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Abstract

When hard periodic and �rm aperiodic tasks are

jointly scheduled in the same system� the processor

workload can vary according to the arrival times of

aperiodic requests� In order to guarantee the schedu�

lability of the periodic task set� in overload conditions

some aperiodic tasks must be rejected�

In this paper we propose a technique that� in over�

load conditions� adds robustness to the joint schedul�

ing of periodic and aperiodic tasks in systems with dy�

namic priorities� Our technique is based on an ape�

riodic server� called Total Bandwidth server� already

proven e�ective in a previous work� Here the algo�

rithm is �rst extended to e�ciently handle �rm aperi�

odic tasks and then integrated with a robust guarantee

mechanism that allows to achieve graceful degradation

in case of transient overloads� Extensive simulations

show that the proposed new algorithm is e�ective in all

workload conditions�

� Introduction

Real�time systems must be able to handle not only
periodic tasks� but also aperiodic tasks� that is� tasks
with irregular arrival times� Periodic tasks are gener�
ally used to implement activities such as sensory ac�
quisition or control loops� which need to be executed
at constant rates to insure system stability� Hence�
periodic tasks often have hard deadlines that must be
met under all anticipated circumstances�

On the other hand� aperiodic tasks are usually em�
ployed to implement less demanding and less critical
activities� For this reason they can have soft deadlines
�a deadline is soft if when missed does not compromise
the security of the system�� �rm deadlines �a deadline
is �rm if the execution of the task is useful for the
system only if completed within the deadline� or no
deadlines at all�

When aperiodic tasks do not have deadlines� the
goal of the system is to minimize the average response
time of their instances� A common approach that does
not jeopardize the schedulability of the hard tasks is
to introduce in the system a special purpose process
called server� whose computation time� or better ca�
pacity� is used to server the aperiodic requests� The
server is usually scheduled by a speci�c algorithm de�
signed in such a way that timing faults do not occur
within the critical task set and at the same time the
cpu is allocated to the server as soon as possible� in
order to improve the aperiodic response time�

A number of algorithms that solve this problem in
�xed priority systems can be found in the literature
�	� 
� ��� ��� Less attention has been dedicated to
the same problem in the context of dynamic priority
systems� Only recently a few works have appeared
��� �	��

Much less attention� in our opinion� has been de�
voted to systems with �rm aperiodic tasks� In this
case the problem is more di�cult� since tasks that are
going to be late must be rejected in advance� in or�
der not to waste time in useless computations� try to
guarantee as much work as we can� and not jeopardize
the schedule of critical tasks�

A similar framework has been faced within the
Spring system ����� even though here the main fea�
ture was to maximize the number of completed tasks
and not the overall value of the system� In our model
we associate an importance value to each aperiodic
task� the value is gained only if the task is completed
in time� In this framework� the goal of the scheduling
algorithm is to maximize the value of the system�

The solution to this problem is not trivial� since
when there are aperiodic tasks whose arrival times are
not known a priori� the load of the system can vary
greatly from time to time� In particular� there can
be transient overloads� in which not all tasks can be
completed in time� In these conditions the algorithm
has to make some choices in order to establish who is
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going to miss� who is going to complete� Depending
on these choices the overall value of the system can
consequently vary�

In this paper we introduce a mechanism which
provides a good solution of the problem under ear�
liest deadline scheduling� The mechanism is based on
an improved version of the Total Bandwidth server
��	� ���� that we have extended with a robust strat�
egy which improves the performance during transient
overloads�

With respect to the original formulation� the new
TB server includes two novel features� the reclaim�
ing of unused computation time and the possibil�
ity of adopting any preemptive scheduling policy for
the aperiodic task set �the older version was non�
preemptive�� The improvement due to the new fea�
tures is illustrated in the discussion of our simulations�

The strategy adopted to add robustness had been
already proven e�ective in a previous work ��� It
adopts a planning EDF�based strategy� together with
rejection and recovery policies� Also in this new frame�
work� the strategy introduced graceful degradation
and e�ectiveness under any load condition�

� Assumptions and Terminology

In the de�nition of our algorithms we will consider
the following assumptions�

� all periodic tasks �i � i � �� ���� n have hard dead�
lines�

� each periodic task �i has a constant period Ti and
a constant worst case execution time Ci� which is
considered to be known� as it can be derived by
a static analysis of the source code�

� the arrival time of each aperiodic task is unknown�

� the worst case execution time of each aperiodic
task is considered to be known at its arrival time�

� all aperiodic tasks have �rm deadlines and can be
rejected �for the new de�nition of the improved
TB server we will temporarily assume aperiodic
tasks without deadlines��

For the sake of clarity� all properties of the proposed
algorithms will be proven under the above assump�
tions� However� they can easily be extended to handle
less restrictive assumptions such as deadlines di�erent
from periods and inclusion of sporadic tasks�

The notation used throughout the paper is the fol�
lowing�

J denotes a set of active aperiodic tasks Ji ordered
by increasing deadline� J� being the task with the
shortest absolute deadline�

ri denotes the arrival time of task Ji� i�e�� the time at
which the task is activated and becomes ready to
execute�

Ci denotes the maximum computation time of task Ji�
i�e�� the worst case execution time �wcet� needed
for the processor to execute task Ji without in�
terruption�

�Ci denotes the actual computation time of task Ji�

di denotes the absolute deadline of task Ji� i�e�� the
time before which the task should complete its
execution in order to be useful for the system�

mi denotes the deadline tolerance of task Ji� i�e�� the
maximum time that task Ji may execute after its
deadline� and still produce a valid result�

vi denotes the task value� i�e� the relative importance
of task Ji with respect to the other tasks in the
set�

fi denotes the �nishing time of task Ji� i�e�� the time
at which task Ji completes its execution and
leaves the system�

Ei denotes the exceeding time� i�e�� the possible late�
ness of task Ji in case of overload�

In our model� an aperiodic task Ji is thus completely
characterized by specifying its worst case execution
time Ci� its deadline di� its deadline tolerance mi� and
its value vi� Within this framework tasks are sched�
uled based on the deadline assigned by a server� guar�
anteed based on Ci� di�mi� and rejected based on vi�

Throughout our discussion� we will assume that the
set of periodic tasks is scheduled on a uniprocessor sys�
tem by the Earliest Deadline First �EDF� scheduling
algorithm� Similarly� the aperiodic tasks are scheduled
within a TB server� described in the following section�
also with earliest deadline policy� Groups of tasks with
precedence constraints can also be handled by EDF
by modifying their deadlines and release times so that
both deadlines and precedence relations are met ��� ���

� The Total Bandwidth Algorithm

In ��	� Spuri and Buttazzo proposed several algo�
rithms to joint schedule soft aperiodic tasks and hard
periodic tasks in earliest deadline scheduled systems�



Among these algorithms� the Total Bandwidth server
showed the best performance�cost ratio� In this sec�
tion� the algorithm is brie�y recalled and later ex�
tended with new features that further improve its be�
haviour� The new formulation� also useful in a frame�
work with �rm aperiodic tasks� will then be integrated
in Section � with a mechanism that adds robustness
to the algorithm with respect to transient overloads in
the system�

��� The Original Formulation

The name of the Total Bandwidth server comes
from the fact that� each time an aperiodic request
enters the system� the total bandwidth �in terms of
cpu execution time� of the server� whenever possible�
is immediately assigned to it� This is done by sim�
ply assigning a suitable deadline to the request and to
schedule it according to the EDF algorithm together
with the periodic tasks in the system� The assignment
of the deadline must be done in such a way that on
one hand it is the shortest possible to improve the ape�
riodic responsiveness� but on the other hand it must
not jeopardize the schedule of periodic tasks�

The de�nition of the TB server is the following�
When the k�th aperiodic request arrives at time t �
rk� it receives a deadline

dk � max�rk� dk��� �
Ck

US

�

where Ck is the maximum execution time of the re�
quest and US is the server utilization factor �i�e�� its
bandwidth�� By de�nition d� � �� The request is
then inserted into the ready queue of the system and
scheduled by EDF� as any periodic instance�

Note that we can keep track of the bandwidth al�
ready assigned to other requests by simply taking the
maximum between rk and dk��� Intuitively� the as�
signment of the deadlines is such that in each interval
of time the ratio allocated by EDF to the aperiodic
requests never exceeds the server utilization US � that
is� the processor utilization of the aperiodic tasks is at
most US� This is formally proven in ����� where the
de�nition and the formal analysis of this algorithm� as
well as several others� can be found� Hence� to state
the schedulability of a task set� it is su�cient to add
the utilization of the server to that of the other critical
tasks� and verify that UP � US � ��

In Figure �� an example of schedule produced with
a TB server is shown� The �rst aperiodic request�
arrived at time t � �� is serviced �i�e�� scheduled�
with deadline d� � r� �

C�

US
� � � �

����
� 
� Since
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Figure �� Total Bandwidth Server example�

there are more urgent periodic instances in the sys�
tem� the aperiodic activity is executed at time t � 	�
Similarly� the second request receives the deadline
d� � max�r�� 
� �

C�

US
� �� Also in this case the

request is not serviced immediately� Instead� it is ser�
viced only at time t � ��� Note that the delay occurs
in spite of the early completion of the �rst aperiodic re�
quest� whose actual computation time is � �indicated
in parentheses in �gure� instead of �� Later we will
see how the response time is improved with the new
formulation of the TB server�

In spite of its simplicity� the TB server shows one of
the best performance results among the several servers
described in ����� In this paper we have investigated
e�cient algorithms to solve the problem of the joint
scheduling of both hard periodic and soft aperiodic
tasks� One of the algorithms� EDL� was shown to be
optimal� In normal conditions the TB server showed
a performance comparable to that of EDL� and was
the best among the practical algorithms� Considering
it has a very simple implementation and low run�time
overhead� it is an ideal candidate for actual systems�
For example� we have chosen TB as the algorithm for
aperiodic scheduling in the HARTIK kernel ����

��� Adding Resource Reclaiming

In the original formulation� the behaviour of the
TB server strictly depends on the estimated maximum
execution time of each aperiodic task� since the dead�
lines are assigned based on this value� This may be a
drawback if the value is overestimated and it is much
greater than the mean execution time� If this happens�
the deadlines assigned by the server to aperiodic re�
quests are farther than necessary� and this may delay
their execution�

Of course� the algorithm cannot be clairvoyant� in
the sense that it cannot predict the actual execution
time of any aperiodic task� However� whenever a task
completes earlier� the actual execution time can be



used to keep track of the actual processor bandwidth
taken so far by the aperiodic load� Hence� the main
idea behind the proposed reclaiming technique is to
correct the assigned deadline as follows� Whenever a
request completes earlier� its actual execution time is
used to compute the deadline that could have been
assigned to it if its execution time had been known in
advance� This value is then used to compute the dead�
line for the next request� In the following� �di denotes
the �corrected� deadline of the i�th task�

More formally� let �d� � � and f� � � by de�nition�
The server keeps a queue of aperiodic instances ready
to execute �we do not make any assumption on the
particular policy used to sort the aperiodic queue�� At
any time� only the �rst task� referred to as active� has
a deadline assigned by the server and is then sched�
uled by the system� In particular� the i�th task to be
executed receives a deadline d�i equal to�

d�i � �ri �
Ci

US

�

where Ci is the maximum execution time of the task
and US is the server utilization factor� �ri is the �cor�
rected� release time of the task and is computed as�

�ri � max�ri� �di��� fi����

where ri is the actual release time of the task� that
is� its arrival time� �di�� and fi�� are the corrected
deadline and the completion time of the previous task�
respectively� At the task completion� the corrected
deadline �di is computed as�

�di � �ri �
�Ci

US

�

where �Ci is the actual execution time of the task� Be�
ing �Ci � Ci� we have �di � d�i� that is� we try to reclaim
the unused computation time by assigning a shorter
deadline to the next request�

In Figure � the same example of Figure � is handled
with the new formulation of the TB server� As shown�
nothing changes for the �rst aperiodic task� However�
due to its early completion� the computation of the
deadline assigned to the second one takes advantage
of this� The new value of this deadline is ��� instead
of �� the value computed with the older formulation�
In this case the task can be executed immediately and
the response time is then considerably improved�

To prove the schedulability of the TB server with
this new formulation we �rst show that the actual
aperiodic processor utilization cannot exceed US � and
then that the overall utilization can be up to �����
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Figure �� Example with the new formulation of the
Total Bandwidth Server�

Lemma � In each interval of time �t�� t��� if �Cape is

the total execution time actually demanded by aperi�

odic requests arrived at t� or later and served with

deadlines less than or equal to t�� then

�Cape � �t� � t��US �

Proof� By de�nition

�Cape �
X

t��rk�d
�

k
�t�

�Ck�

Since the index k indicates the order of execution�
there must be two indexes k� and k� such that

X
t��rk�d

�

k
�t�

�Ck �

k�X
k�k�

�Ck �

It follows that

�Cape �

k�X
k�k�

�Ck �

k�X
k�k�

� �dk��rk�US � US

k�X
k�k�

� �dk��rk��

which� since �dk�� � �rk � becomes

�Cape � US� �dk� � �rk� ��

Finally� being �dk� � d�k� � t� and �rk� � rk� � t�� we
have

�Cape � US�t� � t���

�

We can now prove the claimed result�

Theorem � Given a set of n periodic tasks with pro�

cessor utilization UP and a TB server with processor

utilization US� the whole set is feasibly scheduled if and
only if

UP � US � ��



Proof� �If�� Suppose there is an over�ow at time t�
The over�ow must be preceded by a period of contin�
uous utilization of the processor� Furthermore� from
a certain point t� on� only instances of tasks �periodic
or aperiodic� ready at t� or later and having deadlines
less than or equal to t are run� Let �C be the total exe�
cution time demanded by these instances� Since there
is an over�ow at time t� we must have

t� t� � �C�

We also know that

�C �

nX
i��

�
t� t�

Ti

�
Ci � �Cape

�

nX
i��

t� t�

Ti
Ci � �t� t��US

� �t� t���UP � US��

It follows that
UP � US � ��

a contradiction�
�Only If�� If an aperiodic request enters the sys�

tem periodically� say each TS � � units of time� and
has execution time CS � �CS � TSUS � the server be�
haves exactly as a periodic task with period TS and
execution time CS � Being the processor utilization
U � UP � US � by Theorem � of ���� we can conclude
that UP � US � �� �

��� A Preemptive Implementation

In the description of the TB server we have implic�
itly assumed that the aperiodic requests are serviced
non�preemptively� So far� we have only left unspec�
i�ed the policy for sorting the queue of the pending
requests� with the implicit hypothesis that the request
currently serviced cannot be preempted� However� a
preemptive implementation can be easily built as fol�
lows� When a new request is issued� it is inserted
into the server ready queue� If it must preempt the
current active request� we brake this one into two re�
quests� One is the part which has already run and the
other one is the part to be still executed� For the �rst
one we behave like for a normal aperiodic completion�
that is� we compute its corrected deadline� which will
then be used to assign a deadline to the new active
request� The second one� whose maximum execution
time is C � �C� is kept in the server ready queue and
treated like a new request�

In the rest of this paper� we will always refer to this
new formulation with resource reclaiming and preemp�
tion features�

� Robust Aperiodic Scheduling

In this section we �rst extend the TB server tech�
nique to deal with �rm aperiodic requests and then
we introduce a robust guarantee mechanism capable
of achieving graceful degradation�

The extension of the TB server to �rm aperiodic
tasks is straightforward� As illustrated in Section ���
the TB server assigns to each aperiodic request a dead�
line d� with which the request is then scheduled� The
earliest deadline scheduling mechanism guarantees the
completion of the task within this deadline� This fact
can be used in the following way� assuming d is the
actual deadline of the task� if d� � d the task is guar�
anteed� otherwise it is rejected� The approach will be
better described in a later section�

Although useful� this form of extension to handle
�rm aperiodic tasks is not yet enough� In fact� the
arrival rate of aperiodic tasks may vary during system
life� Consequently� the load of the system can change
signi�cantly and the system can experience a number
of transient overloads�

If the scheduling algorithm is not able to deal with
these situations� we may have undesired results� such
as the so called domino e�ect� in which a missed dead�
line causes a series of subsequent deadlines to be also
missed�

There are two alternatives to solve the problem�
One is to assign an unnecessary large bandwidth to the
server� in order to limit the occurrences of overloads�
In this way we normally waste a lot of processor time�
when the actual load does not reach large values� The
second alternative is to introduce overload awareness
in our scheduling algorithm� This is the approach we
have followed and we will describe in what follows�

An e�ective strategy explicitly developed to han�
dle overload conditions is the RED algorithm ��� The
main idea of RED is to use the Earliest Deadline First
algorithm in a planning mode� so as to predict dead�
line misses and depict the size of the overload� its du�
ration and its overall impact on the system� By using
this information� the algorithm is able to achieve op�
timal performance in normal conditions and graceful
degradation in overload conditions� A better descrip�
tion of the RED strategy will be given in the following
section�

Unfortunately� the RED algorithm cannot be easily
used for the joint scheduling of hard periodic and �rm
aperiodic tasks� However� we can use the RED strat�
egy within a TB server� In this way we can achieve the
goal of optimal joint scheduling in normal conditions
and robustness during transient overloads�



��� The RED Algorithm

Although the EDF algorithm has been shown to
be optimal under many di�erent conditions ��� ��� if
overload occurs� tasks may miss deadlines in an un�
predictable manner� and in the worst case� the per�
formance of the system can approach zero e�ective
throughput �����

To increase �exibility in expressing time constraints
and to enhance the performance of the system in over�
load conditions� Buttazzo and Stankovic �� proposed
to separate deadline and importance by introducing
two additional parameters into the task model� a task
value� which re�ects the importance of the task in the
set� and a deadline tolerance� which is the amount of
time by which a speci�c task is permitted to be late�

The algorithm they proposed� called RED� tries to
increase the cumulative value in overload conditions
by using a rejection strategy that removes tasks based
on their values� The rejection policy searches for a
subset J� of least value tasks to reject in order to make
the current set schedulable� If J� is returned empty�
then the overload cannot be recovered� and the newly
arrived task is not accepted�

The concept of deadline tolerance comes from the
fact that in many real applications� such as robotics�
the deadline timing semantics is more �exible than
scheduling theory generally permits� For example�
most scheduling algorithms and accompanying theory
treat the deadline as an absolute quantity� However�
it is often acceptable for a task to continue to execute
and produce an output even if it is late  but not too
late�

The general framework in which RED operates is
illustrated in Figure � Notice that� if a task cannot be
guaranteed by the RED algorithm at its arrival time� it
is not removed forever� but it is temporarily rejected in
a queue of non guaranteed tasks� called Reject Queue�
ordered by decreasing values� to give priority to the
most important tasks� As soon as the running task
completes its execution before its worst case �nishing
time� a recovery strategy tries to reaccept the highest
value task in the Reject Queue having positive laxity�

All rejected tasks with negative laxity are removed
from the system� and inserted in another queue� called
Miss Queue� containing all late tasks� whereas all tasks
that complete within their timing constraints are in�
serted in a queue of regularly terminated jobs� called
Term Queue�

strategy

task set

Term queue

Reject queue

Miss queue

Guarantee

recovery

rejected when
laxity < 0

regular
termination

Routine

RUNReady queue

Figure � RED Scheduling Block Diagram�

��� Implementation of the RTB Server

The RED algorithm represents a useful choice to
add robustness to our deadline scheduled system�
However� if we need a more general framework in
which both hard periodic tasks and soft aperiodic
tasks are managed� RED is no longer applicable� On
the other hand� a TB server is designed to handle a
similar situation� with the major drawback of treat�
ing only soft tasks without deadlines� The two tech�
niques can be usefully combined to achieve robustness
in the aperiodic load scheduling� still guaranteeing at
any time the feasibility of the critical load schedule�

The basic idea is very simple� By de�nition� the TB
server assigns a deadline to each aperiodic task and
schedules the task on the basis of this deadline� thus
guaranteeing its completion by that time� Hence� we
can simply compare this value with the actual deadline
of the task� if it is less than or equal to it the task is
guaranteed� otherwise it isn!t� Of course we can also
easily introduce a tolerance by adding it to the actual
deadline�

In particular� at each new arrival of a task Ja the
algorithm RTB� illustrated in Figure �� is executed�

The algorithm starts by initializing t at the current
time value and E� the maximum exceeding time� to
�� The new task Ja is then inserted into the queue of
the server� If it becomes the new head of the queue a
preemption occurs� thus� as remarked in Section ��
the event is treated like a termination for the previous
task which has executed for a time �C �if the task has
not actually completed it is still kept in the queue
with its maximum remaining computation time�� This
value� as well as �r� is used to compute the corrected
deadline �d� Note that the values of �r and �d are also
updated by the routines that dispatch and terminate
the aperiodic tasks�

The maximum between t and �d is then used to ini�
tialize the computation of the deadlines assigned by
the server to the ready aperiodic tasks� During the
computation� the maximum exceeding time is also de�
termined� If this value is zero the task is accepted



Algorithm RTB�J� Ja�

begin

t � current time���
E � �� �� Maximum Exceeding Time ��
J � � J � fJag� �� Insert Ja in the

ordered task list ��
k � position of Ja in the task set J ��
if �k � 	� and �jJ �j � 	� then


d � 
r �
�C

US
�

d�
�
� max�t� 
d��

for i � k to jJ �j do f

d�
i
� d�

i��
� Ci

US
�

if �di � d�
i
�mi � �E� then

E � ��di � d�
i
�mi��

g

if �E � �� then return ��Guaranteed���
else f

J� � set of least value tasks
selected by the rejection policy�
if �J� is not empty� then f

reject all task in J��
return ��Guaranteed���

g
else return ��Not Guaranteed���

g
end

Figure �� The RTB Algorithm

as guaranteed� otherwise a policy is used to possibly
select one or more tasks to be rejected� If the set re�
turned by the rejection policy is not empty the new
task is guaranteed� otherwise it is rejected� Note that
in case of rejection the task is not yet refused by the
system� but kept in a reject queue until either it is re�
covered or its laxity becomes negative� There is in fact
the possibility that by reclaiming the unused compu�
tation time of some other task we may recover it at a
later time�

��� Rejection Strategy

If a new task cannot be guaranteed� the RTB al�
gorithm tries to �nd lower valued tasks to be rejected
in order to guarantee the new one� For the sake of
generality� in the description of the algorithm we have
left unspeci�ed the rejection policy� Let us describe a
possible choice�

Suppose we want to select the i�th task in the server
queue for rejection� The deadlines of all following
tasks are then advanced�

d�i � d�i�� �
Ci

US

� d�i�� � d�i �
Ci��

US

� � � �

become

d��i�� � d�i�� �
Ci��

US

� d��i�� � d��i�� �
Ci��

US

� � � �

with

d�i�� � d��i�� � d�i � d�i�� �
Ci

US
�

d�i�� � d��i�� � d�i � d�i�� �
Ci

US
�

� � �

That is� all the deadlines from d�i�� on can be ad�

vanced by Ci

US
� Hence� a simple rejection policy is to

�nd the least valued task Ji� preceding the �rst ex�
ceeding time� such that Ci

US
� Emax� where Emax is

the maximum exceeding time� The task Ji is then se�
lected for rejection only if its value is less than the
value of the new task Ja�

��� Recovery Strategy

When a task completes before its maximum execu�
tion time� its spare time can be reclaimed to execute
sooner the pending requests� This gives us a chance to
recover rejected tasks which still have a positive laxity�

The details of our recovery strategy are the follow�
ing� At the completion of a task at time t� the exit
routine computes the corrected deadline �d � �r �

�C
US

�
The deadlines of all tasks in the server queue can
thus be advanced by d � max�t� �d�� since d�h� the
deadline assigned to the head of the queue� becomes
max�t� �d� � Ch

US
�it was max�t� �d� � Ch

US
�� d�h�� becomes

d�h �
Ch

US
� and so on�

This means that we can recover a task from the
reject queue if the sum of the computation time saved
by all tasks completing within its laxity� is greater
than or equal to the maximum exceeding time caused
by the rejected task� Our attention� of course� is on
tasks with larger values�

� Experimental Results

In this section we will brie�y discuss the results of
the simulations we have carried out in order to eval�
uate the performance of the algorithms described in
the paper� Our �rst concern has been to measure the
improvement introduced in the performance of the TB
server by the new formulation� that is� by the reclaim�
ing of unused computation time�

A second set of experiments has been concerned
with the main issue of this paper� that is� the evalua�
tion of the RTB algorithm!s robustness with respect to



overload conditions in the system� In this case the al�
gorithm has been compared with a plain version of the
TB server implementing an EDF policy for the aperi�
odic tasks� and a version with a �rst level of guarantee�

In what follows� we will often distinguish between
nominal and actual loads� With the former term we
indicate loads computed by using worst case execu�
tion times� Vice versa� with the latter one we indicate
the same quantity computed by using actual execution
times� Furthermore� unless stated otherwise loads are
expressed as absolute values� That is� values less than
� represent feasible conditions� while values greater
than � represent overloaded conditions�

The di�erent loads were generated by simulating
a poisson aperiodic arrival� with random maximum
execution times chosen uniformly in a suitable range�
Similarly� the values assigned to the aperiodic tasks
were chosen randomly with a uniform distribution�

��� Old vs New TB Formulation

Two versions of the TB server� obtained with the
old and the new formulation� respectively� have been
compared trying to understand the impact on the per�
formance of the resource reclaiming technique� To
achieve this goal we have set up a simulation of a
system with �� periodic tasks� for a global periodic
load UP � ���� The aperiodic load was obtained by
generating the arrival of ����� aperiodic tasks� whose
nominal load was equal to ���	� The average ratio of
the maximum execution time actually utilized by the
aperiodic tasks was varied between ��	 and ���� thus
giving an actual aperiodic load varying from ����	 to
���	� The bandwidth US assigned to the servers was
equal to ���

In Figure 	 the resulting mean aperiodic response
times are reported for the two versions of the algo�
rithm� referred to as TB�
� and TB�
	� respectively�
The reported values are normalized with respect to
the maximum computation times� The graph clearly
shows that the new version of TB takes advantage of
the reclaiming technique under any condition� Only
when the actual computation times are near their
maximum values the performance is comparable� as
expected� In all other cases the new version shows a
signi�cant improvement�

��� Robust TB Evaluation

In this second set of experiments we have evalu�
ated the performance of the robust algorithm� RTB�
described previously� In all experiments we have com�
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Figure 	� Old vs New version of the TB server�

pared the algorithm with a �plain� version of TB and
a version with a �raw� guarantee�

The former� simply referred to as TB in the follow�
ing� is obtained by using the de�nition of TB with�
out any guarantee on the completion of the aperiodic
tasks� When a task arrives� it is inserted into the
server queue� sorted by increasing deadline� and sched�
uled� when it is the most urgent task� according to the
deadline assigned by the server�

The latter version� instead� is obtained as follows�
Each time a new task arrives the server computes the
deadline it will assign to it and to all other less urgent
tasks arrived earlier� Similarly to the RTB algorithm�
during the computation of the deadline also the maxi�
mum exceeding time is determined� At the end of the
computation� if the maximum exceeding time is � the
new task is guaranteed� otherwise it is rejected�

In the �rst experiment the three algorithms have
been compared in three situations of increasing peri�
odic load� In the second experiment we have varied
the unused computation time ratio of the aperiodic
tasks� thus measuring the impact of the reclaiming
technique�

����� Experiment �� Hit Value Ratio vs In�

creasing Periodic Load

In this experiment we have compared the three men�
tioned algorithms in three situations with periodic
loads UP equal to ���� ��	 and ���� respectively� The
bandwidth US of the servers has been always set to
the remaining processor capacity� The nominal load
of the aperiodic tasks has been varied from ��	 to ���
with an actual load varying from ���	 to ��	 �obtained



with actual execution times in average equal to half of
the corresponding maximum values�� The results of
the simulations are reported in Figure �� In the ver�
tical axes of the graphs is represented the Hit Value
Ratio� that is� the ratio of the value achieved by the
system to the global value of the task set�

As shown by the three graphs� the behaviour of
the algorithms is similar in all conditions� with TB
showing the best performance until we have actual
overload� and RTB being the best otherwise� Note
that even in underload conditions the performance of
RTB is comparable to that of TB�

In underload conditions we have a di�erence be�
tween the plain and the guaranteed versions� Further�
more� with large periodic loads the improvement of
the robust version in overload conditions is smaller�
compared to that shown with the other settings� The
reason for this behaviour is the intrinsic pessimism in
the guarantee routine� When the server bandwidth is
small� the deadline assigned to aperiodic tasks may be
signi�cantly large� This value is then used as an upper
bound of the completion time of the task� hence the
algorithm may be quite pessimistic and unnecessarily
reject some tasks that can actually complete in time�
In the same situation the RTB algorithm is helped by
the reclaiming strategy� while the performance of the
GTB algorithm is compromised�

On the other hand� when the bandwidth of the
server is large �the periodic load is low� the robust al�
gorithms are less pessimistic and the improvement is
larger� In particular� RTB shows the robustness and
graceful degradation features we claimed previously�

����� Experiment �� Hit Value Ratio vs Un�

used Computation Time

In this last experiment our intention was to identify
the impact of the reclaiming technique used in the
RTB algorithm� In order to do this� we have set up an
experimental framework with a periodic load UP �
��	� given by ten tasks� The bandwidth assigned to
the servers was equal to ��	� The nominal load of the
aperiodic task set was equal to ��� However� during
the experiment we have varied the ratio of the average
used computation time from ��� to ��
� thus giving an
actual aperiodic load between �� and ����

The result of this experiment is illustrated in Fig�
ure �� As previously� in the vertical axis we have rep�
resented the Hit Value Ratio�

In the graph we can see that for large values of the
used computation time ratio� i�e�� for large loads� the
RTB o�ers the best performance� This con�rms the
e�ectiveness of the reclaiming strategy�
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Figure �� Performance with increasing periodic load�
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Figure �� Impact of the reclaiming strategy�

For smaller values� however� the results of the plain
version of TB are slightly better than those of the ro�
bust version� Also in this case the di�erence is due
to the pessimism of the guarantee routine� not com�
pletely compensated by the reclaiming strategy� The
con�rmation of this analysis comes from the perfor�
mance of the GTB version� worse than that of TB in
this condition�

� Discussion and Conclusions

In this paper we have investigated the problem of
the joint hard periodic and �rm aperiodic schedul�
ing under dynamic priority systems� In particular� we
have focused our attention on the problem of achiev�
ing graceful degradation and acceptable performance
during transient system overloads�

The solution we have proposed is based on the in�
tegration of an e�cient aperiodic server� called Total
Bandwidth server� and a technique including a rejec�
tion and a reclaiming strategies� for the addition of
robustness� The resulting algorithm� called Robust
TB� have been tested with a number of experimental
simulations�

The experiments have shown the e�ectiveness of the
RTB algorithm� Most of it is due to the reclaiming
strategy� while the acceptance test and relative rejec�
tion strategy are sometimes a bit too pessimistic� es�
pecially when the bandwidth assigned to the server
is small� We believe this is the weakest part of the
algorithm and it needs more attention if we want to
improve the algorithm�
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