erance� and then we will extend the algorithm by including tolerance levels
and task rejection policy� The basic properties stated by the following lem�
mas and theorems are used to derive an e�cient O	n
 algorithm for analyzing
the schedulability of the aperiodic task set whenever a new task arrives in the
system� Due to space limitation� all proofs are omitted� See ��� for complete
proofs�

Lemma � Given a set J � fJ�� J�� ���� Jng of active aperiodic tasks ordered

by increasing deadline� the residual time Ri of each task Ji at time t can be

computed by the following recursive formula�

R� � d� � t� c� 	���


Ri � Ri�� � 	di � di��
� ci� 	���


Lemma � A task Ji is guaranteed to complete within its deadline if and only

if Ri � ��

Theorem � A set J � fJi� i � � to ng of n active aperiodic tasks ordered by

increasing deadline is feasibly schedulable if and only if Ri � � for all Ji � J �

Notice that if we have a feasibly schedulable set J of n active aperiodic tasks�
and a new task Ja arrives at time t� to guarantee the new ordered task set
J � � J � fJag we only need to compute the residual time of task Ja and the
residual times of tasks Ji such that di � da� This is because the execution of Ja
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does not in
uence those tasks having deadline less than or equal to da� which
are scheduled before Ja�

Now we introduce a new framework for handling real�time aperiodic tasks under
overload conditions� and we propose a robust version of the Earliest Deadline
algorithm� Before we describe such a robust algorithm� we de�ne few more
basic concepts�

��� Load Calculation

In a real�time environment with aperiodic tasks� a commonly accepted de�ni�
tion of workload refers to the standard queueing theory� according to which
a load �� also called tra�c intensity� represents the expected number of task
arrivals per mean service time ����� This de�nition� however� does not say
anything about task deadlines� hence it is not as useful in a hard real�time
environment�

A more formal de�nition has been proposed in ���� in which is said that a spo�
radic real�time environment has a loading factor b if and only if it is guaranteed
that there will be no interval of time �tx� ty
 such that the sum of the execution
times of all tasks making requests and having deadlines within this interval is
greater than b	ty�tx
� Although such a de�nition is more precise than the �rst
one� it is still of little practical use� since no on�line methods for calculating the
load are provided� nor proposed�

We propose an e�cient procedure to compute the processor workload� which
allows to create a complete load pro�le� and predict the magnitude and the
time 	intervals
 at which overloads might occur� Before we explain our method
of computing system load� we introduce the following notation�

�i	ta
 indicates the processor load in the interval �ta� di
� where ta is the arrival
time of the latest arrived task in the aperiodic set�

�max indicates the maximum processor load among all intervals �ta� di
� i � �
to n� where ta is the arrival time of the latest arrived task in the aperiodic
set�

In practice� the load is computed only when a new task arrives� and it is of
signi�cant importance only within those time intervals �ta� di
 from the latest
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arrival time ta� which is the current time� and a deadline di� Thus the load
computation can be simpli�ed as�

�i	ta
 �

P
dk�di

ck

di � ta
�

Theorem � The load �i	ta
 in the interval �ta� di
 can be directly related to

the residual time Ri of task Ji� according to the following relation�

�i � ��
Ri

di � ta
� 	���


It is important to point out that� within the interval �ta� dn� between the latest
arrival time ta and the latest deadline of task Jn� the processor work load is not
constant� but it varies in each interval �ta� di
� To express this fact� we de�ne
the following load function�

�	ta� t
 �

��
�

�� for ta � t � d�
�i for t � �di��� di

� for t � dn

De�nition � Let �max be the maximum of the load function �	ta� t
 in the

interval �ta� dn�� We say that the system is underloaded if �max � �� and
overloaded if �max � ��

De�nition � We de�ne Exceeding Time Ei of a task Ji as the time that task

Ji will execute after its deadline� that is� Ei � maxi	���Ri
� We then de�ne

Maximum Exceeding Time Emax as the maximum among all Ei in the tasks

set� that is� Emax � maxi	Ei
�

Notice that� in underloaded conditions 	�max � �
� Emax � �� whereas in
overload conditions 	�max � �
� Emax � ��

Observation � Once we have computed the load factor �i for task Ji� the next

load factor �i�� can be computed as follows�

�i�� �
�i	di � ta
 � ci��

di�� � ta
�
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��� Localization of exceeding time

By computing the load function� we can have a global picture of the system
load� and we can see in advance the e�ects of an overload in the system� For
instance� we can see whether the overload will cause a �domino e�ect�� in
which all tasks will miss their deadlines� or whether it is transient and it will
extinguish after a while� In other words� we are able to locate the time or times
at which the system will experience the overload� identify the exact tasks that
will miss their deadlines� and we can easily compute the amount of computation
time required above the capacity of the system � the exceeding time�

This global view of the system allows us to plan an action to recover from
the overload condition� Our approach is general enough that many recovering
strategies can be used to solve this problem� The recovery strategy we propose
in this paper is described in Section ��

��� Deadline Tolerance

In many real applications� such as robotics� the deadline timing semantics is
more 
exible than scheduling theory generally permits� For example� most
scheduling algorithms and accompanying theory treat the deadline as an abso�
lute quantity� However� it is often acceptable for a task to continue to execute
and produce an output even if it is late � but not too late� Another real ap�
plication issue is that once some task has to miss a deadline� it should be the
least valuable task� In order to more closely model this real world situation� we
permit each task to be characterized by two additional parameters� a deadline
tolerancemi� and a value vi� The deadline tolerance is then the amount of time
by which a speci�c task is permitted to be late� and the task value denotes the
relative importance of the task in the set�

Notice that� when using a dynamic guarantee paradigm� a deadline tolerance
provides a sort of compensation for the pessimistic evaluation of using the
worst case execution time� For example� without tolerance� we could �nd that
a task set is not feasibly schedulable� and hence decide to reject a task� But�
in reality� the system could have been scheduled because� with the tolerance
and full assessment of the load� we might determine that overload is simply
for this task and it is within its tolerance level� Another positive e�ect of the
tolerance is that various tasks could actually �nish before their worst case times
so the resource reclaiming part of our algorithm could then compensate and
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the guaranteed task with tolerance could actually �nish on time� Basically� our
approach minimizes the pessimism found in a basic guarantee algorithm�

We recall that� to o�er a minimum level of guarantee in overload conditions�
we split real�time tasks into two classes�

HARD tasks are those tasks that� once accepted� are guaranteed to com�
plete within their deadline in underload conditions�

CRITICAL tasks are those tasks that� once accepted� are guaranteed to
complete within their deadline in underload and in overload conditions�

� THE RED SCHEDULING STRATEGY

When dealing with the deadline tolerance factor mi� each Exceeding Time has
to be computed with respect to the tolerance factor mi� so we have� Ei �
max	���	Ri �mi

�

The execution time of CRITICAL tasks in overload conditions is then guar�
anteed by using a rejection strategy that removes non critical tasks based on
their values� Several rejection strategies can be used for this purpose� As dis�
cussed in the next section on performance evaluation� two rejection strategies
have been implemented and compared� The �rst policy rejects a single task
	the least value one
� while the second strategy tries to reject more tasks� but
only if the newly arrived task is a CRITICAL task�

To be general� we will describe the RED algorithm by assuming that� in overload
conditions� some rejection policy will search for a subset J� of least value 	non
critical
 tasks to reject in order to make the current set schedulable� If J� is
returned empty� then the overload cannot be recovered� and the newly arrived
task cannot be accepted� Clearly� CRITICAL tasks previously guaranteed
cannot be rejected� The RED algorithm is outlined in �gure ��

Note that if Jw is the task causing the maximum exceeding time over
ow� the
rejectable tasks that can remove the overload condition are only those tasks
whose deadline is earlier than or equal to dw� This means that the algorithm
has to search only for tasks Ji� with i � w�
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Algorithm RED guarantee	J� Ja


begin

t � current time	
�

E � �� �� Maximum Exceeding Time ��

R� � ��

d� � t�

J � � J � fJag� �� Insert Ja in the ordered task list ��

k � position of Ja in the task set J ��

for each task J �i such that i � k do f

Ri � Ri�� � 	di � di��
� ci�

if �Ri �mi � �E� then

E � �	Ri �mi
�

g

if �E � �� then return ��Guaranteed���

else f

J� � set of least value tasks selected

by the rejection policy�

if �J� is not empty� then f

reject all task in J��

return ��Guaranteed���

g

else return ��Not Guaranteed���

g

end

Figure � RED Guarantee Algorithm�
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��� Resource Reclaiming

One of the advantages of dynamic scheduling is that� whenever a task com�
pletes before its estimated worst case �nishing time� the processor time saved
is automatically� used for the execution of the other tasks� Such a dynamic
allocation of processor time to the task set lowers the loading factor of the
system� In order to take advantage of this fact in the guarantee algorithm� the
loading function has to be computed not only at each task activation� but also
at each task completion�

If a task cannot be guaranteed by the RED algorithm at its arrival time� there
are chances that it could be guaranteed at later time� by using the execution
time saved by other tasks� Scheduling tasks at an �opportune� time� rather
than at arrival time has been proposed in ���� as a technique called Well�

Timed Scheduling� However� this technique has been mainly used to reduce the
scheduling overhead in highly loaded systems� rather than focusing on increas�
ing the probability of a successful guarantee by utilizing reclaimed time� Also
it did not treat holding a rejected task for possible re�guarantee at a later time�

In a more general framework� a task Jr rejected in an overload condition can still
be guaranteed if the sum of the execution time saved by all tasks completing
within the laxity of Jr is greater than or equal to the Maximum Exceeding
Time found when Jr was rejected�

To take advantage of reclaimed time� we propose a more general framework for
scheduling aperiodic hard tasks� as illustrated in �gure ��

Within this framework� if a task cannot be guaranteed by the system at its
arrival time� it is not removed forever� but it is temporarly rejected in a queue
of non guaranteed tasks� called Reject Queue� ordered by decreasing values�
to give priority to the most important tasks� As soon as the running task
completes its execution � units of time before its worst case �nishing time�
the highest value task in the Reject Queue having positive laxity and caus�
ing a Maximum Exceeded T ime � � will be reinserted in the Ready Queue
and scheduled by earliest deadline� All rejected tasks with negative laxity are
removed from the system� and inserted in another queue� called Miss Queue�
containing all late tasks� whereas all tasks that complete within their timing
constraints are inserted in a queue of regularly terminated jobs� called Term

Queue� The purpose of the Miss and Term Queues is to record the history

�If resources can be locked or multiprocessing is being used then resource reclaiming is
not automatic� See ���� for a full discussion and solutions�
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strategy

task set

Term queue

Reject queue

Miss queue

Guarantee

recovery

rejected when
laxity < 0

regular
termination

Routine

RUNReady queue

Figure � RED Scheduling Block Diagram�

of the system� which aids in debugging and understanding the operation of
system�

� PERFORMANCE EVALUATION

Simulations� were conducted to evaluate the performance of the RED algo�
rithm with respect to several other baseline algorithms including EDF which
is commonly used in dynamic hard real�time environments�

In all the experiments� the following scheduling algorithms have been compared�

EDF � Earliest Deadline First algorithm� without any form of guarantee�
As soon as a new task arrives in the system� it is inserted in the ready
queue by its deadline and scheduled according to the EDF policy�

GED � Guaranteed Earliest Deadline algorithm� When a new task arrives�
a guarantee routine veri�es whether the new task set is schedulable� if yes�
the newly arrived task is inserted in the ready queue and scheduled by its
deadline� if no� the newly arrived task is de�nitively rejected�

RED � Robust Earliest Deadline algorithm with single task rejection�
When a new task arrives� a guarantee routine veri�es whether the new
task set is feasibly schedulable� if yes� the newly arrived task is accepted�

�Due to space limitations� only the main results are shown here� See ��� for a full set of
performance results�
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if no� the system will reject the least value task� if any� such that the
remaining set is schedulable� else the newly arriving task is rejected� Ev�
erytime a task completes its execution� a recovery routine tries to reaccept
the greatest value task� among those rejected tasks whose laxity is positive�

MED � Robust Earliest Deadline algorithm with multiple task rejection�
The same as the RED algorithm� with the following di�erence� if the
new task set is found unschedulable and the newly arrived task is critical�
then the system may reject more than one lower value tasks to make the
remaining task set schedulable�

The main performance metrics we used are�

Loss Value Ratio �LVR� � ratio of the sum of the values of late HARD tasks
to the total set value� Note that the value of CRITICAL tasks is not
considered in this parameter� since CRITICAL tasks belong to another
class�

Loss Critical Ratio �LCR� � ratio of the number of critical tasks that missed
their deadline to the total number of critical tasks� This is used to show
how the system operates in a region beyond which the dynamic guarantee
had accounted for�

In all the graphs� average values are obtained over �� runs� Standard deviations
for these averages were computed and they were never greater than ��� The
value of non critical tasks is de�ned as a random variable uniformly distributed
in the interval ��� N �� The value of critical tasks is de�ned as CRIT VALUE�
which is a value greater than N � The number of critical tasks in the set is
controlled by a parameter called critical factor� which is the ratio of the number
of critical tasks to the total number of tasks in the set� Since tasks can be
rejected� the overload condition is maintained by generating an increasing load�
computed as � � �� � ���t� where �� is the initial load� and � is a parameter
called load rate� which controls the load growth at each task activation�

��� Experiment �	 Critical Factor

In the �rst experiment� we tested the capability of the algorithms of handling
critical tasks in overload conditions� Figure �a and �b plot the Loss Value Ratio
	LVR
 and the Loss Critical Ratio 	LCR
 obtained for the four algorithms as a
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Figure � LVR vs critical factor 	a
� LCR vs critical factor 	b
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function of the critical factor� In this experiment� the initial workload was ����
with a growth factor � � ���� For each task� the deadline tolerance was set to
zero� and the computation time was set equal to its worst case estimation�

As shown in Figure �� both LVR and LCR for EDF go over ��� as soon as
the critical factor become greater than ���� This is clearly due to the domino
e�ect caused by the heavy load� Although the guarantee routine used in the
GED algorithm avoids such a domino e�ect typical of the EDF policy� it does
not work as well as RED nor MED� since critical tasks are rejected as normal
hard tasks� if they cause an overload� For example� in Figure �b� when the
percentage of critical tasks is ��� 	critical factor � ���
 we see a gain of about
��� for RED and MED over GED�

Another important implication from �gure �b is that RED and MED are able to
provide almost no loss for critical tasks in overload conditions� until the number
of critical tasks in the set is above ��� of the total number of tasks� the LCR
is practically zero for both algorithms� Above this percentage� however� some
loss is experienced and� by around ��� of the load being critical tasks� we start
to see the multiple task rejection policy used in MED begin to be slightly more
e�ective than RED�

To understand the behavior of RED and MED depicted in �gure �a� remember
that the LVR is computed from the value of HARD tasks only� since CRITICAL
tasks belong to a di�erent class� Therefore� as the critical factor increases� RED
and MED have to reject more HARD tasks to keep the LCR value low� whereas
GED does not make any dinstiction between HARD and CRITICAL tasks�

An important result shown in this experiment is that� when the number of
critical tasks is not high� it is not worthwhile to use complicated rejection
strategies� In this cases� the simple 	O	n

 strategy used in RED� in which the
least value task is rejected� performs as well as more sophisticated and time
consuming policies�

Notice that in all experiments presented in this paper� no assumption has been
made on the minimum interarrival time of critical tasks� Therefore� even when
the percentage of critical tasks is low� there is always a 	low
 probability that a
critical task can be rejected with the MED algorithm� if it arrives just after an�
other critical task and the deadlines of both are close� Note that this condition
is an overload�
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��� Experiment �	 Load Rate

In this experiment� we tested the performance of RED as a function of the
load� Since the rejecting policy always maintains the load below the limit of
one� we tested the system by increasing the load rate �� In this experiment�
the number of critical tasks was �� percent of the total number of tasks� the
initial workload was ���� and the load rate � was varied from � to ����� with
a step of ����� For each task� the deadline tolerance was set to zero� and the
computation time was set equal to its worst case estimation�

Figure �a plots the loss value ratio 	LVR
 obtained with the four algorithms as
a function of the load rate �� and �gure �b plots the loss critical ratio 	LCR
�
When � � � the system workload is maintained on the average around its
initial value � � ���� therefore the loss value is negligible for all algorithms� By
increasing �� the load increases as new tasks arrive in the system�

As shown in �gure �� the EDF algorithm without guarantee was not capable
of handling overloads� so that the loss in value increased rapidly towards its
maximum 	equal to the total set value
� At this level� only the �rst tasks were
able to �nish in time� while all other tasks missed their deadlines� Again� RED
and MED did not show any signi�cant di�erence between themselves during
this test� but a very signi�cant improvement was achieved over EDF and GED�
For example� using a load rate � � ���� which causes a heavy load� the LVR is
���� with EDF� ���� with GED� and only ���� for both RED and MED� Notice
that the loss value obtained running RED and MED is entirely due to hard
tasks� since from �gure �b we see that the number of critical tasks missing
their deadlines is practically zero for RED and MED�

��� Other experiments

Other experiments have been conducted to show the e�ectiveness of the recov�
ery strategy used in the RED 	and MED
 algorithm� When a task completes
its execution before its estimated �nishing time� the recovery strategy tries to
reaccept rejected tasks 	based on their values
 until they have positive laxity�

Although EDF does not use any recovery strategy� EDF performs better than
GED for high values of dw� This is due to the fact that for high computation
time errors� the actual workload of the system is much less than the one esti�
mated at the arrival time� so EDF is able to execute more tasks� On the other
hand� GED cannot take advantage of saved time� since it rejects tasks at arrival
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Figure � LVR vs load rate 	a
� LCR vs load rate 	b
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time based on the estimated load� RED and MED also reject tasks based on
the current estimated workload� but the recovery strategy makes use of saved
execution time for reaccepting rejected tasks� Since tasks are reaccepted based
on their value� RED and MED perform as well as EDF for large computation
time errors�

Another experiment tested the e�ect of having a deadline tolerance� Remember
that a task with deadline di and tolerance mi is not treated as a task with
deadline 	di �mi
� deadline is used for scheduling� and tolerance is used for
guarantee� This means that the algorithm always tries to schedule all tasks to
meet their deadlines� only in overload conditions there is a chance that some
task may exceed its deadline� In order to compare the four algorithms in a
consistent fashion� the concept of tolerance has been used also for EDF and
GED�

LCR values obtained with EDF were more than an order of magnitude bigger
than those obtained with the other algorithms� For tolerance values greater
than ��� we observed that RED and MED caused no late critical tasks� We
also noted that GED performs better than the other three algorithms in terms
of LVR� This is due to the fact that RED and MED reject more hard tasks
than GED� to keep the LCR as low as possible�

The performance results clearly show the poor performance of EDF scheduling
in overload� This fact has been often stated� but rarely shown with performance
data� The results also show the clear advantage of on�line planning 	dynamic
guarantee
 algorithms under such conditions� More importantly� the results
also show that the new RED algorithm is signi�cantly better than even the
basic guarantee approach because it uses the entire load pro�le� deadline toler�
ance� and resource reclaiming� The better performance occurs across di�erent
loads� deadline distributions� arrival rates� tolerance levels� and errors on the
estimates of worst case execution time� RED also is signi�cantly better than
EDF and better than GED in handling unexpected overloads of critical tasks�
an important property for safety critical systems� This implies that RED keeps
the system safe� longer� when unanticipated overloads occur� We also see that
the very simple rejection policy for RED su�ces in almost all conditions� and
that MED only improves RED in a small part of the parameter space�
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 RELATED WORK

Earliest deadline �rst 	EDF
 scheduling has received much attention� It has
been formally analyzed proving that it is an optimal algorithm for preemptive�
independent tasks when there is no overload ���� It is also known that EDF can
perform poorly in overload conditions�

In ����� Ramamritham and Stankovic ���� used EDF to dynamically guaran�
tee incoming work via on�line planning and if a newly arriving task could not
be guaranteed the task was either dropped or distributed scheduling was at�
tempted� All tasks had the same value� The dynamic guarantee performed
in this paper had the e�ect of avoiding the catastrophic e�ects of overload on
EDF�

In ����� Locke ���� developed an algorithm which makes a best e�ort at schedul�
ing tasks based on earliest deadline with a rejection policy based on removing
tasks with the minimum value density� He also suggests that removed tasks
remain in the system until their deadline has passed� The algorithm computes
the variance of the total slack time in order to �nd the probability that the
available slack time is less than zero� The calculated probability is used to
detect a system overload� If it is less than the user prespeci�ed threshold� the
algorithm removes the tasks in increasing value density order� Consequently�
detection of overload is performed in a statistical manner rather than based on
an exact pro�le as in our work� This gives us the ability to perform speci�c
analysis on the load rather than a probabilistic analysis� While many features
of our algorithm are similar to Locke�s algorithm� we extend his work� in a
signi�cant manner� by the careful and exact analysis of overload� support n
classes� provide a minimum level of guarantee even in overload� allow deadline
tolerance� more formally address resource reclaiming� and provide performance
data for the impact of re�guarantees� We also formally prove all our main
results�

In Biyabani et� al� ��� the previous work of Ramamritham and Stankovic was
extended to tasks with di�erent values� and various policies were studied to
decide which tasks should be dropped when a newly arriving task could not be
guaranteed� This work used values of tasks such as in Locke�s work� but used
an exact characterization of the �rst overload point rather than a probabilistic
estimate that overload might occur� However� Biyabani�s work did not fully
analyze the overload characteristics� build a pro�le� allow deadline tolerance�
nor integrate with resource reclaiming and re�guarantee� as we do in this paper�
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Haritsa� Livny and Carey ��� present the use of a feedback controlled EDF al�
gorithm for use in real�time database systems� The purpose of their work is to
get good average performance for transactions even in overload� Since they are
working in a database environment their assumptions are quite di�erent than
ours� e�g�� they assume no knowledge of transaction characteristics� they con�
sider �rm deadlines not hard deadlines� there is no guarantee� and no detailed
analysis of overload� On the other hand� for their environment� they produce
a very nice result� a robust EDF algorithm� The robust EDF algorithm we
present is very di�erent because of the di�erent application areas studied� and
because we also include additional features not found in ����

In real�time Mach ���� tasks were ordered by EDF and overload was predicted
using a statistical guess� If overload was predicted� tasks with least value
were dropped� Je�ay� Stanat and Martel ��� studied EDF scheduling for non�
preemptive tasks� rather than the preemptive model used here� but did not
address overload�

Other general work on overload in real�time systems has also been done� For
example� Sha ���� shows that the rate monotonic algorithm has poor proper�
ties in overload� Thambidurai and Trivedi ���� study transient overloads in
fault tolerant real�time systems� building and analyzing a stochastic model for
such a system� However� they provide no details on the scheduling algorithm
itself� Schwan and Zhou ���� do on�line guarantees based on keeping a slot
list and searching for free time intervals between slots� Once schedulability
is determined in this fashion� tasks are actually dispatched using EDF� If a
new task cannot be guaranteed� it is discarded� Zlokapa� Stankovic and Ra�
mamritham ���� propose an approach called well�time scheduling which focuses
on reducing the guarantee overhead in heavily loaded systems by delaying the
guarantee� Various properties of the approach are developed via queueing theo�
retic arguments� and the results are a multi�level queue 	based on an analytical
derivation
� similar to that found in ��� 	based on simulation
�

Finally� Gehani and Ramamritham ��� propose programming language features
to allow speci�cation of deadline and a deadline slop factor 	similar to our
deadline tolerance
� but propose no algorithms for supporting this feature�
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� CONCLUSIONS

We have developed a robust earliest deadline scheduling algorithm for hard
real�time environments with preemptive tasks� multiple classes of tasks� and
tasks with deadline tolerances� We have formally proven several properties of
the approach� developed an e�cient on�line mechanism to detect overloads�
and provided a complete load pro�le which can be usefully exploited in various
ways� A performance study shows the excellent performance of the algorithm
in both normal and overload conditions� Precedence constraints can be handled
by a priori converting precedence constraints to deadlines� A future extension
we are working on is to include resource sharing among tasks�
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