Real-Time Systems, Vol. 10, No. 2, pp. 179-210, March 1996.

Scheduling Aperiodic Tasks in Dynamic Priority
Systems

Marco Spuri and Giorgio Buttazzo
Scuola Superiore S.Anna,

via Carducci 40, 56100 Pisa, Italy
Email: spuri@fastnet.it, giorgio@sssup.it

Abstract

In this paper we present five new on-line algorithms for servicing
soft aperiodic requests in real-time systems, where a set of hard periodic
tasks is scheduled using the Earliest Deadline First (EDF) algorithm. All
the proposed solutions can achieve full processor utilization and enhance
aperiodic responsiveness, still guaranteeing the execution of the periodic
tasks. Operation of the algorithms, performance, schedulability analysis,
and implementation complexity are discussed and compared with classi-
cal alternative solutions, such as background and polling service. Exten-
sive simulations show that algorithms with contained run-time overhead
present nearly optimal responsiveness.

A valuable contribution of this work is to provide the real-time system
designer with a wide range of practical solutions which allow to balance
efficiency against implementation complexity.

1 Introduction

Many complex control applications include tasks which have to be completed
within strict time constraints, called deadlines. If meeting a given deadline is
critical for the system operation, and may cause catastrophic consequences, that
deadline is considered to be hard. If meeting time constraints is desirable, but
missing a deadline does not cause any serious damage, then that deadline is
considered to be soft. In addition to their criticalness, tasks that require regular
activations are called periodic, whereas tasks which have irregular arrival times
are called aperiodic.

For example, in a robot control application, activities such as sensory ac-
quisition, data processing, path planning, and low level control loops require
periodic tasks that have to be executed at constant rates to insure robot stabil-
ity. For this reason, periodic tasks often have hard deadlines. Aperiodic tasks
are typically used to serve random processing requirements, such as operator

giorgio
Casella di testo
Real-Time Systems, Vol. 10, No. 2, pp. 179-210, March 1996.

requests or displaying activities, hence they usually have soft deadlines, or no
deadlines at all. Aperiodic tasks with hard deadlines are called sporadic tasks.

Given a set of real-time tasks, a schedule is said to be feasible if all hard
tasks complete within their deadlines. A critical task with a hard deadline is said
to be guaranteed at its activation time if the system is able to find a feasible
schedule for the newly arrived task and all previously guaranteed tasks. An
operating system capable of guaranteeing and executing tasks with hard time
constraints is called Hard Real-Time (HRT) system. In a critical application,
the goal of an HRT system is not only to meet the deadlines of all hard tasks,
but also to minimize the average response time for soft activities.

The problem of scheduling a mixed set of hard periodic tasks and soft aperi-
odic tasks in a dynamic environment has been widely considered when periodic
tasks are executed under the Rate Monotonic (RM) scheduling algorithm [11].
Lehoczky et al. [10] investigated server mechanisms (Deferrable Server and Pri-
ority Exchange) to enhance aperiodic responsiveness. The basic idea was to use
a special periodic task to efficiently serve possible aperiodic requests of execu-
tion. Sprunt et al. [14] described a better service mechanism, called Sporadic
Server (SS). Then, Lehoczky and Ramos-Thuel [8] found an optimal service
method, called Slack Stealer, which is based on the idea of “stealing” all the
possible processing time from the periodic tasks, without causing their dead-
lines to be missed. Although it is not practical, because of its high overhead,
the algorithm provides a lower bound on aperiodic response times, as well as the
basis for nearly optimal implementable algorithms. In [13], the same authors
extended the algorithm to deal also with hard aperiodic tasks, as well as a more
complex task model based on serially executed subtasks. In [6], Davis et al.
present a similar algorithm, in which the slack is computed at run-time, thus
making the algorithm applicable to a more general class of scheduling problems.

All these methods assume that periodic tasks are scheduled by the RM
algorithm. Although RM is an optimal algorithm, it is static and in the general
case cannot achieve full processor utilization. In the worst case, the maximum
processor utilization that can be achieved is about 69% [11], whereas in the
average case, for a random task set, Lehoczky et al. [9] showed that it can be
about 88%.

For certain applications requiring high processor workload, a 69% or an 88%
utilization bound can represent a serious limitation. Processor utilization can be
increased by using dynamic scheduling algorithms, such as the Earliest Deadline
First (EDF) [11] or the Least Slack algorithm [12]. Both algorithms have been
shown to be optimal and achieve full processor utilization, although EDF can
run with smaller overhead.

Scheduling aperiodic tasks under the EDF algorithm has been investigated
by Chetto and Chetto [4] and Chetto et al. [5]. These authors propose ac-
ceptance tests for guaranteeing single sporadic tasks, or group of precedence
related aperiodic tasks. Although optimal from the processor utilization point
of view, these acceptance tests present a quite large overhead to be practical in

real-world applications.

Three server mechanisms under EDF have been recently proposed by Ghaz-
alie and Baker in [7]. The authors describe a dynamic version of the known
Deferrable and Sporadic Servers [14], called Deadline Deferrable Server and
Deadline Sporadic Server, respectively. Then, the latter is extended to obtain
a simpler algorithm called Deadline Exchange Server.

The aim of our work is to provide more efficient algorithms for the joint
scheduling of random soft aperiodic requests and hard periodic tasks under
the EDF policy. Our proposal includes five algorithms having different im-
plementation overheads and different performances. We first present two al-
gorithms, namely the Dynamic Priority Exchange and the Dynamic Sporadic
Server, which are extensions of previous work under Rate Monotonic (RM).
Although much better than background and polling service, they do not offer
the same improvement as the others. A completely new “bandwidth preserving
algorithm”, called Total Bandwidth Server, is also introduced. The algorithm
significantly enhances the performance of the previous servers and can be easily
implemented with very little overhead, thus showing the best performance/cost
ratio. Finally, we present an optimal algorithm, the EDL Server, and a close
approximation of it, the Improved Priority Exchange, which has much less run-
time overhead. They are both based on off-line computations of the slack time
of the periodic tasks. The proposed algorithms provide a useful framework to
assist an HRT system designer in selecting the most appropriate method for his
or her needs, by balancing efficiency with implementation overhead.

The rest of the paper is organized as follows. In section 2 we state our
assumptions. Section 3 describes the Dynamic Priority Exchange (DPE) algo-
rithm, which is an extension of the Priority Exchange algorithm proposed by
Lehozcky et al. [10]. In section 4, an extension of the Sporadic Server [14] work-
ing under EDF is presented. A new simple and efficient algorithm, called Total
Bandwidth Server, is introduced in section 5. In section 6, we describe an opti-
mal algorithm and its main properties are shown. In section 7, a nearly optimal
algorithm is derived from DPE, using the insights gained in section 6. Simula-
tion results are discussed in section 8. Finally, considerations and conclusions
are included in section 9.

2 Assumptions and Terminology

In the definition of our algorithms we will consider the following assumptions:
e all periodic tasks 7; : ¢ = 1,...,n have hard deadlines;
e all aperiodic tasks J; : ¢ = 1,...,m do not have deadlines;

e each periodic task 7; has a constant period T; and a constant worst case
execution time C;, which is considered to be known, as it can be derived
by a static analysis of the source code;

e all periodic tasks are simultaneously activated at time ¢t = 0; i.e., the first
instance of each periodic task has a request time r;(0) = 0;

e the request time of the k** periodic instance is given by r;(k) = r;(k —
1)+ T5

e the deadline of the k" periodic instance is given by d;(k) = r;(k) + Tj;
e the arrival time of each aperiodic task is unknown;

e the worst case execution time of each aperiodic task is considered to be
known at its arrival time.

For the sake of clarity, all properties of the proposed algorithms will be proven
under the above assumptions. However, they can easily be extended to handle
periodic tasks whose deadlines differ from the end of the periods and that have
non null phasing. In this case, the guarantee tests would only provide sufficient
conditions for the feasibility of the schedule.

Shared resources can also be included using the same approach found in [7],
assuming an access protocol like the Stack Resource Policy [1] or the Dynamic
Priority Ceiling [3]. The schedulability analysis would be consequently modified
to take into account the blocking factors due to the mutually exclusive access
to resources.

As a future work, we plan to treat also sporadic tasks and aperiodic tasks
with firm deadlines, that is, tasks that can be rejected if not guaranteed to meet
their deadlines [2].

3 The Dynamic Priority Exchange Algorithm

In this section we introduce the Dynamic Priority Exchange server, DPE from
now on. The main idea of the algorithm is to let the server trade its run-time
with the run-time of lower priority periodic tasks (under EDF this means a
longer deadline) in case there are no aperiodic requests pending. In this way,
the server run-time is only exchanged with periodic tasks, but never wasted
(unless there are idle times). It is simply preserved, even if at a lower priority,
and it can be later reclaimed when aperiodic requests enter the system.

3.1 Definition of the DPE Server

In [10] Lehoczky et al. introduce the Priority Exchange (PE) algorithm, a server
for aperiodic requests under the RM algorithm. The DPE server is an extension
of the PE server adapted to work with the EDF algorithm.

The algorithm is defined in the following way:

e the DPE server has a specified period Ts and a capacity Cs;

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 1: Dynamic Priority Exchange server example.

e at the beginning of each period, the server’s aperiodic capacity is set to
C’g, where d is the deadline of the current server period;

e cach deadline d associated to the instances (completed or not) of the i-th
periodic task has an aperiodic capacity, ng initially set to 0;

e the aperiodic capacities (those greater than 0) receive priorities accord-
ing to their deadlines and the EDF algorithm, like all the periodic task
instances (ties are broken in favour of capacities, i.e., aperiodics);

e whenever the highest priority entity in the system is an aperiodic capacity
of C units of time (the server or one of the others) the following happens:

— if there are aperiodic requests in the system, these are served until
they complete or the capacity is exhausted (each request consumes a
capacity equal to its execution time);

— if there are no aperiodic requests pending, the periodic task having
the shortest deadline is executed; a capacity equal to the length of
the execution is added to the aperiodic capacity of the task deadline
and is subtracted from C (i.e., the deadlines of the highest priority
capacity and the periodic task are exchanged);

— if neither aperiodic requests nor periodic task instances are pending,
there is an idle time and the capacity C' is consumed until, at most,
it is exhausted.

An example of schedule produced by the DPE algorithm is illustrated in Fig-
ure 1.

Two periodic tasks, 7 and 75, with periods 8 and 12 and worst case execution
times 2 and 3 respectively, and a DPE server, with period 6 and capacity 3, are
present in the system. At time ¢ = 0, the aperiodic capacities C% (with deadline

6), C% (with deadline 8) and C¢? (with deadline 12) are set to 3, 0 and 0. Since
no aperiodic requests are pending the two first periodic instances of 71 and 7
are allowed to execute. Consequently, the 3 units of capacity C% are consumed
in the first three units of time. In the same interval two units of time are
accumulated in C§ (during the execution of 71) and one unit in C¢? (at the
beginning of the 7»’s first execution). At time t = 3, C’gl is the highest priority
entity in the system. Again 7 is allowed to keep executing. The two units of
C%, are consumed and accumulated in Cg2. In the following three units of time
the processor is idle and C§? is consequently consumed. Note that C§?, set at
value 3 at time ¢t = 6, is presérved until time ¢t = 8, when it becomes the highest
priority entity in the system (ties among aperiodic capacities are assumed to be
broken in a FIFO order).

At time t = 14, an aperiodic request of 7 units of time enters the system.
Since C£® is equal to 2, the first two units of time are served with deadline 18.
The subsequent two units are served with the capacity C%2, i.e., with deadline
24. Finally, the last three units are also served with deadline 24, because at
time ¢t = 18 the server capacity C2* is set to 3.

3.2 Dynamic Priority Exchange Schedulability

Let us now analyze the schedulability condition of a set of periodic tasks which
are scheduled, together with a DPE server, with the algorithm illustrated above.

Intuitively, the server behaves like any other periodic task. The difference is
that it can trade its run-time with the run-time of lower priority tasks. When
a certain amount of time is traded, one or more lower priority tasks are run
at a higher priority level, but their lower priority time is preserved for possible
aperiodic requests. This run-time exchange does not affect the schedulability of
the task set, as shown in the following.

As usual, let us define the periodic tasks utilization factor as

Up = —
and the server utilization factor as
Cs
Usg = —.
s Ts

Our objective is to prove that the classical Liu and Layland result [11] for an
EDF scheduler can be extended including the server utilization factor. In order
to do this, given a schedule S produced using the DPE algorithm, let us consider
a schedule S’ built in the following way:

e the server is replaced with a periodic task of equal characteristics (i.e.,
period Ts and worst case execution time Cg); in the new schedule, the
task executes when the server capacity in S decreases;

0 8 16 24

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 2: DPE server schedulability.

e cach execution of periodic instances during deadline exchanges (i.e., in-
crease in the corresponding aperiodic capacity) is postponed until the
capacity decreases;

e all other executions of periodic instances are left as in S.

Note that, because of the definition of DPE, at any time there is at most only
one aperiodic capacity decreasing in S, so S’ is well defined. Also observe that,
in each feasible schedule produced by the DPE algorithm, all the aperiodic ca-
pacities are exhausted before their respective deadlines (if one of these capacities
would go beyond its deadline, introducing enough aperiodic requests we could
build a schedule in which the execution of subsequent periodic instances would
be delayed and some of them would miss their deadlines).

In Figure 2 the schedule S’ built applying the definition to the schedule S
in Figure 1 is shown. Note that all the periodic executions corresponding to
increasing aperiodic capacities, have been moved to the corresponding intervals
in which the same capacities decrease (of course the length of the corresponding
intervals is the same). Also note that, even with a different schedule S, the
schedule S’ would not change. The reason for this is that the “actual” task
execution scheduled by EDF would be always at the time when the capacity
decreases, and not when increases. That is, the schedule S’ is invariant, and it
only depends on the characteristics of the server and on the periodic task set.
This observation will let us prove the claimed result.

Theorem 1 Given a set of periodic tasks with processor utilization Up and a
DPE server with processor utilization Ug, the whole set is schedulable if and
only if

Up+Us <1.

Proof. All the schedules produced by the DPE algorithm have a unique
corresponding EDF schedule S’, built following the definition above. Moreover,

the task set in S’ is periodic and has processor utilization U = Up + Ug, that
is, S’ is feasible if and only if Up + Us < 1. Now, if Up + Ug < 1, observing
that in each schedule S the completion time of a periodic instance is less than
or equal to the completion time of the corresponding instance in the schedule
S’ being S’ feasible we can conclude that also S is feasible, that is, the set is
schedulable by the DPE algorithm.

Viceversa, if the set is schedulable, observing that S’ is a particular schedule
produced by the DPE algorithm when there are enough aperiodic requests, we
can conclude that Up + Us < 1. o

3.3 Resource Reclaiming

In most typical real-time systems, the processor load of periodic activities, either
statically or dynamically, is guaranteed a-priori. This means that the maximum
possible load reachable by periodic tasks is taken into account. When this peak
is not reached, that is, the actual execution times are lower than the worst
case values, it is not always obvious how to reclaim the spare time for real-time
activities (a trivial approach is to execute background tasks).

In a system with a DPE server is very simple to reclaim the spare time of
periodic tasks for aperiodic requests. It is sufficient that when a periodic task
completes, its spare time is added to the corresponding aperiodic capacity. An
example of this behaviour is depicted in Figure 3. When the first aperiodic
request enters the system at time ¢t = 4, one unit of time is available with
deadline 8, and three units are available with deadline 12. The aperiodic request,
can thus be serviced immediately for all the seven units of time required, as
shown in the schedule.

Without the reclaiming described, at time ¢ = 4 there would be a half unit of
time available with deadline 8 and two and a half units available with deadline
12. The request would be serviced immediately for six units of time, but the
last unit would be delayed until time ¢ = 11, when it would be serviced in
background (neither periodic tasks nor aperiodic capacities would be ready at
that time).

Note that reclaiming the spare time of periodic tasks as aperiodic capacities
does not affect the schedulability of the system. It is sufficient to observe that,
when a periodic task has spare time, this time has been already “allocated”
to a priority level corresponding to its deadline when the task set has been
guaranteed. That is, the spare time can be safely used if requested with the same
deadline. But this is exactly the same as adding it to the task corresponding
aperiodic capacity.

—=

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 3: DPE server resource reclaiming.

3.4 Implementation Complexity

The Priority Exchange server has been said to be quite difficult to implement
and to have a quite large run-time overhead [14]. Let us now evaluate the
complexity of the implementation of a DPE server in a uniprocessor system
using EDF as scheduling algorithm.

If we assume that the scheduler and the dispatcher are able to manipulate
queues with two sorts of entities, tasks and aperiodic capacities, the server
involves only some more operations in the book-keeping of these capacities. In
particular, at each system tick it may be necessary, in case of deadline exchange,
to update the values of two capacities and to check whether the “running” one
is exhausted. The increase in complexity, with respect to EDF, is of course very
low.

Furthermore, the ready queue can be at most twice as long as without the
server (there is at most one aperiodic capacity for each periodic task instance).
That is, the complexity of the routines that manipulate this queue can be at most
doubled, if we use a linear list (using a binary heap the increase in complexity
is practically negligible).

From these simple observations we can conclude that whereas the implemen-
tation of a DPE server is not trivial, the run-time overhead does not significantly
increase the typical overhead of a system using an EDF scheduler.

4 The Dynamic Sporadic Server' Algorithm

In [14], another efficient algorithm, called Sporadic Server (SS), for servicing
aperiodic requests in uniprocessor systems using a Rate Monotonic scheduler
is introduced. Since this algorithm exhibits nice properties, namely efficiency

LA similar algorithm called Deadline Sporadic Server has been independently developed
by Ghazalie and Baker, and has been recently described in [7].

SN

Figure 4: DSS state transition diagram.

and simplicity, we have studied how a similar policy could be extended to work
under a dynamic EDF scheduler.

4.1 Definition of the Dynamic Sporadic Server

Similarly to other servers, the DSS algorithm also has a specified capacity Cg
and a period T's. The main idea is always to preserve the server execution time
(i.e., its capacity) for possible aperiodic requests. The difference from previous
server algorithms is that the capacity is not replenished at its full value at the
beginning of each period of the server, but only when it has been consumed. The
times at which the replenishments occur are chosen very carefully, according to a
replenishment rule, which allows the system to achieve full processor utilization.

The main difference between the SS algorithm described in [14] and our
dynamic version is that, whereas the SS has a fixed priority chosen according to
the RM algorithm (that is, according to its period Ts), our version has a dynamic
priority. This dynamic priority is assigned choosing a suitable deadline, whose
value is set to the next defined replenishment time.

In order to describe the Dynamic SS algorithm (DSS), let us consider the
three states in which the server, as any other task in the system, can be: IDLE,
READY and EXE. Figure 4 illustrates the three states and all possible transi-
tions among them. The DSS algorithm is described in terms of these transitions:

IDLE — READY : either an aperiodic request has entered the system and
Cs > 0, or Cg has become greater than zero (a replenishment has oc-
curred); in either case, the next replenishment time and the current dead-
line of the server are both set to ¢ + T's, where ¢ is the current time?;

READY — IDLE : the server has the highest priority in the system (i.e., the
shortest deadline), but there are no aperiodic requests to service®;

20ne way to improve the performance of the server would be, as in the definition of the
Deadline Sporadic Server of [7], to allow this transition also when a periodic task instance
with deadline d < t + T's starts to execute. This should let the server have a greater priority
to serve forthcoming aperiodic requests.

3Similarly to the previous situation, we could try to improve the performance of the server

10

Figure 5: Dynamic Sporadic Server example.

READY — EXE : the server has the highest priority in the system and there
are aperiodic requests to service; while requests are served, a capacity
equal to their execution times is consumed accordingly;

EXE — READY : the server is preempted by a higher priority task;

EXE — IDLE : either an aperiodic request has been served and there are
no other requests pending, or the server capacity has been exhausted; a
replenishment of the consumed server execution time is scheduled to occur
at the replenishment time set during the last transition IDLE — READY.

At the beginning, when the system is started, the server is in READY state,
has full capacity C's, and deadline and next replenishment time set to Ts. In
Figure 5, an example of schedule produced by the DSS algorithm is shown.

At time t = 0, the server has the highest priority in the system (its deadline
is 6). Since there are no aperiodic requests it immediately enters the IDLE
state. At time ¢t = 3, an aperiodic request with execution time 2 arrives. The
server enters again the READY state setting the next replenishment time and
its deadline to t = 3 + Ts = 9. That is, it becomes the highest priority task
in the system and the request is serviced at once. At time t = 5, the request
is completed, the server goes in IDLE state and a replenishment to Cg of two
units of time is scheduled to occur at time t = 9.

At time t = 6, a second aperiodic requests arrives. Being C's > 0 the server
goes in READY state and the next replenishment time and its deadline are set
tot =6+ Ts = 12. Again the server becomes the highest priority task in the
system (we assume that ties among tasks are always resolved in favour of the

also checking whether the first task in the ready queue has a deadline d such that dg < d <
t+Ts. In this case we could assign the server a deadline dg = d, leave the server in READY
state and execute the task with deadline d.

11

server) and the request is serviced immediately. This time, however, the server
has only a capacity of one unit of time. Consequently, at time ¢ = 7 the capacity
is exhausted, the server goes in IDLE state, a replenishment of one unit of time
is scheduled for ¢ = 12, and the aperiodic request is delayed until C's becomes
again greater than zero. This is true at time t = 9, when a replenishment of two
units of time occurs. The server goes consequently in READY state, setting the
next replenishment time and its deadline to t = 9+ Ts = 15. Being the highest
priority task, the pending aperiodic request is serviced until completion, which
happens one unit of time later. A replenishment of one unit is then scheduled
to occur at time ¢t = 15.

Note that, if a second aperiodic request arrives while another one is being
serviced, or, equivalently, when the server is in READY state, provided that
enough capacity is available, even the second request is serviced with the same
priority (deadline) of the first one. In Figure 5 this happens at time ¢ = 15. The
second aperiodic request is serviced with the same deadline (20) as the request
arrived at time ¢ = 14.

4.2 Dynamic Sporadic Server Schedulability

In order to prove the schedulability bound for the Dynamic Sporadic Server,
we will first show that the server behaves, as intuitive, like a periodic task with
period Ts and execution time C'g.

Lemma 1 In each interval of time [t1,t2], such that the Dynamic Sporadic
Server is in IDLE state at t1, if Cope is the total execution time demanded for
aperiodic requests in the same interval (that is, Cope is the server time between
t1 and ty demanded with a deadline less than or equal to ts), then

ty — 1,
Cope < | —— | Cs.
p_{TSJ s

Proof. First note that since replenishments are always equal to the time
consumed, the server capacity is at any time less than or equal to Cs. Also,
the replenishment policy establishes that the consumed capacity cannot be re-
claimed before than Ts units of time after the instant at which the server has
become ready. This means that after ¢;, at most C's time can be demanded in
each subsequent interval of time of length T's. The thesis follows.

We are now able to show that not only the DSS behaves like a periodic task,
but also that a full processor utilization is still achieved.

Theorem 2 Given a set of n periodic tasks with processor utilization Up and a
Dynamic Sporadic Server with processor utilization Ug, the whole set is schedu-
lable if and only if

Up+Ugs <1.

12

Proof. “If”. Suppose there is an overflow at time ¢. The overflow is pre-
ceded by a period of continuous utilization of the processor. Furthermore, from
a certain point ¢ on, only instances of tasks ready at ¢ or later and having
deadlines less than or equal to ¢ are run (the server may be one of these tasks).
Let C be the total execution time demanded by these instances. Since there is
an overflow at time ¢, we must have

t—t' <C.

We also know that

n ot
C S Z \‘t Tt J Ci+Cape

(2

=1
L t—t'
< g C
< Y7o e
a— t—t'
< c C
< ; T, + Ts s
< (t—=t")Up+Us).

It follows that
Up+Us>1,

a contradiction.

“Only If”. If there are enough aperiodic requests, the demanded server
execution time is C's for each subsequent Ts units of time. That is, the server
behaves exactly as a periodic task with period T's and execution time Cg. Being
the processor utilization U = Up + Ug, from Theorem 7 of [11] we can conclude
that Up + Ug < 1. 0

4.3 Implementation Complexity

In order to implement the DSS algorithm, the dispatcher and the scheduler,
besides the usual task entries, must be able to manage the server entry in the
system queues. This only means to manage a further queue (of aperiodic tasks)
associated with the server.

Similarly to the DPE server, the system book-keeping is involved in the
updates of the server capacity. This happens in two different situations. First,
during aperiodic services the capacity must be decreased at each system tick
in order to check whether it has been exhausted. Second, when a scheduled
replenishment time is encountered, the capacity must be increased with the
specified value.

Again, we can expect that the implementation of the Dynamic Sporadic
Server is quite straightforward and that the run-time overhead is very low.

13

Figure 6: Delayed aperiodic executions with a Dynamic Sporadic Server.

5 The Total Bandwidth Algorithm

Looking at the characteristics and the properties of the Sporadic Server, it can
be easily seen that, when the server has a long period, the execution of the
aperiodic requests can be delayed significantly. An example of this situation
is illustrated in Figure 6. Here, the aperiodic request arrived at time ¢ = 6 is
served with a deadline equal to 6 + Ts = 18, which causes the execution to
be delayed until time ¢ = 11. The second request at time ¢ = 13 is treated
in a similar way, while the third, at time ¢ = 18, arrives when the server is in
READY state and has enough capacity, so that it can be served with the same
deadline as the second request.

Observing the schedule, we can conclude that the delays are mainly due to
the fact that the server time, because of its long period, is always scheduled
with a long deadline. And this is regardless of the aperiodic execution times.

There are two possible approaches that we can follow if we want to improve
the aperiodic response times. The first is, of course, to use a Sporadic Server
with a shorter period. The second, less obvious, is to assign a possible earlier
deadline to each aperiodic request. The assignment must be done in such a
way that the overall processor utilization of the aperiodic load never exceeds a
specified maximum value Ug.

The second approach is the main idea behind the Total Bandwidth Server
(TBS), which we define in the following section. The name of the server comes
from the fact that, each time an aperiodic request enters the system, the total
bandwidth of the server, whenever possible, is immediately assigned to it.

14

Figure 7: Total Bandwidth server example.

5.1 Definition of the TB Server

The definition of the TB server is very simple. When the k-th aperiodic request
arrives at time ¢ = ry, it receives a deadline

dy, = max(ry,dg—1) + ﬂv
Us

where C}, is the execution time of the request and Ug is the server utilization
factor (i.e., its bandwidth). By definition dp = 0. The request is then inserted
into the ready queue of the system and scheduled by EDF, as any other periodic
instance or aperiodic request already present in the system.

Note that we can keep track of the bandwidth already assigned to other
requests by simply taking the maximum between r; and di_;. Intuitively, as
it will be shown in Lemma 2, the assignment of the deadlines is such that
in each interval of time the ratio allocated by EDF to the aperiodic requests
never exceeds the server utilization Ug, that is, the processor utilization of the
aperiodic tasks is at most Ug.

In Figure 7, the same situation of Figure 6 is treated with a TB server
instead of a Sporadic Server. The first aperiodic request, arrived at time ¢ = 6,
is serviced (i.e., scheduled) with deadline dy = r; + 5—; =6+ ﬁ = 10. 10
being the earliest deadline in the system, the aperiodic activity is executed
immediately. Similarly, the second request receives the deadline dy = ry + 5—; =
21, but it is not serviced immediately, since at time ¢t = 13 there is an active
periodic task with a shorter deadline (18). Finally, the third aperiodic request,
arrived at time ¢t = 18, receives the deadline d3 = max(r3, d2)+ 5—; =21+55= =
25 and is serviced at time ¢ = 22. The response times of the first two requests
are considerably improved, while for the third one we have no changes.

In Figure 8, a TB server with a high bandwidth is shown. Note that the
response times of the aperiodic requests are very short. This is due to the high

15

Figure 8: High capacity Total Bandwidth server example.

value of Ug, which lets the requests to demand their computation time with
short deadlines, that is, with high priority.

5.2 Total Bandwidth Schedulability

Since we have defined the TB server in such a way that the aperiodic load never
exceeds Ug, we expect to achieve a full processor utilization. As for the Sporadic
Server, we first need to prove that the aperiodic processor utilization does not
actually exceeds Ug.

Lemma 2 In each interval of time [t1,t2], if Cope is the total execution time
demanded by aperiodic requests arrived at t1 or later and served with deadlines
less than or equal to to, then

Cape S (t2 - tl)US-

Proof. By definition

Cape =, Ch

t1<ry,dp <tz

Given the deadline assignment of the TB server, there must be two indexes k;

and ks such that
ko
> a-Ya
t1<rp,dp <tz k=k1

It follows that

Cupe = Ck

16

ko
> [di — max(re,de—1)]Us

k=kq
k2
= US Z [dk — max(r;m dk—l)]
k=kq
< US[dkz - max(rkl) dkl—l)]
< Us(ta —t1).

7 Now we can prove the claimed result.

Theorem 3 Given a set of n periodic tasks with processor utilization Up and a
TB server with processor utilization Ug, the whole set is schedulable if and only
if

Up+Us <1.

Proof. “If”. Suppose there is an overflow at time ¢. The overflow is preceded
by a period of continuous utilization of the processor. Furthermore, from a
certain point ¢' on, only instances of tasks (periodic or aperiodic) ready at ¢’ or
later and having deadlines less than or equal to ¢ are run. Let C' be the total
execution time demanded by these instances. Since there is an overflow at time
t, we must have

t—t' < C.

We also know that

n _ gt
c < ZVTthﬁcm
i—1 i

t—t
< Ci+ (t—-thU
< ; T +(WUs
< (t—t")Up+Us).

It follows that
Up+Us>1,

a contradiction.

“Only If”. If an aperiodic request enters the system periodically, say each
Ts > 0 units of time, and has execution time Cs = TsUg, the server behaves
exactly as a periodic task with period Ts and execution time Cg. Being the
processor utilization U = Up+Ug, again from Theorem 7 of [11] we can conclude
that Up + Ug < 1. 0

17

5.3 Implementation Complexity

The implementation of the TB server is the simplest among those seen so far. In
order to correctly assign the deadline to the new issued request, we only need to
keep track of the deadline assigned to the last aperiodic request (di—1). Then,
the request can be queued into the ready queue and treated by EDF as any
other periodic instance. Hence, the overhead is practically negligible.

6 The EDL Algorithm

The Total Bandwidth algorithm is able to achieve good aperiodic response times
with extreme simplicity. Still we could desire a better performance if we agree
to pay something more. For example, looking at the schedule in Figure 7, we
could argue that the second and the third aperiodic requests may be served as
soon as they arrive, without compromising the schedulability of the system. The
reason for this is that, when the requests arrive, the active periodic instances
have enough effective laxity (i.e., the interval between the completion time and
the deadline) to be safely preempted. The main idea of the EDL algorithm
is to take advantage of these laxities. In order to do this, the idle times of a
particular EDF schedule of the periodic task set are computed, and an optimal
replenishment policy for the capacity of an aperiodic server is derived from these
values.

6.1 Definition of the EDL Server

The definition of the EDL server makes use of some results presented by Chetto
and Chetto in [4]. In this paper, two different implementations of EDF, namely
EDS and EDL, are studied. Under EDS the active tasks are processed as soon
as possible, while under EDL they are processed as late as possible. An accu-
rate characterization of the idle times produced by the two algorithms is given.
Moreover, a formal proof of the optimality, in the sense that it guarantees the
maximum idle time in a given interval, is stated for EDL. In the original paper,
this result is used to build an acceptance test for sporadic tasks (i.e., aperiod-
ics with hard deadlines) entering the system, while here it is used to build an
optimal server mechanism for soft aperiodic activities.

Let us introduce the terminology used by the authors in [4]. With f;¥ they
denote the availability function

fX(t) _ |1 if the processor is idle at ¢
Y771 0 otherwise,

defined with respect to a task set Y and a scheduling algorithm X. The function
ngL, with J = {1, 72}, is depicted in Figure 9. The integral of f{¥ on an
interval of time [t;,#s] is denoted by Q3 (¢;,2): it gives the total idle time in
the specified interval.

18

f EDL

Figure 9: Availability function under EDL.

The result of optimality addressed above is stated in Theorem 2 of [4], which
we recall here.

Theorem 4 Let A be any aperiodic task set and X any preemptive scheduling
algorithm. For any instant t,

Q5PY(0,1) > QX (0,¢).

This result lets us build an optimal server using the idle times of an EDL
scheduler. In particular, given the periodic task set, the function f;¥, which is
periodic with hiperperiod H = lem(Ty,...,T,), can be represented by means of
two vectors. The first, &€ = (eo,€1,...,€p), represents the times at which idle
times occur, while the second, D* = (Ag,A},...,A}), represents the lengths
of these idle times. The two vectors for the example of Figure 9 are shown in
Table 1 (note that we can have idle times only after the arrival time of a periodic
task instance).

i 0 1 2 3
e 0 8 12 18
AT 31 1 1

Table 1: Idle times under EDL.

The EDL server mechanism is based on the following idea: the idle times of
an EDL scheduler are used to schedule aperiodic requests as soon as possible,
postponing the execution of periodic activities, similarly to the effect of the
“Slack Stealer” of [8]. The optimality stated in Theorem 4 will give us the
optimality of the server built with this idea.

19

T,=8 C,=2
T,=6 C,=3
T,=8 C,=2

f EDL

Figure 10: a) Example of schedule produced with an EDL server. b) New EDL
idle times at the aperiodic arrival.

In particular, when there are no aperiodic activities in the system, the pe-
riodic tasks are scheduled according to the EDF algorithm. Whenever a new
aperiodic request enters the system (and no previous aperiodic is still active)
the set J(t) of the current active periodic tasks, plus the future periodic in-
stances, is considered. The idle times of an EDL scheduler applied to J(t),
that is, fg?t%‘, are then computed and consequently used to schedule the current
aperiodic requests. See Figure 10 for an example. Here, an aperiodic request
with an execution time of 4 units arrives at time ¢ = 8. The idle times of an
EDL scheduler are recomputed using the current periodic tasks, as shown in
Figure 10b. The request is scheduled according to the newly computed idle
times (Figure 10a). Note that the response time of the aperiodic request is
optimal.

20

The procedure to recompute at each new arrival the idle times of EDL ap-
plied to J(t) is described in [4] and is not reported here. It is interesting to
notice that not all the idle times have to be recomputed, but only those preced-
ing the deadline of the current active periodic task with the longest deadline.
However, the worst case complexity of the algorithm, which is O(Nn), where
N is the number of distinct periodic requests that occur in [0, H[, and n is the
number of periodic tasks, is relatively high and can give the algorithm little
practical interest. As for the “Slack Stealer”, the EDL server will be used to
provide a lower bound to the aperiodic response times, and to build a nearly
optimal implementable algorithm, described in the next section.

6.2 EDL Server Properties

The analysis of the EDL server schedulability is quite straightforward. In fact,
the server allocates to the aperiodic activities only the idle times of a particular
EDF schedule, without compromising the timeliness of the periodic tasks. This
is more precisely stated in the following Theorem.

Theorem 5 Given a set of n periodic tasks with processor utilization Up and
the corresponding EDL server (the behaviour of the server strictly depends on
the characteristics of the periodic task set), the whole set is schedulable if and
only if

Up<1
(the server automatically allocates the bandwidth 1 — Up to aperiodic requests).

Proof. “If”. The condition is sufficient for the schedulability of the periodic
task set under EDF (Theorem 7 of [11]), thus even under EDL, which is a
particular implementation of EDF. The algorithm schedules the periodic tasks
according to one or the other implementation, depending on the absence or
the presence of aperiodic requests in the system. In the latter situation the
executions of the aperiodic tasks are scheduled during the precomputed idle
times of the periodic tasks. In both cases the timeliness of the periodic task set
is unaffected, that is, no deadline is missed.

“Only If”. Trivial, since the condition is necessary even for only the periodic
task set (Theorem 7 of [11]). [; We now want to establish another nice property

of the EDL server. In particular, we want to prove the property of optimality
addressed above, that is, the response times of the aperiodic requests under the
EDL algorithm are the best achievable. This is exactly what is stated by the
following Lemma.

Lemma 3 Let X be any on-line preemptive algorithm, J a periodic task set,
and J an aperiodic request. If C§U{J}(J) is the completion time of J when
J U{J} is scheduled by X, then

EDY 55 () < K ().

21

Proof. Suppose J arrives at time ¢. Let J(t) be the set of the current
active periodic instances (ready but not yet completed) and the future periodic
instances. The new task J is scheduled together with the tasks in J(¢). In
particular, consider the schedule S of J U {J} under X. Let X' be another
algorithm that schedules the tasks in J(¢) at the same time as in S, and S’
be the corresponding schedule. J is executed during some idle periods of S’.
Applying Theorem 4 with the origin of the time axis translated to ¢ (this can
be done since X is on-line), we know that for each ¢’ > ¢

QTN (1) > Q% (¢, 1),

Recall now that, when there are aperiodic requests, the EDL server allocates
their executions exactly during the idle times of EDL. Being

QUK (1, B 5™ (7)) 2 05 (8, R 357 ()

it follows that
R () < eXoon ().

That is, under the EDL server, J is never completed later than under X.

7 The Improved Priority Exchange Algorithm

Although optimal, the algorithm described in the previous section has too much
overhead to be considered practical. However, its main idea can be usefully
adopted to develop an implementable algorithm, still maintaining a nearly op-
timal behaviour, as shown later in the discussion of the simulations.

What makes the EDL server not practical is the complexity of computing
the idle times at each new aperiodic arrival. This computation must be done
each time in order to take into account the periodic instances partially executed
or already completed at the time of arrival. The time “advanced” to the peri-
odic instances becomes idle time that the server can use to schedule aperiodic
requests, in addition to the idle time of an ideal EDL scheduler.

We can avoid the heavy idle time computation using the mechanism of pri-
ority exchanges. With this mechanism, in fact, the system can easily keep track
of the time advanced to periodic tasks and possibly reclaim it at the right pri-
ority level. The idle times of the EDL algorithm can be precomputed off-line.
The server can use them to schedule aperiodic requests, when there are any,
or to advance the execution of periodic tasks. In the latter case the idle time
advanced can be saved as aperiodic capacity at the priority levels of the periodic
tasks executed.

22

Figure 11: Improved Priority Exchange server example.

7.1 Definition of the IPE Server

The algorithm described here, called Improved Priority Exchange (IPE), is
based on the idea pointed out above. In particular, we modify the DPE server
using the idle times of an EDL scheduler. First, we obtain a far more efficient
replenishment policy for the server. Second, the resulting server is no longer
periodic and it can always run at the highest priority in the system.

The IPE server is thus defined in the following way:

e the IPE server has an aperiodic capacity, initially set to 0;

e at each instant ¢ = e; + kH, with 0 <7 < p and k > 0, a replenishment
of AY units of time is scheduled for the server capacity, that is, at time
t = eg the server will receive Af units of time (the two vectors £ and D*
have been defined in the previous section);

e the server priority is always the highest in the system, regardless of any
other deadline;

e all other rules of IPE (aperiodic requests and periodic instances executions,
exchange and consumption of capacities) are the same as for a DPE server.

The same task set of Figure 10 is scheduled with an IPE server in Figure 11.
Note that the server replenishments are set according to the function ngL,
illustrated in Figure 9.

When the aperiodic request arrives at time ¢ = 8, one unit of time is im-
mediately allocated to it by the server. However, other two units are available
at the priority level corresponding to the deadline 12, due to previous deadline
exchanges, and are allocated right after the first one. The last one is allocated
later, at time ¢ = 12, when the server receives a further unit of time. In this
situation, the optimality of the response time is kept. As we will show later,

23

there are only rare situations in which the optimal EDL server performs slightly
better than IPE, that is, almost always IPE exhibits a nearly optimal behaviour.

7.2 IPE Server Schedulability

In order to analyze the schedulability of an IPE server, it is useful to define
a transformation among schedules similar to that defined for the DPE server.
In particular, given a schedule .S produced by the IPE algorithm, we build the
schedule S’ in the following way:

e cach execution of periodic instances during deadline exchanges (i.e., in-
crease in the corresponding aperiodic capacity) is postponed until the
capacity decreases;

e all other executions of periodic instances are left as in S.

In this case, the server is not substituted with another task. Again S’ is well
defined and is invariant, that is, it does not depend on S, but only on the
periodic task set. Moreover, S’ is the schedule produced by EDL applied to the
periodic task set (compare Figure 9 with Figure 11). The optimal schedulability
is stated by the following Theorem.

Theorem 6 Given a set of n periodic tasks with processor utilization Up and
the corresponding IPE server (the parameters of the server depend on the peri-
odic task set), the whole set is schedulable if and only if

Up<1
(the server automatically allocates the bandwidth 1 — Up to aperiodic requests).

Proof. “If”. The condition is sufficient for the schedulability of the periodic
task set under EDF (Theorem 7 of [11]), thus even under EDL, which is a
particular implementation of EDF. Now, observe that in each schedule produced
by the IPE algorithm the completion times of the periodic instances are never
greater than the completion times of the corresponding instances in S’, which is
the schedule of the periodic task set under EDL. That is, no periodic instance
can miss its deadline. The thesis follows.

“Only If”. Trivial, since the condition is necessary even for the periodic task
set only (Theorem 7 of [11]).

7.3 Resource Reclaiming

The resource reclaiming, that is, the reclaiming of unused periodic execution
time, can be done in the same way as for the DPE server. When a periodic
task completes, its spare time is added to the corresponding aperiodic capacity.
Again, this behaviour does not affect the schedulability of the system. The
reason is of course the same as for the DPE server.

24

7.4 Implementation Complexity

As for the resource reclaiming, even the implementation complexity of IPE is
similar to that of any other DPE server, at least from the time point of you.
The two vectors £ and D* are in fact precomputed before the system is run.
The replenishments of the server capacity are no longer periodic, but this does
not change the complexity. Finally, all the rest is perfectly the same, hence even
the consideration on the implementation complexity are comparable.

What can change dramatically is the memory requirement. If the periods of
periodic tasks are not harmonically related, we could have a huge hiperperiod
H = lem(Th,...,T,), which would mean a great memory occupancy to store
the two vectors £ and D*.

8 Performance Results

DPE, DSS, TBS, EDL and IPE algorithms have been simulated to compare the
average response times of soft aperiodic tasks with respect to the response times
obtained with background scheduling. This form of aperiodic scheduling is the
simplest possible: the aperiodic tasks are executed only when the processor
would be otherwise idle, that is, no periodic task instances are ready to run.

For completeness, also a Polling server has been compared with the other
algorithms. In this case, a periodic task for aperiodic service is created and,
given its period and its maximum capacity, it is scheduled as any other periodic
task. When the server is run, if aperiodic requests are pending they are served
within the limit of the server capacity, otherwise the current periodic instance
is completed.

In all simulations, a set of ten periodic tasks with periods ranging from
100 and 1000 was chosen. Three periodic loads were simulated, by setting the
processor utilization factor U, at 40%, 65% and 90%, referred in the following
as low, medium and high periodic load, respectively.

The aperiodic load for these simulations was varied across the range of pro-
cessor utilization unused by the periodic tasks. The interarrival times (with
average T,) for the aperiodic tasks were modeled using a Poisson arrival pat-
tern, whereas the aperiodic service times (with average Ts) were modeled using
an exponential distribution.

Where applicable, the processor utilization of the servers was set to all the
utilization left by the periodic tasks, that is, Us = 1 — Up. The period of the
periodic servers, namely Polling, DPE and DSS, was set equal to the average
aperiodic interarrival time (T,) and, consequently, the capacity was set to C's =
T,Us.

Unless otherwise stated, the data plotted for each algorithm represent the
ratio of the average aperiodic response time relative to the response time of
background aperiodic service. The average is computed over ten simulations,

25

in which a total of one hundred thousand aperiodic requests were generated.
In this way, an average response time equivalent to background service has a
value of 1.0 on all the graphs. Hence, a value less than 1.0 corresponds to an
improvement in the average aperiodic response time over background service.
The lower the response time curve lies on these graphs, the better the algorithm
is for improving aperiodic responsiveness.

8.1 Experiment 1: IPE vs. EDL

In the first experiment, we have compared the performance of our IPE algorithm
versus the optimal EDL server mechanism. The three graphs shown in Figure 12
correspond to three different periodic loads, low, medium and high, as addressed
above. The aperiodic load was generated using a mean interarrival time T, =
100 and varying the average aperiodic service time T so that the total load
covered, roughly, the range from U, to the full processor utilization.

As can be clearly seen from the graphs, for small and medium periodic loads
the two algorithms do not have significant differences in their performances.
However, even for a high periodic load, the difference is so small that can be
reasonably considered negligible for any practical application.

Although IPE and EDL have very similar performances, they differ signifi-
cantly in their implementation complexity. As mentioned in previous sections,
the EDL algorithm needs to recompute the server parameters quite frequently
(namely, when an aperiodic request enters the system and all previous aperiod-
ics have been completely serviced). This overhead can be too expensive in terms
of cpu time to use the algorithm in practical applications. On the other hand,
for the IPE algorithm we only have to compute off-line the parameters of the
server. Then, at run-time, assuming we have enough memory, the implementa-
tion complexity is the same as for a DPE server, which is quite reasonable.

In summary, IPE has nearly the same performance of EDL, but with much
less overhead. For this reason, the EDL server performance is not reported in
all subsequent simulations. Moreover, the performance of the IPE server will
be the reference in the following experiments.

8.2 Experiment 2: Response Time vs. Aperiodic Load

In the second experiment, we tested the performance of all algorithms as a
function of the aperiodic load. The load was varied by changing the average
aperiodic service time, while the average interarrival time was set at the value
of T, = 100.

Figure 13 presents the results of these simulations. In this figure, three
graphs are presented, which correspond to the different periodic loads simu-
lated, low, medium and high respectively. In each graph, the average aperiodic
response time of each algorithm is plotted with respect to that of background

service as a function of the mean aperiodic load Ugpe = %—

26

Periodic Load = 40% Mean Aperiodic Interarrival Time = 100
1 T T T T T T T T T

IPE -—
EDL ~+-

Mean Response Time Relative To Background Service

o
0 6 12 18 24 42 48 54 60
Mean Aperiodic Load (%)

(a)

Periodic Load = 65% Mean Aperiodic Interarrival Time = 100
T T T T T T T T T

IPE -—
EDL ~+--

Mean Response Time Relative To Background Service

1 1 1 1
0 3 6 9 12 15 18 21 24 27 30 33
Mean Aperiodic Load (%)

(b)

Periodic Load = 90% Mean Aperiodic Interarrival Time = 100
T T T T

0.05 T T T T T

IPE -—
EDL ~+-

Mean Response Time Relative To Background Service

0 L L L L L L

4 5 6
Mean Aperiodic Load (%)
(c)

Figure 12: Comparison between IPE and EDL server.

27

Periodic Load = 40% Mean Aperiodic Interarrival Time = 100
T T

N 1 T T T T T T T
8
]
g
1
H
4
] 0.8 b g
B .
3
g
5
g
i
]
8
o L |
e 0.6
o
a4
D
ki
]
& 0.4 b g
N .
5 -
[Polling ——
o DSS ——
8 DPE 8
5 0.2 BS x|
o IPE -4
8
E
=
]
¢
o
0 6 12 18 24 36 42 48 54 60
Mean Aperiodic Load (%)
Periodic Load = 65% Mean Aperiodic Interarrival Time = 100
N 1 T T T T T T T T T
o
>
i Polling —o—
@ DSS ~+--
- DPE &
g 0.8 | TBS -% 4
3 PE &
2
5 x
g
]
)
3
o s |
I 0.6
o
e
2
k]
— A
3 /
el 0.4 S
o
2
£ /
£
o
]
g 0.2 | 1
5 .
&
8
4
P
g
g
= ° 1 1 1 1 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24 27 30 33
Mean Aperiodic Load (%)
Periodic Load = 90% Mean Aperiodic Interarrival Time = 100
N 1 T T T T T T T T T
8
]
g
g Polling o—
a DSS —+-
o DPE -8
g 0.8 | TBS - 4
o IPE &
g
5
g
i
]
8
o L |
e 0.6
o
I
i
ki
]
& 0.4 b g
o
£
g
o
]
H
H 0.2 g
[
&
8
E
=
g
= o e i i
0 1 2 7 8 9 10

4 5 6
Mean Aperiodic Load (%)
(c)

Figure 13: Algorithms performance with different processor loads.

28

Periodic Load = 65% Mean Aperiodic Load = 25%

Mean Response Time Relative To Background Service

Dﬁ ,’/ Polling —<—
& DSS —+-
roox 7 DPE -B--
0.2 P w7 TBS -* B
; & IPE —&—
o™
Do
Exkxﬁ
¥
o L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Mean Aperiodic Interarrival Time

Figure 14: Algorithms performance with increasing aperiodic interarrival times.

As can be seen from each graph, the TBS and IPE algorithms can provide a
significant reduction in average aperiodic response time compared to background
or polling aperiodic service, whereas the performance of the DPE and DSS
algorithms depends on the aperiodic load. For low aperiodic load, DPE and
DSS perform as well as TBS and IPE, but as the aperiodic load increases their
performance tends to be similar to that one shown by the Polling server.

Note that, in all graphs, TBS and IPE have about the same responsiveness
when the aperiodic load is low, and they exhibit a slightly different behaviour
for heavy aperiodic loads.

8.3 Experiment 3: Response Time vs. Interarrival Time

The performance of the proposed algorithms has also been compared as a func-
tion of the interarrival time T,. Since the period of periodic tasks was chosen
between 100 and 1000 units of time, the average interarrival time of aperiodic
tasks was varied from 10 and 900 time units. In this experiment, the average
periodic load was fixed at U, = 65%), and the average aperiodic load was set at
Uape = 25%.

In order to maintain the aperiodic load constant, the average aperiodic ser-
vice time T was computed as Ts = T}, - Uyp.. As a consequence, in the graph
reported in Figure 14, the smaller the interarrival time on the z-axis, the smaller
the aperiodic service time. This means that, for low values of T, the aperiodic
load is generated by a large number of small tasks, whereas for higher values of

29

Mean Aperiodic Interarrival Time = 100 Mean Service Time = 30

° 1 T T T T T T
0
o
>
9
3]
%]
E 0.8
g .
o
o
o
A~
U
@
m
e
o -]
o 0.6 o T o
) S
>
B
D
©
v X
~ 0.4 - N x X 4
Q
5
2] Polling —<— AL
L) DSS -+~ ~.
2] |- S
o DPE -8 ~a
8, 0.2 | TBS %]
0 IPE 4-
Q
~
o
@
2
0 ! ! ! ! ! !
0 10 20 30 40 50 60 70

Periodic Load (%)

Figure 15: Algorithms performance with increasing periodic load.

T, the same aperiodic load is generated by a small number of long tasks.

As can be seen from the figure, all algorithms perform much better when
the aperiodic load is generated by a large number of small tasks rather than a
small number of long activities. Moreover, note that, as the interarrival time
T, increases, and the tasks’ execution time becomes longer, the IDE algorithm
shows its superiority with respect to the others, which tend to have about the
same performance, instead.

8.4 Experiment 4: Response Time vs. U,

In this experiment, the proposed algorithms have been compared with different
periodic loads Up,. The graph shown in Figure 15 plots the average aperiodic
response times when the processor utilization factor was varied from 10% to
60%. In this simulation, the aperiodic load was generated by setting T, = 100
and T, = 30, thus the total load was varied from 40% to 90%.

As can be seen from the graph, for very low periodic loads all aperiodic ser-
vice algorithms show a behaviour similar to background service. As the periodic
load increases, their performance improves substantially with respect to back-
ground service. In particular, DPE and DSS have a comparable performance,
which tends to approach that of the Polling server for high periodic loads. On
the other hand, TBS and IPE outperform all other algorithms in all situations.
The improvement is particularly significant with medium and high workloads.
With a very high workload, TBS is no more able to achieve the same good

30

performance of IPE, even though it is much better than the other algorithms.

8.5 Experiment 5: Response Time vs. Unused Periodic
Task Computation Time

The goal of this experiment was to verify the effectiveness of the resource re-
claiming technique, described in Section 3.3, which can be used in the algorithms
DPE and IPE. In order to do this, we have compared the performance of the
five algorithms (Polling, DPE, DSS, TBS and IPE) on a number of task sets, in
which the actual execution times of periodic tasks were less than the worst case
ones. The estimated periodic load, computed using the worst case execution
times, was set to 65%. The mean interarrival time of the aperiodic requests was
set to 100 units, while the mean aperiodic service time was set to 25 units, thus
giving a total estimated processor load of 90%. The actual execution time aet; ;
of the j!* instance of the i*" periodic task was generated using the following
formula:
aetm = CZ . I'Ild(l - QA, 1)7

where Cj is the worst case execution time of the task, rnd(a, b) is a function that
returns a random number in the interval [a, b], using a uniform distribution, and

%@eh"'], represents the average ratio of the unused

the parameter A, which is
computation times.

The result of the simulation can be seen in the graph shown in Figure 16.
In the vertical axis the average response time of each algorithm is represented
as a function of the parameter A, which ranges from 0 to 0.5. The case A =0
corresponds to the situation in which the actual execution times are equal to
the worst case ones. In this particular situation the result is equivalent to that
shown in a previous experiment.

As soon as A becomes greater than zero, that is, the actual execution times
become less than the worst case ones, the performance of the DPE server tends
to be much better, and also tends to approach the performance of the TB
server. This behaviour is confirmed for all other values of A, thus proving the
effectiveness of the reclaiming technique used in the DPE and IPE algorithms.

From the graph, we can see that the TBS algorithm shows a good behaviour,
too, although no explicit reclaiming has been designed for it. Finally, also the
Polling and the Sporadic servers show good improvements, due to the lower
actual periodic load. However, their performance is always significantly worse,
compared to the others.

9 Discussion and Conclusions

In this paper we have introduced five novel on-line scheduling algorithms for real-
time systems with dynamic priorities. Namely, all algorithms exploit the well

31

Periodic Load = 65% Mean Aperiodic Load = 25%
180 T T T T

Polling —<—
160 £ DSS —+-
h DPE -8--

" TBS -
140 IPE &= o

Mean Response Time

60 -

20 1

0 I I I I
0 0.1 0.2 0.3 0.4 0.5
Mean Unused Computation Time Ratio

Figure 16: Response times vs. unused computation times.

known Earliest Deadline First policy to deal with both soft aperiodic and hard
periodic tasks. All algorithms have been characterized in terms of schedulability
and implementation complexity. For two of them, DPE and IPE, a simple
resource reclaiming technique has been designed and proven to be effective.
Finally, extensive comparisons have been carried out in different experiments.

The experimental simulations have established that, from a performance
point of view, IPE and EDL show the best results. Although optimal, EDL is
far from being reasonably practical, due to the overall complexity. On the other
hand, IPE is able to achieve a comparable performance with much less com-
putational overhead. Both algorithms may have significant memory demands
when the periods of the periodic tasks are not harmonically related.

The Total Bandwidth algorithm has shown a very good performance, some-
times comparable to that of the nearly optimal of IPE. Observing that its im-
plementation complexity is among the simplest, one could consider this to be a
good candidate for practical systems.

Even though a bit more complex, the DPE and the DSS algorithms show
slightly worse performance, although they both provide better responsiveness
than the Polling server and the naive background service.

With this work we have covered a wide spectrum of algorithms dealing with
aperiodic service. Considering also other works in the literature, the real-time
designer that wishes to build a system with dynamic priorities should now have
a sufficient number of choices for designing an efficient aperiodic service mecha-
nism. In particular, in all those applications in which the periodic load is fixed,

32

the aperiodic service algorithm can be chosen to balance efficiency against com-
plexity.

As future work, we are considering to use the algorithms presented in this

paper as a basis for handling hard aperiodic tasks. The main goal will be
to build a uniform solution in which hard aperiodic tasks can be dynamically
guaranteed while average response times of soft aperiodic tasks can be predicted
with reasonable accuracy.

References

1]

2]

Baker, T.P., “Stack-Based Scheduling of Real-Time Processes,” The Jour-
nal of Real-Time Systems 3(1), 1991, pp. 67-100.

Buttazzo, G., and Stankovic, J., “RED: A Robust Earliest Deadline
Scheduling Algorithm,” Proc. of 3rd International Workshop on Responsive
Computing Systems, Austin, 1993.

Chen, M., and Lin, K., “Dynamic Priority Ceilings: A Concurrency Control
Protocol for Real-Time Systems,” The Journal of Real-Time Systems, 2,
1990.

Chetto, H., and Chetto, M., “Some Results of the Earliest Deadline
Scheduling Algorithm,” IEEE Trans. on Software Engineering, 15(10),
1989, pp. 1261-1269.

Chetto, H., Silly, M., and Bouchentouf, T., “Dynamic Scheduling of Real-
Time Tasks under Precedence Constraints,” The Journal of Real-Time Sys-
tems 2, 1990, pp. 181-194.

Davis, R.I., Tindell, K.W., and Burns, A., “Scheduling Slack Time in Fixed
Priority Preemptive Systems,” Proc. of Real-Time Systems Symposium,
1993, pp. 222-231.

Ghagzalie, T.M., and Baker, T.P., “Aperiodic Servers In A Deadline
Scheduling Environment,” The Journal of Real-Time Systems, 9, 1995.

Lehoczky, J.P., and Ramos-Thuel, S., “An Optimal Algorithm for Schedul-
ing Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems,” Proc. of
Real-Time Systems Symposium, 1992, pp. 110-123.

Lehoczky, J.P., Sha, L., and Ding, Y., “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behaviour,” Proc.
of Real-Time Systems Symposium, 1989, pp. 166—171.

Lehoczky, J.P., Sha, L., and Strosnider, J.K., “Enhanced Aperiodic Re-
sponsiveness in Hard Real-Time Environments,” Proc. of Real-Time Sys-
tems Symposium, 1987, pp. 261-270.

33

[11] Liu, C.L., and Layland, J.W., “Scheduling Algorithms for Multiprogram-
ming in a Hard real-Time Environment,” Journal of the ACM 20(1), 1973,
pp. 40-61.

[12] Mok, A.K., Fundamental Design Problems of Distributed Systems for the
Hard-Real-Time Environment, Ph.D. Dissertation, MIT, 1983.

[13] Ramos-Thuel, S., and Lehoczky, J.P., “On-line Scheduling of Hard Deadline
Aperiodic Tasks in Fixed-Priority Systems,” Proc. of Real-Time Systems
Symposium, 1993, pp. 160-171.

[14] Sprunt, B., Sha, L., and Lehoczky, J.P., “Aperiodic Task Scheduling for
Hard-Real-Time Systems,” The Journal of Real-Time Systems 1, 1989, pp.
27-60.

34

