
Scheduling Aperiodic Tasks in Dynamic Priority

Systems

Marco Spuri and Giorgio Buttazzo

Scuola Superiore S�Anna�

via Carducci ��� ����� Pisa� Italy

Email	 spuri
fastnet�it� giorgio
sssup�it

Abstract

In this paper we present �ve new on�line algorithms for servicing
soft aperiodic requests in real�time systems� where a set of hard periodic
tasks is scheduled using the Earliest Deadline First �EDF� algorithm� All
the proposed solutions can achieve full processor utilization and enhance
aperiodic responsiveness� still guaranteeing the execution of the periodic
tasks� Operation of the algorithms� performance� schedulability analysis�
and implementation complexity are discussed and compared with classi�
cal alternative solutions� such as background and polling service� Exten�
sive simulations show that algorithms with contained run�time overhead
present nearly optimal responsiveness�

A valuable contribution of this work is to provide the real�time system
designer with a wide range of practical solutions which allow to balance
e�ciency against implementation complexity�

� Introduction

Many complex control applications include tasks which have to be completed
within strict time constraints� called deadlines� If meeting a given deadline is
critical for the system operation� and may cause catastrophic consequences� that
deadline is considered to be hard� If meeting time constraints is desirable� but
missing a deadline does not cause any serious damage� then that deadline is
considered to be soft� In addition to their criticalness� tasks that require regular
activations are called periodic� whereas tasks which have irregular arrival times
are called aperiodic�

For example� in a robot control application� activities such as sensory ac�
quisition� data processing� path planning� and low level control loops require
periodic tasks that have to be executed at constant rates to insure robot stabil�
ity� For this reason� periodic tasks often have hard deadlines� Aperiodic tasks
are typically used to serve random processing requirements� such as operator

�

giorgio
Casella di testo
Real-Time Systems, Vol. 10, No. 2, pp. 179-210, March 1996.

requests or displaying activities� hence they usually have soft deadlines� or no
deadlines at all� Aperiodic tasks with hard deadlines are called sporadic tasks�

Given a set of real�time tasks� a schedule is said to be feasible if all hard
tasks complete within their deadlines� A critical task with a hard deadline is said
to be guaranteed at its activation time if the system is able to �nd a feasible
schedule for the newly arrived task and all previously guaranteed tasks� An
operating system capable of guaranteeing and executing tasks with hard time
constraints is called Hard Real�Time �HRT� system� In a critical application�
the goal of an HRT system is not only to meet the deadlines of all hard tasks�
but also to minimize the average response time for soft activities�

The problem of scheduling a mixed set of hard periodic tasks and soft aperi�
odic tasks in a dynamic environment has been widely considered when periodic
tasks are executed under the Rate Monotonic �RM� scheduling algorithm 	��
�
Lehoczky et al� 	��
 investigated server mechanisms �Deferrable Server and Pri�
ority Exchange� to enhance aperiodic responsiveness� The basic idea was to use
a special periodic task to e�ciently serve possible aperiodic requests of execu�
tion� Sprunt et al� 	�
 described a better service mechanism� called Sporadic
Server �SS�� Then� Lehoczky and Ramos�Thuel 	�
 found an optimal service
method� called Slack Stealer� which is based on the idea of �stealing� all the
possible processing time from the periodic tasks� without causing their dead�
lines to be missed� Although it is not practical� because of its high overhead�
the algorithm provides a lower bound on aperiodic response times� as well as the
basis for nearly optimal implementable algorithms� In 	��
� the same authors
extended the algorithm to deal also with hard aperiodic tasks� as well as a more
complex task model based on serially executed subtasks� In 	�
� Davis et al�
present a similar algorithm� in which the slack is computed at run�time� thus
making the algorithm applicable to a more general class of scheduling problems�

All these methods assume that periodic tasks are scheduled by the RM
algorithm� Although RM is an optimal algorithm� it is static and in the general
case cannot achieve full processor utilization� In the worst case� the maximum
processor utilization that can be achieved is about ��� 	��
� whereas in the
average case� for a random task set� Lehoczky et al� 	�
 showed that it can be
about ����

For certain applications requiring high processor workload� a ��� or an ���
utilization bound can represent a serious limitation� Processor utilization can be
increased by using dynamic scheduling algorithms� such as the Earliest Deadline
First �EDF� 	��
 or the Least Slack algorithm 	��
� Both algorithms have been
shown to be optimal and achieve full processor utilization� although EDF can
run with smaller overhead�

Scheduling aperiodic tasks under the EDF algorithm has been investigated
by Chetto and Chetto 	
 and Chetto et al� 	�
� These authors propose ac�
ceptance tests for guaranteeing single sporadic tasks� or group of precedence
related aperiodic tasks� Although optimal from the processor utilization point
of view� these acceptance tests present a quite large overhead to be practical in

�

real�world applications�
Three server mechanisms under EDF have been recently proposed by Ghaz�

alie and Baker in 	�
� The authors describe a dynamic version of the known
Deferrable and Sporadic Servers 	�
� called Deadline Deferrable Server and
Deadline Sporadic Server� respectively� Then� the latter is extended to obtain
a simpler algorithm called Deadline Exchange Server�

The aim of our work is to provide more e�cient algorithms for the joint
scheduling of random soft aperiodic requests and hard periodic tasks under
the EDF policy� Our proposal includes �ve algorithms having di�erent im�
plementation overheads and di�erent performances� We �rst present two al�
gorithms� namely the Dynamic Priority Exchange and the Dynamic Sporadic
Server� which are extensions of previous work under Rate Monotonic �RM��
Although much better than background and polling service� they do not o�er
the same improvement as the others� A completely new �bandwidth preserving
algorithm�� called Total Bandwidth Server� is also introduced� The algorithm
signi�cantly enhances the performance of the previous servers and can be easily
implemented with very little overhead� thus showing the best performance�cost
ratio� Finally� we present an optimal algorithm� the EDL Server� and a close
approximation of it� the Improved Priority Exchange� which has much less run�
time overhead� They are both based on o��line computations of the slack time
of the periodic tasks� The proposed algorithms provide a useful framework to
assist an HRT system designer in selecting the most appropriate method for his
or her needs� by balancing e�ciency with implementation overhead�

The rest of the paper is organized as follows� In section � we state our
assumptions� Section � describes the Dynamic Priority Exchange �DPE� algo�
rithm� which is an extension of the Priority Exchange algorithm proposed by
Lehozcky et al� 	��
� In section � an extension of the Sporadic Server 	�
 work�
ing under EDF is presented� A new simple and e�cient algorithm� called Total
Bandwidth Server� is introduced in section �� In section �� we describe an opti�
mal algorithm and its main properties are shown� In section �� a nearly optimal
algorithm is derived from DPE� using the insights gained in section �� Simula�
tion results are discussed in section �� Finally� considerations and conclusions
are included in section ��

� Assumptions and Terminology

In the de�nition of our algorithms we will consider the following assumptions�

� all periodic tasks �i � i � �� ���� n have hard deadlines�

� all aperiodic tasks Ji � i � �� ����m do not have deadlines�

� each periodic task �i has a constant period Ti and a constant worst case
execution time Ci� which is considered to be known� as it can be derived
by a static analysis of the source code�

�

� all periodic tasks are simultaneously activated at time t � �� i�e�� the �rst
instance of each periodic task has a request time ri��� � ��

� the request time of the kth periodic instance is given by ri�k� � ri�k �
�� � Ti�

� the deadline of the kth periodic instance is given by di�k� � ri�k� � Ti�

� the arrival time of each aperiodic task is unknown�

� the worst case execution time of each aperiodic task is considered to be
known at its arrival time�

For the sake of clarity� all properties of the proposed algorithms will be proven
under the above assumptions� However� they can easily be extended to handle
periodic tasks whose deadlines di�er from the end of the periods and that have
non null phasing� In this case� the guarantee tests would only provide su�cient
conditions for the feasibility of the schedule�

Shared resources can also be included using the same approach found in 	�
�
assuming an access protocol like the Stack Resource Policy 	�
 or the Dynamic
Priority Ceiling 	�
� The schedulability analysis would be consequently modi�ed
to take into account the blocking factors due to the mutually exclusive access
to resources�

As a future work� we plan to treat also sporadic tasks and aperiodic tasks
with �rm deadlines� that is� tasks that can be rejected if not guaranteed to meet
their deadlines 	�
�

� The Dynamic Priority Exchange Algorithm

In this section we introduce the Dynamic Priority Exchange server� DPE from
now on� The main idea of the algorithm is to let the server trade its run�time
with the run�time of lower priority periodic tasks �under EDF this means a
longer deadline� in case there are no aperiodic requests pending� In this way�
the server run�time is only exchanged with periodic tasks� but never wasted
�unless there are idle times�� It is simply preserved� even if at a lower priority�
and it can be later reclaimed when aperiodic requests enter the system�

��� De�nition of the DPE Server

In 	��
 Lehoczky et al� introduce the Priority Exchange �PE� algorithm� a server
for aperiodic requests under the RM algorithm� The DPE server is an extension
of the PE server adapted to work with the EDF algorithm�

The algorithm is de�ned in the following way�

� the DPE server has a speci�ed period TS and a capacity CS �

80 2 19

16

1 24232221

8

18

0 24

3

τ 2

203 164 5 6 1714 151312111097

126

1

0 18 24

3 7

DPE

τ

3

Figure �� Dynamic Priority Exchange server example�

� at the beginning of each period� the server�s aperiodic capacity is set to
Cd
S � where d is the deadline of the current server period�

� each deadline d associated to the instances �completed or not� of the i�th
periodic task has an aperiodic capacity� Cd

Si
� initially set to ��

� the aperiodic capacities �those greater than �� receive priorities accord�
ing to their deadlines and the EDF algorithm� like all the periodic task
instances �ties are broken in favour of capacities� i�e�� aperiodics��

� whenever the highest priority entity in the system is an aperiodic capacity
of C units of time �the server or one of the others� the following happens�

� if there are aperiodic requests in the system� these are served until
they complete or the capacity is exhausted �each request consumes a
capacity equal to its execution time��

� if there are no aperiodic requests pending� the periodic task having
the shortest deadline is executed� a capacity equal to the length of
the execution is added to the aperiodic capacity of the task deadline
and is subtracted from C �i�e�� the deadlines of the highest priority
capacity and the periodic task are exchanged��

� if neither aperiodic requests nor periodic task instances are pending�
there is an idle time and the capacity C is consumed until� at most�
it is exhausted�

An example of schedule produced by the DPE algorithm is illustrated in Fig�
ure ��

Two periodic tasks� �� and ��� with periods � and �� and worst case execution
times � and � respectively� and a DPE server� with period � and capacity �� are
present in the system� At time t � �� the aperiodic capacities C�

S �with deadline

�

��� C�
S�
�with deadline �� and C��

S�
�with deadline ��� are set to �� � and �� Since

no aperiodic requests are pending the two �rst periodic instances of �� and ��
are allowed to execute� Consequently� the � units of capacity C�

S are consumed
in the �rst three units of time� In the same interval two units of time are
accumulated in C�

S�
�during the execution of ��� and one unit in C��

S�
�at the

beginning of the ���s �rst execution�� At time t � �� C
�
S�
is the highest priority

entity in the system� Again �� is allowed to keep executing� The two units of
C�
S�
are consumed and accumulated in C��

S�
� In the following three units of time

the processor is idle and C��
S�
is consequently consumed� Note that C��

S � set at
value � at time t � �� is preserved until time t � �� when it becomes the highest
priority entity in the system �ties among aperiodic capacities are assumed to be
broken in a FIFO order��

At time t � �� an aperiodic request of � units of time enters the system�
Since C��

S is equal to �� the �rst two units of time are served with deadline ���
The subsequent two units are served with the capacity C��

S�
� i�e�� with deadline

�� Finally� the last three units are also served with deadline �� because at
time t � �� the server capacity C��

S is set to ��

��� Dynamic Priority Exchange Schedulability

Let us now analyze the schedulability condition of a set of periodic tasks which
are scheduled� together with a DPE server� with the algorithm illustrated above�

Intuitively� the server behaves like any other periodic task� The di�erence is
that it can trade its run�time with the run�time of lower priority tasks� When
a certain amount of time is traded� one or more lower priority tasks are run
at a higher priority level� but their lower priority time is preserved for possible
aperiodic requests� This run�time exchange does not a�ect the schedulability of
the task set� as shown in the following�

As usual� let us de�ne the periodic tasks utilization factor as

UP �

nX
i��

Ci

Ti

and the server utilization factor as

US �
CS

TS
�

Our objective is to prove that the classical Liu and Layland result 	��
 for an
EDF scheduler can be extended including the server utilization factor� In order
to do this� given a schedule S produced using the DPE algorithm� let us consider
a schedule S� built in the following way�

� the server is replaced with a periodic task of equal characteristics �i�e��
period TS and worst case execution time CS�� in the new schedule� the
task executes when the server capacity in S decreases�

�

2

16

8

17 21 22 23 24

3

16 240

19

DPE

3

1260 18

200 9

3

1514131211108 187654321

τ 1

τ

24

Figure �� DPE server schedulability�

� each execution of periodic instances during deadline exchanges �i�e�� in�
crease in the corresponding aperiodic capacity� is postponed until the
capacity decreases�

� all other executions of periodic instances are left as in S�

Note that� because of the de�nition of DPE� at any time there is at most only
one aperiodic capacity decreasing in S� so S� is well de�ned� Also observe that�
in each feasible schedule produced by the DPE algorithm� all the aperiodic ca�
pacities are exhausted before their respective deadlines �if one of these capacities
would go beyond its deadline� introducing enough aperiodic requests we could
build a schedule in which the execution of subsequent periodic instances would
be delayed and some of them would miss their deadlines��

In Figure � the schedule S� built applying the de�nition to the schedule S
in Figure � is shown� Note that all the periodic executions corresponding to
increasing aperiodic capacities� have been moved to the corresponding intervals
in which the same capacities decrease �of course the length of the corresponding
intervals is the same�� Also note that� even with a di�erent schedule S� the
schedule S� would not change� The reason for this is that the �actual� task
execution scheduled by EDF would be always at the time when the capacity
decreases� and not when increases� That is� the schedule S� is invariant� and it
only depends on the characteristics of the server and on the periodic task set�
This observation will let us prove the claimed result�

Theorem � Given a set of periodic tasks with processor utilization UP and a
DPE server with processor utilization US� the whole set is schedulable if and
only if

UP � US � ��

Proof� All the schedules produced by the DPE algorithm have a unique
corresponding EDF schedule S�� built following the de�nition above� Moreover�

�

the task set in S� is periodic and has processor utilization U � UP � US� that
is� S� is feasible if and only if UP � US � �� Now� if UP � US � �� observing
that in each schedule S the completion time of a periodic instance is less than
or equal to the completion time of the corresponding instance in the schedule
S�� being S� feasible we can conclude that also S is feasible� that is� the set is
schedulable by the DPE algorithm�

Viceversa� if the set is schedulable� observing that S� is a particular schedule
produced by the DPE algorithm when there are enough aperiodic requests� we
can conclude that UP � US � ��

��� Resource Reclaiming

In most typical real�time systems� the processor load of periodic activities� either
statically or dynamically� is guaranteed a�priori� This means that the maximum
possible load reachable by periodic tasks is taken into account� When this peak
is not reached� that is� the actual execution times are lower than the worst
case values� it is not always obvious how to reclaim the spare time for real�time
activities �a trivial approach is to execute background tasks��

In a system with a DPE server is very simple to reclaim the spare time of
periodic tasks for aperiodic requests� It is su�cient that when a periodic task
completes� its spare time is added to the corresponding aperiodic capacity� An
example of this behaviour is depicted in Figure �� When the �rst aperiodic
request enters the system at time t � � one unit of time is available with
deadline �� and three units are available with deadline ��� The aperiodic request
can thus be serviced immediately for all the seven units of time required� as
shown in the schedule�

Without the reclaiming described� at time t � there would be a half unit of
time available with deadline � and two and a half units available with deadline
��� The request would be serviced immediately for six units of time� but the
last unit would be delayed until time t � ��� when it would be serviced in
background �neither periodic tasks nor aperiodic capacities would be ready at
that time��

Note that reclaiming the spare time of periodic tasks as aperiodic capacities
does not a�ect the schedulability of the system� It is su�cient to observe that�
when a periodic task has spare time� this time has been already �allocated�
to a priority level corresponding to its deadline when the task set has been
guaranteed� That is� the spare time can be safely used if requested with the same
deadline� But this is exactly the same as adding it to the task corresponding
aperiodic capacity�

�

3

1680 24

τ 2

1 765432 180 9 19 20 21 22 23 248 10 11 171615141312

DPE
7

3

1260 18 24

7

1τ

3

Figure �� DPE server resource reclaiming�

��� Implementation Complexity

The Priority Exchange server has been said to be quite di�cult to implement
and to have a quite large run�time overhead 	�
� Let us now evaluate the
complexity of the implementation of a DPE server in a uniprocessor system
using EDF as scheduling algorithm�

If we assume that the scheduler and the dispatcher are able to manipulate
queues with two sorts of entities� tasks and aperiodic capacities� the server
involves only some more operations in the book�keeping of these capacities� In
particular� at each system tick it may be necessary� in case of deadline exchange�
to update the values of two capacities and to check whether the �running� one
is exhausted� The increase in complexity� with respect to EDF� is of course very
low�

Furthermore� the ready queue can be at most twice as long as without the
server �there is at most one aperiodic capacity for each periodic task instance��
That is� the complexity of the routines that manipulate this queue can be at most
doubled� if we use a linear list �using a binary heap the increase in complexity
is practically negligible��

From these simple observations we can conclude that whereas the implemen�
tation of a DPE server is not trivial� the run�time overhead does not signi�cantly
increase the typical overhead of a system using an EDF scheduler�

� The Dynamic Sporadic Server� Algorithm

In 	�
� another e�cient algorithm� called Sporadic Server �SS�� for servicing
aperiodic requests in uniprocessor systems using a Rate Monotonic scheduler
is introduced� Since this algorithm exhibits nice properties� namely e�ciency

�A similar algorithm called Deadline Sporadic Server has been independently developed
by Ghazalie and Baker� and has been recently described in ����

�

READY

EXE

IDLE

Figure � DSS state transition diagram�

and simplicity� we have studied how a similar policy could be extended to work
under a dynamic EDF scheduler�

��� De�nition of the Dynamic Sporadic Server

Similarly to other servers� the DSS algorithm also has a speci�ed capacity CS

and a period TS � The main idea is always to preserve the server execution time
�i�e�� its capacity� for possible aperiodic requests� The di�erence from previous
server algorithms is that the capacity is not replenished at its full value at the
beginning of each period of the server� but only when it has been consumed� The
times at which the replenishments occur are chosen very carefully� according to a
replenishment rule� which allows the system to achieve full processor utilization�

The main di�erence between the SS algorithm described in 	�
 and our
dynamic version is that� whereas the SS has a �xed priority chosen according to
the RM algorithm �that is� according to its period TS�� our version has a dynamic
priority� This dynamic priority is assigned choosing a suitable deadline� whose
value is set to the next de�ned replenishment time�

In order to describe the Dynamic SS algorithm �DSS�� let us consider the
three states in which the server� as any other task in the system� can be� IDLE�
READY and EXE� Figure illustrates the three states and all possible transi�
tions among them� The DSS algorithm is described in terms of these transitions�

IDLE � READY � either an aperiodic request has entered the system and
CS � �� or CS has become greater than zero �a replenishment has oc�
curred�� in either case� the next replenishment time and the current dead�
line of the server are both set to t� TS� where t is the current time

��

READY � IDLE � the server has the highest priority in the system �i�e�� the
shortest deadline�� but there are no aperiodic requests to service��

�One way to improve the performance of the server would be� as in the de�nition of the
Deadline Sporadic Server of ���� to allow this transition also when a periodic task instance
with deadline d � t� TS starts to execute� This should let the server have a greater priority
to serve forthcoming aperiodic requests�

�Similarly to the previous situation� we could try to improve the performance of the server

��

0

0

8 16 24

0 12 24

3
T S C S

T C

T C

1

2 2

1

= 6 = 3

= 2= 8

= 12 = 3

ri re
i re i re i

2 1 1

22 2 1

re i

3

Figure �� Dynamic Sporadic Server example�

READY � EXE � the server has the highest priority in the system and there
are aperiodic requests to service� while requests are served� a capacity
equal to their execution times is consumed accordingly�

EXE � READY � the server is preempted by a higher priority task�

EXE � IDLE � either an aperiodic request has been served and there are
no other requests pending� or the server capacity has been exhausted� a
replenishment of the consumed server execution time is scheduled to occur
at the replenishment time set during the last transition IDLE� READY�

At the beginning� when the system is started� the server is in READY state�
has full capacity CS � and deadline and next replenishment time set to TS � In
Figure �� an example of schedule produced by the DSS algorithm is shown�

At time t � �� the server has the highest priority in the system �its deadline
is ��� Since there are no aperiodic requests it immediately enters the IDLE
state� At time t � �� an aperiodic request with execution time � arrives� The
server enters again the READY state setting the next replenishment time and
its deadline to t � � � TS � �� That is� it becomes the highest priority task
in the system and the request is serviced at once� At time t � �� the request
is completed� the server goes in IDLE state and a replenishment to CS of two
units of time is scheduled to occur at time t � ��

At time t � �� a second aperiodic requests arrives� Being CS � � the server
goes in READY state and the next replenishment time and its deadline are set
to t � � � TS � ��� Again the server becomes the highest priority task in the
system �we assume that ties among tasks are always resolved in favour of the

also checking whether the �rst task in the ready queue has a deadline d such that dS � d �

t� TS � In this case we could assign the server a deadline dS 	 d� leave the server in READY
state and execute the task with deadline d�

��

server� and the request is serviced immediately� This time� however� the server
has only a capacity of one unit of time� Consequently� at time t � � the capacity
is exhausted� the server goes in IDLE state� a replenishment of one unit of time
is scheduled for t � ��� and the aperiodic request is delayed until CS becomes
again greater than zero� This is true at time t � �� when a replenishment of two
units of time occurs� The server goes consequently in READY state� setting the
next replenishment time and its deadline to t � �� TS � ��� Being the highest
priority task� the pending aperiodic request is serviced until completion� which
happens one unit of time later� A replenishment of one unit is then scheduled
to occur at time t � ���

Note that� if a second aperiodic request arrives while another one is being
serviced� or� equivalently� when the server is in READY state� provided that
enough capacity is available� even the second request is serviced with the same
priority �deadline� of the �rst one� In Figure � this happens at time t � ��� The
second aperiodic request is serviced with the same deadline ���� as the request
arrived at time t � ��

��� Dynamic Sporadic Server Schedulability

In order to prove the schedulability bound for the Dynamic Sporadic Server�
we will �rst show that the server behaves� as intuitive� like a periodic task with
period TS and execution time CS �

Lemma � In each interval of time 	t�� t�
� such that the Dynamic Sporadic
Server is in IDLE state at t�� if Cape is the total execution time demanded for
aperiodic requests in the same interval �that is� Cape is the server time between
t� and t� demanded with a deadline less than or equal to t��� then

Cape �

�
t� � t�

TS

�
CS �

Proof� First note that since replenishments are always equal to the time
consumed� the server capacity is at any time less than or equal to CS � Also�
the replenishment policy establishes that the consumed capacity cannot be re�
claimed before than TS units of time after the instant at which the server has
become ready� This means that after t�� at most CS time can be demanded in
each subsequent interval of time of length TS � The thesis follows�

We are now able to show that not only the DSS behaves like a periodic task�
but also that a full processor utilization is still achieved�

Theorem � Given a set of n periodic tasks with processor utilization UP and a
Dynamic Sporadic Server with processor utilization US� the whole set is schedu�
lable if and only if

UP � US � ��

��

Proof� �If�� Suppose there is an over�ow at time t� The over�ow is pre�
ceded by a period of continuous utilization of the processor� Furthermore� from
a certain point t� on� only instances of tasks ready at t� or later and having
deadlines less than or equal to t are run �the server may be one of these tasks��
Let C be the total execution time demanded by these instances� Since there is
an over�ow at time t� we must have

t� t� � C�

We also know that

C �

nX
i��

�
t� t�

Ti

�
Ci � Cape

�

nX
i��

�
t� t�

Ti

�
Ci �

�
t� t�

TS

�
CS

�
nX
i��

t� t�

Ti
Ci �

t� t�

TS
CS

� �t� t���UP � US��

It follows that
UP � US � ��

a contradiction�
�Only If�� If there are enough aperiodic requests� the demanded server

execution time is CS for each subsequent TS units of time� That is� the server
behaves exactly as a periodic task with period TS and execution time CS � Being
the processor utilization U � UP �US� from Theorem � of 	��
 we can conclude
that UP � US � ��

��� Implementation Complexity

In order to implement the DSS algorithm� the dispatcher and the scheduler�
besides the usual task entries� must be able to manage the server entry in the
system queues� This only means to manage a further queue �of aperiodic tasks�
associated with the server�

Similarly to the DPE server� the system book�keeping is involved in the
updates of the server capacity� This happens in two di�erent situations� First�
during aperiodic services the capacity must be decreased at each system tick
in order to check whether it has been exhausted� Second� when a scheduled
replenishment time is encountered� the capacity must be increased with the
speci�ed value�

Again� we can expect that the implementation of the Dynamic Sporadic
Server is quite straightforward and that the run�time overhead is very low�

��

0

0

24

0 24

T S C S

T C

T C 2

3

6 12 18

8 16

1 3

1 2 1
r i r e

i r e
r

e

i

r
= 12 = 3

= 6 = 31 1

2 = 8 = 2

Figure �� Delayed aperiodic executions with a Dynamic Sporadic Server�

� The Total Bandwidth Algorithm

Looking at the characteristics and the properties of the Sporadic Server� it can
be easily seen that� when the server has a long period� the execution of the
aperiodic requests can be delayed signi�cantly� An example of this situation
is illustrated in Figure �� Here� the aperiodic request arrived at time t � � is
served with a deadline equal to � � TS � ��� which causes the execution to
be delayed until time t � ��� The second request at time t � �� is treated
in a similar way� while the third� at time t � ��� arrives when the server is in
READY state and has enough capacity� so that it can be served with the same
deadline as the second request�

Observing the schedule� we can conclude that the delays are mainly due to
the fact that the server time� because of its long period� is always scheduled
with a long deadline� And this is regardless of the aperiodic execution times�

There are two possible approaches that we can follow if we want to improve
the aperiodic response times� The �rst is� of course� to use a Sporadic Server
with a shorter period� The second� less obvious� is to assign a possible earlier
deadline to each aperiodic request� The assignment must be done in such a
way that the overall processor utilization of the aperiodic load never exceeds a
speci�ed maximum value US �

The second approach is the main idea behind the Total Bandwidth Server
�TBS�� which we de�ne in the following section� The name of the server comes
from the fact that� each time an aperiodic request enters the system� the total
bandwidth of the server� whenever possible� is immediately assigned to it�

�

0

0

24

0 24

S

T C

T C 2

6 12 18

8 16

1 2 1

= 6 = 31 1

2 = 8 = 2

U = 1/4

Figure �� Total Bandwidth server example�

��� De�nition of the TB Server

The de�nition of the TB server is very simple� When the k�th aperiodic request
arrives at time t � rk� it receives a deadline

dk � max�rk� dk��� �
Ck

US

�

where Ck is the execution time of the request and US is the server utilization
factor �i�e�� its bandwidth�� By de�nition d� � �� The request is then inserted
into the ready queue of the system and scheduled by EDF� as any other periodic
instance or aperiodic request already present in the system�

Note that we can keep track of the bandwidth already assigned to other
requests by simply taking the maximum between rk and dk��� Intuitively� as
it will be shown in Lemma �� the assignment of the deadlines is such that
in each interval of time the ratio allocated by EDF to the aperiodic requests
never exceeds the server utilization US � that is� the processor utilization of the
aperiodic tasks is at most US �

In Figure �� the same situation of Figure � is treated with a TB server
instead of a Sporadic Server� The �rst aperiodic request� arrived at time t � ��
is serviced �i�e�� scheduled� with deadline d� � r� �

C�

US
� � � �

���	 � ��� ��
being the earliest deadline in the system� the aperiodic activity is executed
immediately� Similarly� the second request receives the deadline d� � r��

C�

US
�

��� but it is not serviced immediately� since at time t � �� there is an active
periodic task with a shorter deadline ����� Finally� the third aperiodic request�
arrived at time t � ��� receives the deadline d� � max�r�� d���

C�

US
� ��� �

���	 �
�� and is serviced at time t � ��� The response times of the �rst two requests
are considerably improved� while for the third one we have no changes�

In Figure �� a TB server with a high bandwidth is shown� Note that the
response times of the aperiodic requests are very short� This is due to the high

��

0

0

8 16 24

0 12 24

S

T C

T C

1

2 2

1 = 2= 8

= 12 = 3

22 2 1

U = 1/2

Figure �� High capacity Total Bandwidth server example�

value of US � which lets the requests to demand their computation time with
short deadlines� that is� with high priority�

��� Total Bandwidth Schedulability

Since we have de�ned the TB server in such a way that the aperiodic load never
exceeds US � we expect to achieve a full processor utilization� As for the Sporadic
Server� we �rst need to prove that the aperiodic processor utilization does not
actually exceeds US �

Lemma � In each interval of time 	t�� t�
� if Cape is the total execution time
demanded by aperiodic requests arrived at t� or later and served with deadlines
less than or equal to t�� then

Cape � �t� � t��US �

Proof� By de�nition

Cape �
X

t��rk�dk�t�

Ck�

Given the deadline assignment of the TB server� there must be two indexes k�
and k� such that X

t��rk�dk�t�

Ck �

k�X
k�k�

Ck�

It follows that

Cape �

k�X
k�k�

Ck

��

�

k�X
k�k�

	dk �max�rk � dk���
US

� US

k�X
k�k�

	dk �max�rk � dk���

� US 	dk� �max�rk� � dk����

� US�t� � t���

Now we can prove the claimed result�

Theorem � Given a set of n periodic tasks with processor utilization UP and a
TB server with processor utilization US� the whole set is schedulable if and only
if

UP � US � ��

Proof� �If�� Suppose there is an over�ow at time t� The over�ow is preceded
by a period of continuous utilization of the processor� Furthermore� from a
certain point t� on� only instances of tasks �periodic or aperiodic� ready at t� or
later and having deadlines less than or equal to t are run� Let C be the total
execution time demanded by these instances� Since there is an over�ow at time
t� we must have

t� t� � C�

We also know that

C �

nX
i��

�
t� t�

Ti

�
Ci � Cape

�

nX
i��

t� t�

Ti
Ci � �t� t��US

� �t� t���UP � US��

It follows that
UP � US � ��

a contradiction�
�Only If�� If an aperiodic request enters the system periodically� say each

TS � � units of time� and has execution time CS � TSUS � the server behaves
exactly as a periodic task with period TS and execution time CS � Being the
processor utilization U � UP�US � again from Theorem � of 	��
 we can conclude
that UP � US � ��

��

��� Implementation Complexity

The implementation of the TB server is the simplest among those seen so far� In
order to correctly assign the deadline to the new issued request� we only need to
keep track of the deadline assigned to the last aperiodic request �dk���� Then�
the request can be queued into the ready queue and treated by EDF as any
other periodic instance� Hence� the overhead is practically negligible�

� The EDL Algorithm

The Total Bandwidth algorithm is able to achieve good aperiodic response times
with extreme simplicity� Still we could desire a better performance if we agree
to pay something more� For example� looking at the schedule in Figure �� we
could argue that the second and the third aperiodic requests may be served as
soon as they arrive� without compromising the schedulability of the system� The
reason for this is that� when the requests arrive� the active periodic instances
have enough e�ective laxity �i�e�� the interval between the completion time and
the deadline� to be safely preempted� The main idea of the EDL algorithm
is to take advantage of these laxities� In order to do this� the idle times of a
particular EDF schedule of the periodic task set are computed� and an optimal
replenishment policy for the capacity of an aperiodic server is derived from these
values�

��� De�nition of the EDL Server

The de�nition of the EDL server makes use of some results presented by Chetto
and Chetto in 	
� In this paper� two di�erent implementations of EDF� namely
EDS and EDL� are studied� Under EDS the active tasks are processed as soon
as possible� while under EDL they are processed as late as possible� An accu�
rate characterization of the idle times produced by the two algorithms is given�
Moreover� a formal proof of the optimality� in the sense that it guarantees the
maximum idle time in a given interval� is stated for EDL� In the original paper�
this result is used to build an acceptance test for sporadic tasks �i�e�� aperiod�
ics with hard deadlines� entering the system� while here it is used to build an
optimal server mechanism for soft aperiodic activities�

Let us introduce the terminology used by the authors in 	
� With fXY they
denote the availability function

fXY �t� �

�
� if the processor is idle at t
� otherwise�

de�ned with respect to a task set Y and a scheduling algorithmX � The function
fEDL
J � with J � f��� ��g� is depicted in Figure �� The integral of f

X
Y on an

interval of time 	t�� t�
 is denoted by
X
Y �t�� t��� it gives the total idle time in

the speci�ed interval�

��

0

0 6 12 18 24

8 16 24

0 12 24

T C

T C

= 6 = 3

= 2= 8

1 1

2 2

f EDL

Figure �� Availability function under EDL�

The result of optimality addressed above is stated in Theorem � of 	
� which
we recall here�

Theorem � Let A be any aperiodic task set and X any preemptive scheduling
algorithm� For any instant t�

 EDL
A ��� t� � X

A ��� t��

This result lets us build an optimal server using the idle times of an EDL
scheduler� In particular� given the periodic task set� the function fXY � which is
periodic with hiperperiod H � lcm�T�� � � � � Tn�� can be represented by means of
two vectors� The �rst� E � �e�� e�� � � � � ep�� represents the times at which idle
times occur� while the second� D� � �!�

��!
�
�� � � � �!

�
p�� represents the lengths

of these idle times� The two vectors for the example of Figure � are shown in
Table � �note that we can have idle times only after the arrival time of a periodic
task instance��

i � � � �
ei � � �� ��
!�
i � � � �

Table �� Idle times under EDL�

The EDL server mechanism is based on the following idea� the idle times of
an EDL scheduler are used to schedule aperiodic requests as soon as possible�
postponing the execution of periodic activities� similarly to the e�ect of the
�Slack Stealer� of 	�
� The optimality stated in Theorem will give us the
optimality of the server built with this idea�

��

0

0

24

0 24

T C

T C 2

6 12 18

8 16

= 6 = 31 1

2 = 8 = 2

4

a�

0

0 6 12 18 24

8 16 24

0 12 24

T C

T C

= 6 = 3

= 2= 8

1 1

2 2

f EDL

b�

Figure ��� a� Example of schedule produced with an EDL server� b� New EDL
idle times at the aperiodic arrival�

In particular� when there are no aperiodic activities in the system� the pe�
riodic tasks are scheduled according to the EDF algorithm� Whenever a new
aperiodic request enters the system �and no previous aperiodic is still active�
the set J �t� of the current active periodic tasks� plus the future periodic in�
stances� is considered� The idle times of an EDL scheduler applied to J �t��
that is� fEDL

J
t� � are then computed and consequently used to schedule the current
aperiodic requests� See Figure �� for an example� Here� an aperiodic request
with an execution time of units arrives at time t � �� The idle times of an
EDL scheduler are recomputed using the current periodic tasks� as shown in
Figure ��b� The request is scheduled according to the newly computed idle
times �Figure ��a�� Note that the response time of the aperiodic request is
optimal�

��

The procedure to recompute at each new arrival the idle times of EDL ap�
plied to J �t� is described in 	
 and is not reported here� It is interesting to
notice that not all the idle times have to be recomputed� but only those preced�
ing the deadline of the current active periodic task with the longest deadline�
However� the worst case complexity of the algorithm� which is O�Nn�� where
N is the number of distinct periodic requests that occur in 	�� H 	� and n is the
number of periodic tasks� is relatively high and can give the algorithm little
practical interest� As for the �Slack Stealer�� the EDL server will be used to
provide a lower bound to the aperiodic response times� and to build a nearly
optimal implementable algorithm� described in the next section�

��� EDL Server Properties

The analysis of the EDL server schedulability is quite straightforward� In fact�
the server allocates to the aperiodic activities only the idle times of a particular
EDF schedule� without compromising the timeliness of the periodic tasks� This
is more precisely stated in the following Theorem�

Theorem � Given a set of n periodic tasks with processor utilization UP and
the corresponding EDL server �the behaviour of the server strictly depends on
the characteristics of the periodic task set�� the whole set is schedulable if and
only if

UP � �

�the server automatically allocates the bandwidth ��UP to aperiodic requests��

Proof� �If�� The condition is su�cient for the schedulability of the periodic
task set under EDF �Theorem � of 	��
�� thus even under EDL� which is a
particular implementation of EDF� The algorithm schedules the periodic tasks
according to one or the other implementation� depending on the absence or
the presence of aperiodic requests in the system� In the latter situation the
executions of the aperiodic tasks are scheduled during the precomputed idle
times of the periodic tasks� In both cases the timeliness of the periodic task set
is una�ected� that is� no deadline is missed�

�Only If�� Trivial� since the condition is necessary even for only the periodic
task set �Theorem � of 	��
�� We now want to establish another nice property

of the EDL server� In particular� we want to prove the property of optimality
addressed above� that is� the response times of the aperiodic requests under the
EDL algorithm are the best achievable� This is exactly what is stated by the
following Lemma�

Lemma � Let X be any on�line preemptive algorithm� J a periodic task set�
and J an aperiodic request� If cXJ�fJg�J� is the completion time of J when

J � fJg is scheduled by X� then

cEDL server
J�fJg �J� � cXJ�fJg�J��

��

Proof� Suppose J arrives at time t� Let J �t� be the set of the current
active periodic instances �ready but not yet completed� and the future periodic
instances� The new task J is scheduled together with the tasks in J �t�� In
particular� consider the schedule S of J � fJg under X � Let X � be another
algorithm that schedules the tasks in J �t� at the same time as in S� and S�

be the corresponding schedule� J is executed during some idle periods of S��
Applying Theorem with the origin of the time axis translated to t �this can
be done since X is on�line�� we know that for each t� � t

 EDL
J
t��t� t

�� � X�

J
t��t� t
���

Recall now that� when there are aperiodic requests� the EDL server allocates
their executions exactly during the idle times of EDL� Being

 EDL
J
t��t� c

EDL server
J�fJg �J�� � X�

J
t��t� c
EDL server
J�fJg �J��

it follows that
cEDL
J�fJg�J� � cXJ�fJg�J��

That is� under the EDL server� J is never completed later than under X �

� The Improved Priority Exchange Algorithm

Although optimal� the algorithm described in the previous section has too much
overhead to be considered practical� However� its main idea can be usefully
adopted to develop an implementable algorithm� still maintaining a nearly op�
timal behaviour� as shown later in the discussion of the simulations�

What makes the EDL server not practical is the complexity of computing
the idle times at each new aperiodic arrival� This computation must be done
each time in order to take into account the periodic instances partially executed
or already completed at the time of arrival� The time �advanced� to the peri�
odic instances becomes idle time that the server can use to schedule aperiodic
requests� in addition to the idle time of an ideal EDL scheduler�

We can avoid the heavy idle time computation using the mechanism of pri�
ority exchanges� With this mechanism� in fact� the system can easily keep track
of the time advanced to periodic tasks and possibly reclaim it at the right pri�
ority level� The idle times of the EDL algorithm can be precomputed o��line�
The server can use them to schedule aperiodic requests� when there are any�
or to advance the execution of periodic tasks� In the latter case the idle time
advanced can be saved as aperiodic capacity at the priority levels of the periodic
tasks executed�

��

0 24

0 24

T C

T C 2

6 12 18

8 16

= 6 = 31 1

2 = 8 = 2

3

3

3

3

31 1 1

4

IPE

Figure ��� Improved Priority Exchange server example�

	�� De�nition of the IPE Server

The algorithm described here� called Improved Priority Exchange �IPE�� is
based on the idea pointed out above� In particular� we modify the DPE server
using the idle times of an EDL scheduler� First� we obtain a far more e�cient
replenishment policy for the server� Second� the resulting server is no longer
periodic and it can always run at the highest priority in the system�

The IPE server is thus de�ned in the following way�

� the IPE server has an aperiodic capacity� initially set to ��

� at each instant t � ei � kH � with � � i � p and k � �� a replenishment
of !�

i units of time is scheduled for the server capacity� that is� at time
t � e� the server will receive !

�
� units of time �the two vectors E and D

�

have been de�ned in the previous section��

� the server priority is always the highest in the system� regardless of any
other deadline�

� all other rules of IPE �aperiodic requests and periodic instances executions�
exchange and consumption of capacities� are the same as for a DPE server�

The same task set of Figure �� is scheduled with an IPE server in Figure ���
Note that the server replenishments are set according to the function fEDL

J �
illustrated in Figure ��

When the aperiodic request arrives at time t � �� one unit of time is im�
mediately allocated to it by the server� However� other two units are available
at the priority level corresponding to the deadline ��� due to previous deadline
exchanges� and are allocated right after the �rst one� The last one is allocated
later� at time t � ��� when the server receives a further unit of time� In this
situation� the optimality of the response time is kept� As we will show later�

��

there are only rare situations in which the optimal EDL server performs slightly
better than IPE� that is� almost always IPE exhibits a nearly optimal behaviour�

	�� IPE Server Schedulability

In order to analyze the schedulability of an IPE server� it is useful to de�ne
a transformation among schedules similar to that de�ned for the DPE server�
In particular� given a schedule S produced by the IPE algorithm� we build the
schedule S� in the following way�

� each execution of periodic instances during deadline exchanges �i�e�� in�
crease in the corresponding aperiodic capacity� is postponed until the
capacity decreases�

� all other executions of periodic instances are left as in S�

In this case� the server is not substituted with another task� Again S� is well
de�ned and is invariant� that is� it does not depend on S� but only on the
periodic task set� Moreover� S� is the schedule produced by EDL applied to the
periodic task set �compare Figure � with Figure ���� The optimal schedulability
is stated by the following Theorem�

Theorem � Given a set of n periodic tasks with processor utilization UP and
the corresponding IPE server �the parameters of the server depend on the peri�
odic task set�� the whole set is schedulable if and only if

UP � �

�the server automatically allocates the bandwidth ��UP to aperiodic requests��

Proof� �If�� The condition is su�cient for the schedulability of the periodic
task set under EDF �Theorem � of 	��
�� thus even under EDL� which is a
particular implementation of EDF� Now� observe that in each schedule produced
by the IPE algorithm the completion times of the periodic instances are never
greater than the completion times of the corresponding instances in S�� which is
the schedule of the periodic task set under EDL� That is� no periodic instance
can miss its deadline� The thesis follows�

�Only If�� Trivial� since the condition is necessary even for the periodic task
set only �Theorem � of 	��
��

	�� Resource Reclaiming

The resource reclaiming� that is� the reclaiming of unused periodic execution
time� can be done in the same way as for the DPE server� When a periodic
task completes� its spare time is added to the corresponding aperiodic capacity�
Again� this behaviour does not a�ect the schedulability of the system� The
reason is of course the same as for the DPE server�

�

	�� Implementation Complexity

As for the resource reclaiming� even the implementation complexity of IPE is
similar to that of any other DPE server� at least from the time point of you�
The two vectors E and D� are in fact precomputed before the system is run�
The replenishments of the server capacity are no longer periodic� but this does
not change the complexity� Finally� all the rest is perfectly the same� hence even
the consideration on the implementation complexity are comparable�

What can change dramatically is the memory requirement� If the periods of
periodic tasks are not harmonically related� we could have a huge hiperperiod
H � lcm�T�� � � � � Tn�� which would mean a great memory occupancy to store
the two vectors E and D��

� Performance Results

DPE� DSS� TBS� EDL and IPE algorithms have been simulated to compare the
average response times of soft aperiodic tasks with respect to the response times
obtained with background scheduling� This form of aperiodic scheduling is the
simplest possible� the aperiodic tasks are executed only when the processor
would be otherwise idle� that is� no periodic task instances are ready to run�

For completeness� also a Polling server has been compared with the other
algorithms� In this case� a periodic task for aperiodic service is created and�
given its period and its maximum capacity� it is scheduled as any other periodic
task� When the server is run� if aperiodic requests are pending they are served
within the limit of the server capacity� otherwise the current periodic instance
is completed�

In all simulations� a set of ten periodic tasks with periods ranging from
��� and ���� was chosen� Three periodic loads were simulated� by setting the
processor utilization factor Up at ��� ��� and ���� referred in the following
as low� medium and high periodic load� respectively�

The aperiodic load for these simulations was varied across the range of pro�
cessor utilization unused by the periodic tasks� The interarrival times �with
average Ta� for the aperiodic tasks were modeled using a Poisson arrival pat�
tern� whereas the aperiodic service times �with average Ts� were modeled using
an exponential distribution�

Where applicable� the processor utilization of the servers was set to all the
utilization left by the periodic tasks� that is� US � � � UP � The period of the
periodic servers� namely Polling� DPE and DSS� was set equal to the average
aperiodic interarrival time �Ta� and� consequently� the capacity was set to CS �
TaUS�

Unless otherwise stated� the data plotted for each algorithm represent the
ratio of the average aperiodic response time relative to the response time of
background aperiodic service� The average is computed over ten simulations�

��

in which a total of one hundred thousand aperiodic requests were generated�
In this way� an average response time equivalent to background service has a
value of ��� on all the graphs� Hence� a value less than ��� corresponds to an
improvement in the average aperiodic response time over background service�
The lower the response time curve lies on these graphs� the better the algorithm
is for improving aperiodic responsiveness�

�� Experiment �� IPE vs� EDL

In the �rst experiment� we have compared the performance of our IPE algorithm
versus the optimal EDL server mechanism� The three graphs shown in Figure ��
correspond to three di�erent periodic loads� low� medium and high� as addressed
above� The aperiodic load was generated using a mean interarrival time Ta �
��� and varying the average aperiodic service time Ts so that the total load
covered� roughly� the range from Up to the full processor utilization�

As can be clearly seen from the graphs� for small and medium periodic loads
the two algorithms do not have signi�cant di�erences in their performances�
However� even for a high periodic load� the di�erence is so small that can be
reasonably considered negligible for any practical application�

Although IPE and EDL have very similar performances� they di�er signi��
cantly in their implementation complexity� As mentioned in previous sections�
the EDL algorithm needs to recompute the server parameters quite frequently
�namely� when an aperiodic request enters the system and all previous aperiod�
ics have been completely serviced�� This overhead can be too expensive in terms
of cpu time to use the algorithm in practical applications� On the other hand�
for the IPE algorithm we only have to compute o��line the parameters of the
server� Then� at run�time� assuming we have enough memory� the implementa�
tion complexity is the same as for a DPE server� which is quite reasonable�

In summary� IPE has nearly the same performance of EDL� but with much
less overhead� For this reason� the EDL server performance is not reported in
all subsequent simulations� Moreover� the performance of the IPE server will
be the reference in the following experiments�

�� Experiment �� Response Time vs� Aperiodic Load

In the second experiment� we tested the performance of all algorithms as a
function of the aperiodic load� The load was varied by changing the average
aperiodic service time� while the average interarrival time was set at the value
of Ta � ����

Figure �� presents the results of these simulations� In this �gure� three
graphs are presented� which correspond to the di�erent periodic loads simu�
lated� low� medium and high respectively� In each graph� the average aperiodic
response time of each algorithm is plotted with respect to that of background
service as a function of the mean aperiodic load Uape �

Ts
Ta
�

��

0

0.2

0.4

0.6

0.8

1

0 6 12 18 24 30 36 42 48 54 60

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Load (%)

Periodic Load = 40% Mean Aperiodic Interarrival Time = 100

IPE
EDL

a�

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Load (%)

Periodic Load = 65% Mean Aperiodic Interarrival Time = 100

IPE
EDL

b�

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7 8 9 10

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Load (%)

Periodic Load = 90% Mean Aperiodic Interarrival Time = 100

IPE
EDL

c�

Figure ��� Comparison between IPE and EDL server�

��

0

0.2

0.4

0.6

0.8

1

0 6 12 18 24 30 36 42 48 54 60

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Load (%)

Periodic Load = 40% Mean Aperiodic Interarrival Time = 100

Polling
DSS
DPE
TBS
IPE

a�

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Load (%)

Periodic Load = 65% Mean Aperiodic Interarrival Time = 100

Polling
DSS
DPE
TBS
IPE

b�

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Load (%)

Periodic Load = 90% Mean Aperiodic Interarrival Time = 100

Polling
DSS
DPE
TBS
IPE

c�

Figure ��� Algorithms performance with di�erent processor loads�

��

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Mean Aperiodic Interarrival Time

Periodic Load = 65% Mean Aperiodic Load = 25%

Polling
DSS
DPE
TBS
IPE

Figure �� Algorithms performance with increasing aperiodic interarrival times�

As can be seen from each graph� the TBS and IPE algorithms can provide a
signi�cant reduction in average aperiodic response time compared to background
or polling aperiodic service� whereas the performance of the DPE and DSS
algorithms depends on the aperiodic load� For low aperiodic load� DPE and
DSS perform as well as TBS and IPE� but as the aperiodic load increases their
performance tends to be similar to that one shown by the Polling server�

Note that� in all graphs� TBS and IPE have about the same responsiveness
when the aperiodic load is low� and they exhibit a slightly di�erent behaviour
for heavy aperiodic loads�

�� Experiment �� Response Time vs� Interarrival Time

The performance of the proposed algorithms has also been compared as a func�
tion of the interarrival time Ta� Since the period of periodic tasks was chosen
between ��� and ���� units of time� the average interarrival time of aperiodic
tasks was varied from �� and ��� time units� In this experiment� the average
periodic load was �xed at Up � ���� and the average aperiodic load was set at
Uape � ����

In order to maintain the aperiodic load constant� the average aperiodic ser�
vice time Ts was computed as Ts � Ta � Uape� As a consequence� in the graph
reported in Figure �� the smaller the interarrival time on the x�axis� the smaller
the aperiodic service time� This means that� for low values of Ta the aperiodic
load is generated by a large number of small tasks� whereas for higher values of

��

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

R
e
l
a
t
i
v
e

T
o

B
a
c
k
g
r
o
u
n
d

S
e
r
v
i
c
e

Periodic Load (%)

Mean Aperiodic Interarrival Time = 100 Mean Service Time = 30

Polling
DSS
DPE
TBS
IPE

Figure ��� Algorithms performance with increasing periodic load�

Ta the same aperiodic load is generated by a small number of long tasks�
As can be seen from the �gure� all algorithms perform much better when

the aperiodic load is generated by a large number of small tasks rather than a
small number of long activities� Moreover� note that� as the interarrival time
Ta increases� and the tasks� execution time becomes longer� the IDE algorithm
shows its superiority with respect to the others� which tend to have about the
same performance� instead�

�� Experiment �� Response Time vs� Up

In this experiment� the proposed algorithms have been compared with di�erent
periodic loads Up� The graph shown in Figure �� plots the average aperiodic
response times when the processor utilization factor was varied from ��� to
���� In this simulation� the aperiodic load was generated by setting Ta � ���
and Ts � ��� thus the total load was varied from �� to ����

As can be seen from the graph� for very low periodic loads all aperiodic ser�
vice algorithms show a behaviour similar to background service� As the periodic
load increases� their performance improves substantially with respect to back�
ground service� In particular� DPE and DSS have a comparable performance�
which tends to approach that of the Polling server for high periodic loads� On
the other hand� TBS and IPE outperform all other algorithms in all situations�
The improvement is particularly signi�cant with medium and high workloads�
With a very high workload� TBS is no more able to achieve the same good

��

performance of IPE� even though it is much better than the other algorithms�

�� Experiment �� Response Time vs� Unused Periodic

Task Computation Time

The goal of this experiment was to verify the e�ectiveness of the resource re�
claiming technique� described in Section ���� which can be used in the algorithms
DPE and IPE� In order to do this� we have compared the performance of the
�ve algorithms �Polling� DPE� DSS� TBS and IPE� on a number of task sets� in
which the actual execution times of periodic tasks were less than the worst case
ones� The estimated periodic load� computed using the worst case execution
times� was set to ���� The mean interarrival time of the aperiodic requests was
set to ��� units� while the mean aperiodic service time was set to �� units� thus
giving a total estimated processor load of ���� The actual execution time aeti�j
of the jth instance of the ith periodic task was generated using the following
formula�

aeti�j � Ci � rnd��� �!� ���

where Ci is the worst case execution time of the task� rnd�a� b� is a function that
returns a random number in the interval 	a� b
� using a uniform distribution� and

the parameter !� which is
Ci�E�aeti�j

Ci
� represents the average ratio of the unused

computation times�
The result of the simulation can be seen in the graph shown in Figure ���

In the vertical axis the average response time of each algorithm is represented
as a function of the parameter !� which ranges from � to ���� The case ! � �
corresponds to the situation in which the actual execution times are equal to
the worst case ones� In this particular situation the result is equivalent to that
shown in a previous experiment�

As soon as ! becomes greater than zero� that is� the actual execution times
become less than the worst case ones� the performance of the DPE server tends
to be much better� and also tends to approach the performance of the TB
server� This behaviour is con�rmed for all other values of !� thus proving the
e�ectiveness of the reclaiming technique used in the DPE and IPE algorithms�

From the graph� we can see that the TBS algorithm shows a good behaviour�
too� although no explicit reclaiming has been designed for it� Finally� also the
Polling and the Sporadic servers show good improvements� due to the lower
actual periodic load� However� their performance is always signi�cantly worse�
compared to the others�

	 Discussion and Conclusions

In this paper we have introduced �ve novel on�line scheduling algorithms for real�
time systems with dynamic priorities� Namely� all algorithms exploit the well

��

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5

M
e
a
n

R
e
s
p
o
n
s
e

T
i
m
e

Mean Unused Computation Time Ratio

Periodic Load = 65% Mean Aperiodic Load = 25%

Polling
DSS
DPE
TBS
IPE

Figure ��� Response times vs� unused computation times�

known Earliest Deadline First policy to deal with both soft aperiodic and hard
periodic tasks� All algorithms have been characterized in terms of schedulability
and implementation complexity� For two of them� DPE and IPE� a simple
resource reclaiming technique has been designed and proven to be e�ective�
Finally� extensive comparisons have been carried out in di�erent experiments�

The experimental simulations have established that� from a performance
point of view� IPE and EDL show the best results� Although optimal� EDL is
far from being reasonably practical� due to the overall complexity� On the other
hand� IPE is able to achieve a comparable performance with much less com�
putational overhead� Both algorithms may have signi�cant memory demands
when the periods of the periodic tasks are not harmonically related�

The Total Bandwidth algorithm has shown a very good performance� some�
times comparable to that of the nearly optimal of IPE� Observing that its im�
plementation complexity is among the simplest� one could consider this to be a
good candidate for practical systems�

Even though a bit more complex� the DPE and the DSS algorithms show
slightly worse performance� although they both provide better responsiveness
than the Polling server and the naive background service�

With this work we have covered a wide spectrum of algorithms dealing with
aperiodic service� Considering also other works in the literature� the real�time
designer that wishes to build a system with dynamic priorities should now have
a su�cient number of choices for designing an e�cient aperiodic service mecha�
nism� In particular� in all those applications in which the periodic load is �xed�

��

the aperiodic service algorithm can be chosen to balance e�ciency against com�
plexity�

As future work� we are considering to use the algorithms presented in this
paper as a basis for handling hard aperiodic tasks� The main goal will be
to build a uniform solution in which hard aperiodic tasks can be dynamically
guaranteed while average response times of soft aperiodic tasks can be predicted
with reasonable accuracy�

References

	�
 Baker� T�P�� �Stack�Based Scheduling of Real�Time Processes�� The Jour�
nal of Real�Time Systems ����� ����� pp� ��"����

	�
 Buttazzo� G�� and Stankovic� J�� �RED� A Robust Earliest Deadline
Scheduling Algorithm�� Proc� of �rd International Workshop on Responsive
Computing Systems� Austin� �����

	�
 Chen� M�� and Lin� K�� �Dynamic Priority Ceilings� A Concurrency Control
Protocol for Real�Time Systems�� The Journal of Real�Time Systems� ��
�����

	
 Chetto� H�� and Chetto� M�� �Some Results of the Earliest Deadline
Scheduling Algorithm�� IEEE Trans� on Software Engineering� �������
����� pp� ����"�����

	�
 Chetto� H�� Silly� M�� and Bouchentouf� T�� �Dynamic Scheduling of Real�
Time Tasks under Precedence Constraints�� The Journal of Real�Time Sys�
tems �� ����� pp� ���"���

	�
 Davis� R�I�� Tindell� K�W�� and Burns� A�� �Scheduling Slack Time in Fixed
Priority Preemptive Systems�� Proc� of Real�Time Systems Symposium�
����� pp� ���"����

	�
 Ghazalie� T�M�� and Baker� T�P�� �Aperiodic Servers In A Deadline
Scheduling Environment�� The Journal of Real�Time Systems� �� �����

	�
 Lehoczky� J�P�� and Ramos�Thuel� S�� �An Optimal Algorithm for Schedul�
ing Soft�Aperiodic Tasks in Fixed�Priority Preemptive Systems�� Proc� of
Real�Time Systems Symposium� ����� pp� ���"����

	�
 Lehoczky� J�P�� Sha� L�� and Ding� Y�� �The Rate Monotonic Scheduling
Algorithm� Exact Characterization and Average Case Behaviour�� Proc�
of Real�Time Systems Symposium� ����� pp� ���"����

	��
 Lehoczky� J�P�� Sha� L�� and Strosnider� J�K�� �Enhanced Aperiodic Re�
sponsiveness in Hard Real�Time Environments�� Proc� of Real�Time Sys�
tems Symposium� ����� pp� ���"����

��

	��
 Liu� C�L�� and Layland� J�W�� �Scheduling Algorithms for Multiprogram�
ming in a Hard real�Time Environment�� Journal of the ACM ������ �����
pp� �"���

	��
 Mok� A�K�� Fundamental Design Problems of Distributed Systems for the
Hard�Real�Time Environment� Ph�D� Dissertation� MIT� �����

	��
 Ramos�Thuel� S�� and Lehoczky� J�P�� �On�line Scheduling of Hard Deadline
Aperiodic Tasks in Fixed�Priority Systems�� Proc� of Real�Time Systems
Symposium� ����� pp� ���"����

	�
 Sprunt� B�� Sha� L�� and Lehoczky� J�P�� �Aperiodic Task Scheduling for
Hard�Real�Time Systems�� The Journal of Real�Time Systems �� ����� pp�
��"���

�

