
Real–Time Issues in Advanced Robotics Applications

Giorgio Buttazzo
Scuola Superiore S. Anna

Via Carducci, 40 – 56100 Pisa, Italy

Abstract

The aim of this paper is to discuss some important real-
time issues involved in the design of complex robotic appli-
cations. In particular, the problem of evaluating why and
when a robotics application needs real–time computing is
discussed first. The second issue concerns the definition of
time constraints for each task of the robot. We will show
how time constraints, such as periods and deadlines, can
be derived from the application, even though they are not
explicitly specified in the requirements. As a third issue, we
will describe a general hierarchical control architecture,
which can be built on top of a real–time system, to greatly
simplify the development of complex robotics applications
having real–time requirements.

1 Introduction

The main motivation for this paper is to give a precise
characterization of real–world robotics applications, so that
the theory developed on real–time computing and schedul-
ing algorithms can be practically used in this field to make
complex robot systems more reliable. In fact, a precise ob-
servation of the timing constraints specified in the control
loops and in the sensor acquisition processes is a necessary
condition for guaranteeing a stable behavior of the robot,
as well as a predictable performance. On the other hand,
concrete implementations of real–time tasks may raise hid-
den problems, which can drive the real–time community to
address new interesting issues and investigate productive
research areas. For these reasons, we begin our discussion
by introducing the essential features that characterize ad-
vanced robotics applications and thier related implications
on the real-time control architecture.

A fundamental quality that a robot system should have
to perform useful operations in unknown conditions is the
ability to sense the environment with multiple sensors. The
motivation for using multiple sensors is due to the non–
ideality of the world and of the sensors. Measurements
are noisy, partial, imperfect, and hence one sensor cannot

provide the system with reliable data. On the contrary, by
using multiple sensors, several different properties can be
extracted from an explored object, and the probability of
a correct recognition increases substantially. These prop-
erties may include geometric features (such as shape, con-
tours, holes, edges, protruding regions), mechanical charac-
teristics (such as hardness, flexibility, elasticity), or thermal
properties (such as temperature, thermal conductivity).

However, reading signals coming from sensors and pro-
cessing sensory data is not sufficient for exhibiting an intelli-
gent behavior. To be adaptive and autonomous, a robot sys-
tem should be able to discriminate stimuli, classify features,
recognize objects, and eventually create a symbolic repre-
sentation of the sensed environment. We call this complex
activity as a “perception process”. Depending on whether
the perception process is, or is not, strictly related to a motor
activity, we distinguish between passive and active percep-
tion. As we shall see later, the use of passive or active
perception makes a lot of difference in terms of real–time
processing requirements.

For passive perception we intend a perceptual activity
in which sensors are fixed or are used in static mode, i.e.,
there are no feedback loops between sensors and actuators,
whose movements follow predetermined trajectories. A
typical example of passive perception is given by a vision
system consisting of a fixed camera, which takes pictures
of a scene, recognizes objects, identifies their location, and
sends data to a robot arm for pick and place operations. In
this task, once the object locations are identified and the
arm trajectory is computed based on visual data, the robot
motion does not need to be modified on–line, therefore no
real–time processing is required.

On the other hand, active perception is a process that
involves dynamic sensing, where movements are utilized
as a mean for increasing and driving sensory information.
For active perception we intend the ability to not only see
and touch objects, but also to manipulate and probe them.
Perceptual activity is exploratory, probing, searching, and
involves complex tasks, such as recognition and manipu-
lation, which are essential in unstructured environments.
Unlike passive perception, where sensors and actuators can
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be physically separated, in active perception sensing and
control are tied together. Sensors are often mounted on
actuators and are used by the robot system to probe the en-
vironment and continuously adjust fine movements based
on actual data. Active perception is a problem of intelli-
gent control strategies applied to data acquisition processes,
which depend on the current state of the data interpretation
[3].

For example, when we explore an unknown object, we
do not just see it, but we look at it actively, and in the course
of looking our pupils adjust to the level of illumination, our
eyes bring the world into sharp focus, our eyes converge or
diverge, we move our head or change our position to get a
better view of it, and sometimes we use our hands.
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Figure 1. Difference between passive (a) and
active (b) perception, in terms of control
structures and processing requirements.

Figure 1 schematically illustrates the difference between
passive and active perception in terms of control structures
and data processing requirements. As we can see, the differ-
ence between the two processes causes a radical change in
the system architecture. In active perception, the influence
that the actuator movements have on the sensor responses
forces the system to react in real–time, causing the control
architecture to be hierarchically organized in a multilevel
structure of feedback loops.

In general, to support a wide range of sensory–motor
capabilities, ranging from low level reactions to complex
exploratory procedures, the system architecture must be
able to handle hierarchical control loops operating at dif-
ferent frequencies. Efficient and time bounded communica-
tion mechanisms are also required to close real–time control
loops at each level of the hierarchy, including short range
reflex arcs, for effective support of guarded movements.

An anthropomorphic approach to this issue has been dis-
cussed by Albus [1], who described the organization of a
behavior–oriented architecture based on multilevel control
loops organized in a hierarchical fashion. More specific
control architectures for robotics have been proposed in the
literature by [9, 11]. Although some of these solutions are

based on highly parallel hardware and can be organized in a
modular structure, they are difficult to test and to program,
since require the knowledge of many low level details. The
result is that these architectures are not practical, and can
only be used by experts. For this reason, recently, a lot of
effort has been done to design flexible and open program-
ming environments to deal with multisensory perception and
control [2, 10, 12]. However, in most of the cases, they are
developed above commercial priority–based kernels, that do
not support explicit time constraints, and do not have any
form of guarantee in task scheduling. As a consequence,
the robot may have an unpredictable behavior in heavy load
conditions, and cannot be used in critical applications.

The approach presented in this paper provides a solu-
tion to this problem by adopting a hierarchical control ar-
chitecture built on top of a hard real-time kernel, called
HARTIK [5], which supports explicit deadline specification
and on–line guaranteed scheduling. This allows to achieve
predictability in robotics applications with strict real–time
requirements. A flexible programming environment also
facilitates the development of tasks at different level of ab-
straction.

The rest of the paper is organized as follows. In sec-
tion 2, we address the problem of evaluating why and when
robotics applications need real–time computing. In sec-
tion 3, we will consider a specific application and show
how time constraints, such as periods and deadlines, can
be derived, even though their are not explicitly specified in
the requirements. In section 4, we present a general hier-
archical design methodology which greatly simplifies the
development of complex robotics applications having real–
time requirements, and provides a modular framework for
programming robot tasks at different level of abstraction.
Finally, summary and conclusions are reported in section 5.

2 When is real–time needed?

When implementing a control application, it is not al-
ways clear whether real–time computing is a necessary con-
dition for achieving a correct timing behavior. Therefore,
a crucial question that one should keep in mind when de-
veloping a control task is whether the application requires
time constraints. Unfortunately, answering this question is
not always so obvious. In fact, there are control applica-
tions in which the goal is specified in terms of explicit time
requirements, but tasks execution does not need a real–time
support.

Consider, for example, a sorting operation, in which a
set of N objects, arrived at time t0, must be classified and
sorted by a robot system in M different classes, based on
their local features. Suppose that each object has a firm
deadline within which it has to be sorted.

This sorting operation can be decomposed into three main



tasks, which involve object recognition, action planning,
and robot control. Once the objects are recognized (say by
vision), and their deadlines are derived, the purpose of the
planning task is to construct a sequence of actions so that
each object is sorted by its deadline. Clearly, the action plan
has to take into account the time needed by the robot to pick
an object and place it in the proper location. However, once
the plan is completed, the robot trajectory is determined, and
the arm can start its blind motion in a table–driven fashion.
Observe that the deadlines associated to the objects do not
impose any time constraint in the execution of the robot
tasks. The meet of the deadlines only depends on the action
plan and on the robot speed, that has to be known in advance.
It is also worth to notice that the processing structure of
the sorting application is similar to the typical scheme of
passive perception, where sensing, planning, and control
are quite separated, and must be executed sequentially. In
other words, a lack of feedback implies a lack of real–time
requirements.

In contrast, there are robotics applications which do not
have explicit time requirements, but need real–time support.
Consider, for example, a deburring operation, in which a
robot arm has to polish the surface of an object with a
grinding tool mounted on its wrist. This task can be specified
as follows: “slide the grinding tool on the object surface with
a constant speed v, while exerting a constant normal force
F , that must not exceed a maximum value equal to Fmax”.

In order to maintain a constant contact force against
the object surface, the robot must be equipped with a
force/torque sensor, mounted between the wrist flange and
the grinding tool. Moreover, to keep the normal force within
the specified maximum value, the force sensor must be ac-
quired periodically at a constant frequency, which depends
on the environment characteristics and on the task require-
ments. Note that, in this case, the robot trajectory is not
known in advance and hence cannot be precomputed off–
line. The robot end–effector has to be moved on the object
surface according to current force readings. This means that
at each step, the robot has to correct its trajectory in order to
maintain the contact force within the specified range.

In this example, time constraints are not explicitly given,
however they must be imposed on the tasks execution to
guarantee the meet of the application requirements. The
specific time constraints for this example will be derived in
the next section.

3 Time constraints definition

When we say that a robot reacts in real–time within a par-
ticular environment, we mean that its response to any event
in that environment has to be effective, according to some
control strategy, while the event is occurring. This means
that, in order to be effective, a control task must produce its

results within a specific deadline, which is defined according
to the characteristics of the robot-environment system.

If meeting a given deadline is critical for the system
operation and may cause catastrophic consequences, the task
and its associated deadline are said to be hard. If meeting
time constraints is desirable, but missing a deadline does not
cause any serious damage, the task and its deadline are said
to be soft. In addition to their criticalness, tasks that require
regular activations are called periodic, whereas tasks which
have irregular arrival times are called aperiodic.

Once all time critical tasks are identified and time con-
straints are specified (including criticalness and periodicity)
the real-time operating system supporting the application
should guarantee that all hard tasks complete within their
deadlines, while using a best-effort strategy for soft and non
real-time tasks.

To show how to derive time constraints from the ap-
plication requirements, let us consider the robot deburring
example described in the previous section. During the exe-
cution of this task, the robot slides the grinding tool on the
object surface with constant speed, while exerting a constant
normal force against it.

As illustrated in figure 2, if T is the period of the control
process and v is the robot horizontal speed, the space covered
by the robot end–effector within each period is Δx1 � vT .
In case of impact, we also have to consider the space Δx2

covered from the time at which the stop command is de-
livered to the time in which the robot is at complete rest.
This delay depends on the robot dynamic response and can
be computed as follows. If we approximate the robot fre-
quency response with a transfer function having a dominant
pole f0 (as typically done in most cases), then the breaking
space can be computed as Δx2 � v�0, being �0 � 1

2�f0
.

Hence the total distance covered by the robot is given by:

Δx � Δx1 � Δx2 � v�T � �0�

If K is the rigidity coefficient of the contact between the
robot end–effector and the object, then, in the worst case,
the value of the horizontal force exerted on the surface is
F � � KΔx � Kv�T � �0�. Now, if we want to maintain
F � below a maximum force Fmax, we must impose that:

Kv�T � �0� � Fmax (1)

which means:

T � �
Fmax

Kv
� �0� (2)

Notice that, in order to be feasible, the right hand side of
condition 2 must not only be greater than zero, but it must
be greater than the system time resolution, fixed by the
system tick Q. This may impose additional restrictions on
the application. For example, we may derive the maximum
speed of the robot during the deburring operation as:
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Figure 2. Derivation of the period of the force
control task.

v �
Fmax

K�Q� �0�
(3)

or, if v cannot be arbitrarely reduced, we may fix the tick
resolution such that:

Q � �
Fmax

Kv
� �0� (4)

Once the feasibility is achieved, i.e. condition 4 is satisfied,
the result expressed in equation (2) says that stiff environ-
ments and high robot velocities requires faster control loops
to respect the force limit given by Fmax.

In more complex applications characterized by nested
servo loops, the frequencies of the control tasks are often
chosen to separate the dynamics of the controllers. This
greatly simplifies the analysis of the stability and the design
of the control law.

Consider, for instance, the control architecture shown in
figure 3. Each stage of this control hierarchy effectively
decomposes an input task into simpler subtasks executed at
lower levels. The top level input command is the goal,which
is successively decomposed into subgoals, or subtasks, at
each stage of the control hierarchy, until at the lowest level,
output signals drive the actuators. Sensory data enter this
hierarchy at the bottom and are filtered through a series
of sensory–processing and pattern–recognition modules ar-
ranged in a hierarchical structure. Each module processes
the incoming sensory information, extracting features, com-
puting parameters, recognizing patterns and applying vari-
ous types of filters to the sensory data.

Information relevant to the control is extracted and sent
to the control module at the same level; the remaining par-
tially processed data is then passed to the next higher level
for further processing. As a result, feedback enters this hi-
erarchy at every level. At the lowest level, the feedback is
almost unprocessed and hence is fast–acting with very short
delays, while at higher levels feedback passes through more
and more stages, and hence is more sophisticated but slower.

The implementation of such a hierarchical control struc-
ture has two main implications:

� Since the most recent data have to be used at each
level of control, messages can be sent through asyn-
chronous communication primitives, using overwrite
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Figure 3. Hierarchical control of a robot sys-
tem.

semantic and non consumable buffers. The use of
asynchronous message passing mechanisms avoid
blocking situations and allows the interaction among
periodic tasks running at different frequencies.

� When the frequencies of hierarchical nested servo
loops differ for about an order of magnitude, the anal-
ysis of the stability and the design of the control laws
are significantly simplified. For instance, if a joint
position servo is carried out at the lowest level with
a period of 1 ms, a force control loop closed at the
middle level can be performed with a period of 10ms,
while a vision process running at the higher control
level can be executed with a period of 100 ms.

4 A hierarchical programming environment

In this section, we present a hierarchical programming
environment that can be built on top of a real–time kernel
to develop robot control applications. The main purpose of
this software structure is to simplify the implementation of
complex tasks and to provide a flexible interface, in which
most of the low and middle level real–time control strategies
are built in the system as part of the controller, and hence
can be viewed as basic capabilities of the robot system [4].

As shown in figure 4, the control architecture is organized
in a hierarchical structure of layers, each of them provides
the robot system with new functions and more sophisticated
capabilities. The importance of this approach is not simply
that one can divide the program into parts, rather it is crucial
that each procedure accomplishes an identifiable task that



can be used as a building block in defining other procedures.
This programming environment has been built on top of

a hard real–time kernel, called HARTIK [5], specifically de-
signed to develop predictable robotics applications. Briefly,
the main features of this kernel include explicit specification
of time constraints (such as periods and deadlines) preemp-
tive dynamic scheduling, coexistence of hard, soft, and non
real–time tasks, separation between time constraints and im-
portance, deadline tolerances, dynamic guarantee of critical
tasks, and asynchronous communication channels partic-
ularly suited for exchanging information among periodic
control tasks having different rates. A novel scheduling
mechanism, described in [7], allows to achieve graceful
degradation in overload conditions, integrating the execu-
tion of hard periodic and soft aperiodic tasks [13]. Hard
aperiodic tasks can also be handled by the system by a
slightly different mechanism presented in [14].
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Figure 4. Hierarchical software environment
for programming complex robotic applica-
tions.

The Device Level includes a set of modules specifically
developed to manage all peripheral devices used for low
level I/O operations, such as sensor acquisition, joint servo,
and output display. Each module provides a set of library
functions, whose purpose is to facilitate device handling
and to encapsulate hardware details, so that higher level
software can be developed independently from the specific
knowledge of the peripheral devices.

The Behavior Level is the level in which several sensor–
based control strategies are implemented, in order to give
the robot different kinds of behavior. The functions avail-
able at this level of the hierarchy allows the user to close
real–time control loops, by which the robot can modify on
line planned trajectories based on sensory information, ap-
ply desired forces and torques on the environment, operate
according to hybrid control schemes, or behave as a mechan-
ical impedance. These basic control strategies are essential
for executing autonomous tasks in unknown conditions,and,
in fact, they are used in the next level to implement more
skilled actions.

Based on the control strategies developed in the Behavior

Level, the Action Level enhances the robot capability by
adding more sophisticated sensory–motor activities, which
can be used at the higher level for carrying out complex tasks
in unstructured environments. Some representative actions
developed at this level include: a) the ability of the robot
to follow an unknown object contour, maintaining the end–
effector in contact with the explored surface; b) the reflex to
avoid obstacles, making use of visual sensors; c) the ability
to adapt the end–effector to the orientation of the object to
be grasped, based on the reaction forces sensed on the wrist;
d) visual tracking, to follow a moving object and keep it at
the center of the visual field. Many other different actions
can be easily implemented at this level by using the modules
available at the Behavior Level or directly taking the suited
sensory information from the functions at the Device Level.

Finally, the Application Level is the level at which the user
defines the sequence of robot actions in order to accomplish
applicative tasks, such as the assembly of mechanical parts,
the exploration of unknown objects, the manipulation of
delicate materials, or catching moving targets. Notice that
these tasks, although sophisticated in terms of control,can be
readily implemented thanks to the action primitives included
in the lower levels of the hierarchical control architecture.

The hard real-time kernel which supports the application
guarantees the timely execution of all critical activities and
insures a regular activation of all periodic tasks, even in pres-
ence of aperiodic load that may derive from asynchronous
events in the environment. In normal load conditions, the
scheduling algorithm adopted in the kernel is able to achieve
full processor utilization and guarantee a feasible schedule
for all hard periodic and aperiodic tasks, without jeopar-
dizing the response time of the soft aperiodic activites. If
an overload occurs (for instance, caused by a multiple ac-
tivations of aperiodic tasks), hard periodic tasks are still
guaranteed, while aperiodic tasks are handled by consid-
ering their importance value specified by the programmer.
This scheduling methodology adds robustness to the system
and insures a minimum performance even in critical load
conditions.

The control architecture presented above has been used to
develop a number of real-time robotic applications, such as
assembling mechanical parts, cleaning flat surfaces with un-
known orientation, exploring unknown contours with tactile
sensors /citeDar87, following moving objects by a mobile
camera, and catching moving targets by a robot arm using vi-
sual based control /citeBut94. In all these applications, the
arm trajectory cannot be precomputed off–line to accom-
plish the goal, but it must be continuously replanned based
on the current sensory information. As a consequence, the
guaranteed schedule provided by the HARTIK kernel was
essential for achieving a stable and predictable behavior of
the robot.



5 Conclusions

In this paper we have addressed the problem of using
real–time computing in complex robotics applications, in
which multiple sensors have to be integrated to cope with
unknown environments. We have shown that the real–time
features of a control application strongly depend on active
perception, which causes the control architecture to be or-
ganized in a hierarchical structure of controllers, each char-
acterized by a proper frequency of execution. We also de-
scribed how time constraints, such periods and deadlines,
can be derived from the application, even though their are
not explicitly specified in the requirements.

To provide a general design methodology, we have pre-
sented a hierarchical control architecture that can be built
on top of a real–time system to facilitate the development
of complex robotics applications having real–time require-
ments. The architecture also provides a modular framework
for programming robot tasks at different level of abstraction.
A number of real–world robotics applications implemented
according to the presented hierarchical design methodology,
demonstrated the effectiveness of the proposed approach.
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