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Abstract

In this paper, we address the problem of schedul-
ing hybrid task sets consisting of hard periodic and soft
aperiodic tasks that may share resources in exclusive
mode in a dynamic environment, where tasks are sched-
uled based on their deadlines. Bounded blocking on ex-
clusive resources is achieved by means of a dynamic
resource access protocol which also prevents deadlocks
and chained blocking. A tunable servicing technique is
used to improve aperiodic responsiveness in the pres-
ence of resource constraints. The schedulability analy-
sis is also extended to the case in which aperiodic dead-
lines vary at runtime. The results achieved in this pa-
per can also be used for developing adaptive real-time
systems, where task deadlines or periods can change to
conform to new load conditions.

1. Introduction

In many real-time control applications, tasks coop-
erate through global resources (e.g., shared memory
bu�ers) accessed in mutual exclusion to ensure data
consistency of all common data structures. If the ap-
plication timing constraints need to be guaranteed o�-
line, the maximum blocking delays introduced on tasks'
execution by the concurrency control protocol used in
the kernel must be taken into account in the schedula-
bility analysis. Classical semaphores are not suited for
enforcing mutual exclusion in real-time systems, since
they may introduce unbounded priority inversion which
can cause high priority tasks to miss their deadlines. To
bound the priority inversion phenomenon and allow an
o�-line schedulability analysis, several approaches have
been proposed in the literature.

In [9], resource contention is solved o� line by con-
structing a static schedule, which is stored in a ta-
ble and enforced at runtime using a time-driven ap-
proach. A di�erent approach is used in the Spring

kernel [16], where the schedule is constructed using
a heuristic function which may integrate timing, re-
source, and precedence constraints [22]. Sha, Rajku-
mar, and Lehoczky, in [15], proposed two concurren-
cy control protocols, the Priority Inheritance Proto-
col (PIP) and the Priority Ceiling Protocol (PCP),
to bound the priority inversion phenomenon in �xed-
priority systems scheduled by the Rate Monotonic (R-
M) algorithm. In [7], Je�ay described a method, the
Dynamic Deadline Modi�cation (DDM) protocol, for
scheduling sporadic tasks with shared resources under
the Earliest Deadline First (EDF) scheduling Algorith-
m. In [1], Baker proposed a general resource access
protocol, the Stack Resource Policy (SRP), which can
be used under �xed as well as dynamic priority assign-
ments.

All the papers cited above assume that resources can
be shared among hard tasks, which can be periodic or
sporadic, but no soft tasks are considered in the mod-
el. In other works, soft aperiodic task management is
integrated with periodic task scheduling, both under
the RM algorithm [10, 17, 11, 21] and the EDF algo-
rithm [6, 19, 3], however no resource constraints are
considered in the schedulability analysis.

Such a lack in the scheduling theory is probably due
to the fact that, when aperiodic tasks are handled by a
server mechanism, their execution can be broken into
many di�erent chunks (this is especially true for a Spo-
radic Server), whose start time and duration depends
on the actual system load and server capacity. In these
conditions, if aperiodic tasks share resources with pe-
riodic tasks, bounding the maximum blocking times of
periodic tasks to achieve feasible schedules is not easy.

On the other hand, real world control applications
often consist of tasks with di�erent criticality and acti-
vation characteristics which cooperate through shared
resources. Thus, investigating the problem of schedul-
ing hard periodic and soft aperiodic tasks under tim-
ing and resource constraints has certainly an important
impact on real-time systems development.
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In [12], this problem has been solved in the case in
which periodic tasks are scheduled by EDF, aperiod-
ic tasks are handled by the Total Bandwidth Server
(TBS), and shared resources are managed by the SRP.

In this paper, we extend the analysis to deal with
dynamic deadline modi�cations, in order to use the
tunable TB* server [3], for improving aperiodic respon-
siveness in the presence of resource constraints. The
results achieved in this paper can also be used in adap-
tive real-time systems, where task deadlines or periods
can change to conform to new load conditions.

The rest of the paper is organized as follows. Sec-
tion 2 brie
y recalls the Total Bandwidth Server (TBS)
algorithm and its tunable extension (TB*) for assign-
ing optimal deadlines to soft aperiodic tasks. Section 3
presents the main results obtained on the scheduling
analysis of hybrid (hard periodic and soft aperiodic)
task sets when soft aperiodic tasks share resources with
periodic tasks. Section 4 extends the analysis to the
case in which aperiodic tasks can change their dead-
lines and illustrates the TB� usage in the presence of
resource constraints. Section 5 presents our conclusions
and future works.

2. The Total Bandwidth Approach

In this section we brie
y recall the Total Bandwidth
Server (TBS) algorithm and its tunable extension (T-
B*) for assigning optimal deadlines to soft aperiodic
tasks to improve their responsiveness.

2.1. The Total Bandwidth Server

The Total Bandwidth Server was proposed by Spuri
and Buttazzo [18, 19] to improve the response time of
soft aperiodic requests in a dynamic real-time environ-
ment, where tasks are scheduled according to EDF [13].

This is done by assigning a suitable deadline to each
request, which is scheduled according to EDF together
with the periodic tasks in the system. When the k-th
aperiodic request arrives at time t = rk , it receives a
deadline

dk = max(rk ; dk�1) +
Ca
k

Us

;

where Ca
k is the execution time of the request and Us

is the server utilization factor (i.e., its bandwidth). By
de�nition d0 = 0. The request is then inserted into the
ready queue of the system and scheduled by EDF, as
any periodic or sporadic instance.

Figure 1 shows an example of schedule produced
with a TBS. The �rst aperiodic request, arrived at
time t = 6, is assigned a deadline d1 = r1 +

C1

Us
=

6 + 1
0:25 = 10, and since d1 is the earliest deadline
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Figure 1. Total Bandwidth Server example.

in the system, the aperiodic activity is executed im-
mediately. Similarly, the second request receives the
deadline d2 = r2 +

C2

Us
= 21, but it is not serviced

immediately, since at time t = 13 there is an active
periodic task with a shorter deadline (18). Finally, the
third aperiodic request, arrived at time t = 18, receives
the deadline d3 = max(r3; d2) +

C3

Us
= 21 + 1

0:25 = 25
and is serviced at time t = 22.

Intuitively, the assignment of the deadlines is such
that in each interval of time the fraction of processor
time allocated by EDF to aperiodic requests never ex-
ceeds the server utilization Us. As a consequence, the
schedulability of a periodic task set in the presence of
a TBS can simply be tested by verifying the following
condition:

Up + Us � 1;

where Up is the utilization factor of the periodic task
set. This results is formally proved in [19].

2.2. The TB* algorithm

The key idea of the TB* algorithm is to assign each
aperiodic request a deadline shorter than that given by
the TBS rule.

The algorithm works in the following way. Each
time an aperiodic task is eligible for execution (that is,
as soon as it is released when there are no aperiodic
tasks to execute, or all the previously arrived aperi-
odic tasks complete) it is �rst assigned a deadline dk
according to a TBS with a bandwidth Us = 1 � Up.
Then, the algorithm tries to shorten this deadline as
much as possible to enhance aperiodic responsiveness,
still maintaining the periodic tasks schedulable. The
feasibility of the shortening process is guaranteed by
the following theorem [3]:

Theorem 1 (Buttazzo and Sensini, 97) Let � be
a feasible schedule of task set T , in which an aperi-
odic job Jk is assigned a deadline dk, and let fk be
the �nishing time of Jk in �. If dk is substituted with



d0k = fk, then the new schedule �' produced by EDF is
still feasible.

The result stated in Theorem 1 is a direct conse-
quence of the EDF optimality [5]. The process of short-
ening the deadline can recursively be applied to each
new deadline, until no further improvement is possi-
ble, given that the schedulability of the periodic task
set must be preserved. If dsk is the deadline assigned to
the aperiodic request Jk at step s, and fsk is the cor-
responding �nishing time in the current EDF schedule
(achieved with dsk), the new deadline ds+1k is set at time
fsk . At each step, the schedulability of the task set is
guaranteed by Theorem 1. The algorithm stops either
when dsk = ds�1k or after a maximum number of steps
de�ned by the system designer for bounding the com-
plexity.

The possibility of bounding the number of shorten-
ing steps is a very important feature in dynamic sys-
tems, since it allows the designer to balance the perfor-
mance of the algorithm versus its complexity. In the
following, TB(N) will denote a Total Bandwidth serv-
er which performs at most N shortening steps in the
deadline assignment rule. In particular, the plain TBS
is equivalent to a TB(0). Moreover, TB* will denote
a Total Bandwidth server which continues to shorten
the deadline until dsk = ds�1k .

It is worth noting that the exact evaluation of fsk
would require the development of the entire schedule
up to the �nishing time of request Jk, scheduled with
dsk. However, there is no need to evaluate the exact
value of fsk to shorten the deadline. Rather, an upper

bound ~fsk can be used to simplify the computation. It
is de�ned as follows.

De�nition 1 When deadline dsk is assigned to job Jk,
~fsk is de�ned as the time at which the aperiodic job Jk
and all the periodic instances with deadline less than
dsk complete execution.

Based on its de�nition, ~fsk can be computed as fol-
lows:

~fsk = t+ Ca
k +D(t; dsk � 1); (1)

where t is the current time (corresponding to the re-
lease time rk of request Jk or to the completion time
of the previous request), Ca

k is the worst-case compu-
tation time required by Jk, and D(t; d

s
k � 1) is the in-

terference on Jk due to the periodic jobs in the interval
[t, dsk). Notice that a periodic job with deadline equal
to dsk does not interfere with Jk, because deadlines ties
are broken in favor of aperiodic jobs.

It is worth observing that ~fsk is an upper bound for
fsk because the interference D is computed in [t, dsk),

rather than in [t, fsk). As a consequence, ~fsk could be
the �nishing time of a periodic instance. In general,
~fsk � fsk .
The periodic interference D(t; dsk�1) in equation (1)

can be expressed as the sum of two terms, Da(t; d
s
k�1)

and Df (t; d
s
k � 1), where Da(t; d

s
k � 1) is the interfer-

ence due to the currently active periodic instances with
deadlines less than dsk, andDf (t; d

s
k�1) is the future in-

terference due to the periodic instances activated after
time t with deadline before dsk . Hence:

Da(t; d) =
X

�i active; di�d

ci(t) (2)

and

Df (t; d) =

nX
i=1

max

�
0;

�
d� next ri(t)

Ti

��
Ci; (3)

where next ri(t) identi�es the time greater than t at
which the next periodic instance of task �i will be ac-
tivated.

Since Da and Df can be computed in O(n), the over-
all complexity of the deadline assignment algorithm is
O(Nn), where N is the maximum number of steps per-
formed by the algorithm to shorten the initial deadline
assigned by the TBS.

It can be shown that ~fsk is a tight upper bound if it
coincides with the deadline dsk.

2.2.1 An example

The following example illustrates the TB* deadline as-
signment algorithm. The task set consists of two peri-
odic tasks, �1 and �2, with periods 3 and 4, and com-
putation times 1 and 2, respectively. A single aperi-
odic job Jk arrives at time t = 2, requiring 2 units of
computation time. The periodic utilization factor is
Up = 5=6, leaving a bandwidth of Us = 1=6 for the
aperiodic tasks.

When the aperiodic request arrives at time t = 2, it
receives a deadline d0k = rk + Ca

k=Us = 14, according
to the TBS algorithm. The schedule produced by EDF
using this deadline assignment is shown in Figure 2.

By applying equations (2) and (3) we have:

Da(2; 13) = c2(2) = 1

Df (2; 13) = 3C1 + 2C2 = 7

and, by equation (1), we obtain:

d1k = ~f0k = t+ Ca
k +Da +Df = 12:

In this case, it can easily be veri�ed that the aperiodic
task actually terminates at t = 12. This happens be-
cause the periodic tasks do not leave any idle time to
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Figure 2. Schedule produced by EDF with
d0k = 14.

the aperiodic task, which is thus compelled to execute
at the end. Table 1 shows the subsequent deadlines
evaluated at each step of the algorithm. In this exam-
ple, six steps are necessary to �nd the shortest deadline
for the aperiodic request.

step dsk
~fsk

0 14 12
1 12 9
2 9 8
3 8 6
4 6 5
5 5 5

Table 1. Deadlines and finishing times com-
puted by the TB* algorithm.

The schedule produced by EDF using the shortest
deadline d�k = d5k = 5 is shown in Figure 3. Notice that
at t = 19 the �rst idle time is reached, showing that
the whole task set is schedulable.

2.2.2 Optimality

As far as the actual execution time of tasks is equal
to the worst-case one, the TB* deadline assignment
algorithm achieves optimality, in that it minimizes the
response time of each aperiodic task among all schedul-
ing algorithms which meet all periodic task deadlines,
assuming that aperiodic requests are processed in FI-
FO order and that deadlines ties are broken in favor
of aperiodic tasks. The result is summarized in the
following theorem [3]:

Theorem 2 (Buttazzo and Sensini, 97) For any
periodic task set and any aperiodic arrival stream pro-
cessed in FIFO order, the TB* algorithm minimizes the
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Figure 3. Schedule produced by EDF with
d�k = 5.

response time of every aperiodic task among all schedul-
ing algorithms which meet all periodic task deadlines.

3. TBS with resources

When soft aperiodic tasks share resources with pe-
riodic tasks, the duration of their critical sections must
be taken into account in the feasibility analysis. In or-
der to bound the maximum blocking time of each task
and analyze the schedulability of hybrid task sets, we
assume that shared resources are accessed using the
Stack Resource Policy (SRP) [1].

According to this protocol, every task �i is assigned a
dynamic priority pi based on EDF and a static preemp-
tion level �i, such that the following essential property
holds:

Property 1 Task �i is not allowed to preempt task �j ,
unless �i > �j .

Under EDF, Property 1 is veri�ed if periodic task �i is
assigned the following preemption level:

�i =
1

Di

:

In addition, every resource Rk is assigned a static
1 ceil-

ing de�ned as

ceil(Rk) = max
i
f�i j �i needs Rkg: (4)

Finally, a dynamic system ceiling is de�ned as

�s(t) = max[fceil(Rk) j Rk is currently busyg [ f0g]:

Then, the SRP scheduling rule states that

1In the case of multi-units resources, the ceiling of each re-

source is dynamic as it depends on the number of units actually

free.



\a task is not allowed to start executing un-
til its priority is the highest among the active
tasks and its preemption level is greater than
the system ceiling".

The SRP ensures that once a task is started, it will
never block until completion; it can only be preempt-
ed by higher priority tasks. This protocol has sever-
al interesting properties. For example, it applies to
both static and dynamic scheduling algorithms, pre-
vents deadlocks, bounds the maximum blocking times
of tasks, reduces the number of context switches, can
be easily extended to multi-unit resources, allows tasks
to share stack-based resources, and its implementation
is straightforward.

Under the SRP there is no need to implement wait-
ing queues. In fact, a task never blocks its execution:
it simply cannot start executing if its preemption lev-
el is not high enough. As a consequence, the blocking
time Bi considered in the schedulability analysis refers
to the time for which task �i is kept in the ready queue
by the preemption test. Although the task never block-
s, Bi is considered as a \blocking time" because it is
caused by tasks having lower preemption levels.

In general, the maximum blocking time for a task
�i is bounded by the duration of the longest critical
section among those that can block �i. Assuming rela-
tive deadlines equal to periods, the maximum blocking
time for each task �i can be computed as the longest
critical section among those with a ceiling greater than
or equal to the preemption level of �i:

Bi = maxfsjh j (Di < Dj) ^ �i � ceil(�jh)g; (5)

where sjh is the worst-case execution time of the h-th
critical section of task �j , Dj is its relative deadline
and, �jh is the resource accessed by the critical section
sjh. Given these de�nitions, the feasibility of a task
set with resource constraints (when only periodic and
sporadic tasks are considered), can be tested by the
following suÆcient condition [1]:

8i; 1 � i � n

iX
k=1

Ck

Tk
+

Bi

Ti
� 1; (6)

which assumes that all the tasks are sorted by decreas-
ing preemption levels, so that �i � �j only if i < j.

In [12], the analysis has been extended to provide
a tighter schedulability test, using a processor demand
approach [2, 8]. The result is stated in the following
theorem:

Theorem 3 (Lipari and Buttazzo, 99) Let T P be
a set of n hard periodic tasks ordered by decreasing pre-
emption level (so that �i � �j only if i < j). Then,
T P is schedulable by EDF+SRP if

nX
i=1

Ci

Ti
� 1;

8 i; 1 � i � n 8 L; Ti � L < Tn

L �
iX

j=1

�
L

Tj

�
Cj +maxf0; Bi � 1g:

The complexity of the proposed schedulability test
is pseudo-polynomial. As a consequence, for large task
sets, this method can be used o�-line to guarantee the
schedulability of all critical periodic and sporadic tasks
in the presence of resource constraints.

To use the SRP along with a TBS, aperiodic tasks
must be assigned a suitable preemption level. In partic-
ular, each aperiodic request Jk is assigned the following
preemption level:

�k =
Us

Ca
k

: (7)

Notice that
Ca
k

Us
= [dk � ek] is the interval between the

time ek at which the aperiodic request becomes eligi-
ble to execute and the absolute deadline assigned to it
by the TBS. Since this is equivalent to a relative dead-
line, the preemption level de�ned by equation (7) is
consistent with Property 1.

Once a preemption level is assigned to each aperiodic
task, and a ceiling is associated with each resource, the
maximum blocking time of periodic task �i can still be
computed using equation (5):

Bi = maxfsj;h j Di < Dj ^ �i � ceil(�jh)g;

where now j ranges over the whole task set, includ-
ing both periodic and aperiodic tasks, and, if �j is an

aperiodic task, Dj =
Cj
Us
. Then, the schedulability of

the hybrid task set can be guaranteed based on the
following theorem [12]:

Theorem 4 (Lipari and Buttazzo, 99) Let T P be
a set of n hard periodic tasks ordered by decreasing pre-
emption level (so that �i � �j only if i < j), and let
T A be a set of aperiodic tasks scheduled by a TBS with
utilization Us. Then, set T P is schedulable by ED-
F+SRP+TBS if

nX
i=1

Ci

Ti
+ Us � 1: (8)

8 i; 1 � i � n 8 L; Ti � L < Tn

L �
iX

j=1

�
L

Tj

�
Cj +maxf0; Bi � 1g+ LUs: (9)



4. TB* with resources

In this section we extend the analysis to the case
in which tasks can change their deadlines and analyze
the TB� usage in the presence of resource constraints.
Unfortunately, using the TB� algorithm with SRP pro-
tocol is not trivial. In fact, whenever the deadline of job
Jk is shortened, the preemption level associated with
Jk increases, and the blocking factors of all the tasks in
the set change at each shortening step. When an ape-
riodic task is served by TB�, its �ctitious deadline is
computed on line depending on the current work-load,
so we cannot decide o� line the actual preemption level
�k = 1=Dk that will be assigned to aperiodic task Jk
at run-time. When the task set has to be guaranteed
o� line, it's necessary to know the minimum relative
deadline Dmin

k that can be assigned to request Jk by
TB*. By �xing Dmin

k , we can assign each aperiodic
task Jk a maximum preemption level �max

k = 1=Dmin
k

that will be used to compute o� line the ceiling of ev-
ery resource. If Dk is the relative deadline of aperiodic
task Jk assigned on line by TB�, the following inequal-
ity holds:

8k; �max
k �

1

Dk

:

Note that, in our model an aperiodic task Jk starts
its execution only if its priority is the highest among
the active tasks (it is assumed that deadlines ties are
broken in favor of aperiodic jobs) and only if its actual
preemption level �k = 1=Dk is greater than the system
ceiling. In order for the SRP protocol to be correct, ev-
ery resource Ri is assigned a static

2 ceiling ceil(Ri) (we
assume binary semaphores) that is equal to the highest
preemption level of the tasks that could be blocked on
Ri when the resource is busy. Hence, ceil(Ri) can be
computed as follows:

ceil(Ri) = max[f�j j �j periodic needs Rig [

f�max
k j Jk aperiodic needs Rig]:(10)

It is easy to note that the ceiling of a resource, com-
puted by equation (10), is greater than or equal to the
one computed using the preemption level of period-
ic tasks and the actual preemption level of aperiodic
tasks (see equation (4)).

Furthermore, we need to change the de�nition of
blocking time for a periodic task. In fact, in comput-
ing the blocking time for a periodic task, we need to
take into account the duration of the critical section of

2In the case of multi-units resources, the ceiling of each re-

source is dynamic as it depends on the number of units actually

free.

Algorithm bandwidth reservation
f

x = 0;
Udef
s = U inf

s (x) = 0
Usup
s (x) = 1�

Pn

i=1
Ci
Ti

while (Usup
s (x)� U inf

s (x) � ERR) f

Us(x) =
Usup
s (x)+Uinf

s (x)
2

for each aperiodic task Jk �max
k (x) = Us(x)

Ck

for each resource � compute ceil(�)
for each periodic task �i compute Bi

if (9) is veri�ed f
Udef
s = Us(x)

Usup
s (x+ 1) = Usup

s (x)
U inf
s (x+ 1) = Us(x)

g
else f

Usup
s (x+ 1) = Us(x)

U inf
s (x+ 1) = U inf

s (x)
g
x = x+ 1

g
g

Figure 4. Algorithm for reserving a bandwidth
Us to TBS.

an aperiodic task without considering its relative dead-
line, because it is assigned on-line and cannot be known
beforehand. Hence:

Bi = maxfsj;h j �i � ceil(�jh) ^

((�j is periodic with Di < Dj)or

(�j is aperiodic))g: (11)

These modi�cations do not change any property of
the SRP and permit to keep a static ceiling for the re-
sources even when the �ctitious deadlines of aperiodic
jobs are computed on line by the TB� server.

Now we need to compute a bandwidth Us to safely
assign an initial deadline to an aperiodic task: then
this deadline can be advanced by the TB* algorithm.
We also need a way to assign each aperiodic task a
maximum preemption level �max

k .
In the next section we propose a method for assign-

ing these variables such that the periodic tasks' schedu-
lability is not jeopardized.

4.1. Off-line analysis

Condition (8) imposes that Us � 1 �
Pn

i=1
Ci
Ti
. If

aperiodic tasks do not use resources, then the blocking



time Bi do not depend on the aperiodics. In this simple
case, Us can be computed as:

Us = minf

 
1�

nX
i=1

Ci

Ti

!
[

min
i;L

0
@L�

Pi

j=1

j
L
Tj

k
Cj �maxf0; Bi � 1g

L

1
Ag:

In the case in which aperiodic tasks use resources,
the problem is complicated by the fact that the re-
source ceilings depend upon the maximum preemption
levels assigned to aperiodic tasks. The following algo-
rithm computes the bandwidth Us for the server and a
�rst approximation for the maximum preemption levels
for the aperiodic tasks.

We assume that, for Us = 0, the system is schedula-
ble. In fact, this is equivalent to schedule the aperiodic
tasks in background: if the system is not schedulable
with Us = 0, then it cannot be schedulable with Us > 0.

The pseudo-code for the algorithm is shown in Fig-
ure 4. The algorithm precision depends on the value
of the ERR constant, which must be carefully chosen
to balance precision against computational complexity

(which is O(mnlog
�
Usup
s (0)�Uinf

s (0)
ERR

�
)).

At the end of the previous algorithm we have in
Udef
s the bandwidth used to assign the initial deadline

to the aperiodic tasks, and a �rst approximation for the
maximum preemption levels; in fact each aperiodic task
is assigned a initial value of maximum preemption level

�max
k =

Udef
s

Ck
. However, these can be further improved.

If an aperiodic task Jk does not use resources, we
can assign �max

k = 1, because the relative deadline
Dk can be advanced as much as possible by the TB�.
In fact, neither the resource ceilings nor the periodic
blocking times depend upon the maximum preemption
level of this task: hence the schedulability of the system
does not change. If, on the contrary, Jk uses resources,
we must proceed by successive re�nements.

Consider an aperiodic task Jk that uses resources,

and de�ne at step x = 0, �max
k (0) =

Udef
s

Ck
. Now sup-

pose that at the generic step x, this maximum pre-
emption level is between the preemption levels of two
periodic tasks, i.e.:

�i+1 � �max
k (x) < �i:

What happens if, at next step, we increase �max
k (x+1)

such that it becomes equal to �i? First, note that only
the ceilings of the resources that are used by Jk can
increase. In any case, it's easy to see that for any
periodic task �j , with j < i or j � i + 1, the blocking

time Bj does not change. Only for task �i the blocking
time can increase. Thus we have only to re-calculate
the resource ceilings and the blocking time Bi, and
check whether the i-th equation of (9) still holds:

8L; Ti � L < Tn

L �

iX
j=1

�
L

Tj

�
Cj +maxf0; Bi � 1g+ LUs:

Notice that Us is �xed and it is obtained by the
previous algorithm. If so, then we can set �max

k (x +
1) = 1

Ti�1
and repeat the procedure. If i = 1, then

�max
k = 1 and we can stop. Instead, if the previ-

ous condition does not hold, we set �max
k = 1

Ti+1
and

stop the algorithm. We can repeat the same algorithm
for every aperiodic task that uses resources. It can be
shown that:

� the maximum preemption level obtained in this
way is the maximum that can be achieved o�-line
for Jk;

� the maximum preemption level for task Jk is not
in
uenced by the maximum preemption level of
other aperiodic tasks.

Proofs are not reported for space limitation.

4.2. Algorithm description

The TB� algorithm in the presence of resource con-
straints works in a similar way as the TB� algorithm
for independent tasks described in Section 2.2. In fact,
each time an aperiodic task is eligible for execution, it
is �rst assigned a deadline dk according to a TBS with
a bandwidth Us. Then, the algorithm tries to shorten
this deadline as much as possible to enhance aperiod-
ic responsiveness, still maintaining the periodic tasks
schedulable. Since tasks may share resources, the up-
per bound ~fsk on the aperiodic response time has to be
computed to consider the blocking time of the aperi-
odic task to be served.

Let S(t; dsk) be the set of all the tasks with deadline
greater than or equal to dsk that are active and inside
a critical section at time t, that is:

S(t; dsk) = f�i;j j(�i;j is active and inside a critical

section at time t) ^ (di;j � dsk)g: (12)

Moreover, we de�ne Damax

(t; dsk) to be the maxi-
mum relative deadline between tasks which create in-
terference in [t; dsk), that is the interference due to the



currently active (at time t) instances with deadline less
than dsk, and the future interference due to the in-
stances activated after time t with deadline before dsk.
That is:

Damax

(t; dsk) = f0g [maxi;jfDi;j j(�i;j creates

interference in [t; dsk)g: (13)

Assuming that si;r(t) is the residual computation
time (at time t) that �i has to spend inside the critical
section on resource r, we introduce the notion of \ac-
tual aperiodic blocking time" Ba(t; dsk) of an aperiodic
task. This function represents the amount of time that
a task Jk (eligible at time t) with �ctitious deadline dsk
must be blocked according to the SRP protocol. More
formally, Ba(t; dsk) can be de�ned as follows:

De�nition 2 Considering interval [t; dsk], if �m is the
task (if any) with minimum deadline among the tasks
in S(t; dsk), we de�ne the \actual aperiodic blocking
time" Ba(t; dsk) of aperiodic task Jk (eligible at time t)
with deadline dsk, as:

Ba(t; dsk) = f0g [maxrfsm;r(t)jceil(r) �

1

maxfDamax(t; dsk); d
s
k � tg

g: (14)

Note that the maxr in equation (14) is needed only
in the presence of nested critical sections. In the p-
resence of resource constraints, the computation of ~fsk
(which still represents the time at which the aperiodic
job Jk and all the periodic instances with deadline less
than dsk complete their execution) has to be changed
as follows to take the actual aperiodic blocking time
Ba(t; dsk) into account:

~fsk = t+ Ca
k +D(t; dsk � 1) +Ba(t; dsk); (15)

where t is the current time (corresponding to the eligi-
ble time ek of request Jk), C

a
k is the worst-case com-

putation time required by Jk, D(t; d
s
k � 1) is the inter-

ference on Jk due to the periodic jobs in the interval
[t, dsk) and Ba(t; dsk) is the blocking time as de�ned
above. Notice that a periodic job with deadline equal
to dsk does not interfere with Jk, but it can contribute
to block Jk, because deadlines ties are broken in favor
of aperiodic jobs.

The following theorem sets the basis for our method.

Theorem 5 Let � be a feasible schedule produced by
EDF + SRP for a task set T composed by periodic
tasks and an aperiodic task Jk, having deadline dk and

maximum preemption level �max
k . Let ~fk be an upper

bound on the �nishing time of Jk, computed as follows:

~fk = ek + Ca
k +D(ek; dk � 1) +Ba(ek; dk);

(where ek is the eligible time of aperiodic task Jk). If
�max
k � 1

~fk�ek
, then the new task set T 0 obtained sub-

stituting dk with d0k = ~fk is still schedulable and the
schedule �0 obtained by EDF+SRP is feasible.

Proof.
See [4]. 2

Theorem 5 ensures that, if the task set T is schedula-
ble by assigning Jk a deadline dk, it will be also schedu-
lable by advancing dk up to the �nishing time ~fk, as
performed by the TB�.

Comparing the TB� in the presence of resource con-
straints to the one for independent tasks, we notice
that Theorem 5 introduces a constraint when the al-
gorithm tries to shorten an aperiodic deadline. In fact
the following condition has to be veri�ed for each new
deadline:

8s; k
1

dsk � t
� �max

k : (16)

The algorithm stops either when dsk = ds�1k , or af-
ter a maximum number of steps de�ned by the system
designer for bounding the complexity, or when equa-
tion (16) does not hold.

4.2.1 An example

The following example illustrates the TB* deadline as-
signment algorithm in the presence of resource con-
straints. The task set consists of three periodic tasks
�1, �2, �3, and an aperiodic task Jk which share two
resources R1 and R2; in particular �1 and �2 share the
resource R1, while �3 and Jk share the resource R2.
The task set parameters are shown in Table 2. It is
assumed that the maximum preemption level of aperi-
odic task Jk is �max

k = 1=Ca
k = 0:5; hence, according

to the result of Theorem 4, a bandwidth Us = 1=7 can
be safely assigned to the aperiodic task. In this ex-
ample, a single aperiodic job Jk arrives at time t = 2,
requiring 2 units of computation time.

When the aperiodic request arrives at time t = 2, it
receives a deadline d0k = rk + Ca

k=Us = 16, according
to the TBS algorithm.

Table 3 shows the subsequent deadlines evaluated
at each step of the algorithm. In this example, the
TB� algorithm performs three iterations to assign Jk
a deadline d3k = 7.



task Ci Ti R1 R2

Jk 2 - - 2
�1 1 4 1 -
�2 4 10 4 -
�3 4 20 - 4

Table 2. Parameters of the task set.

step dsk
~fsk Ba(t; dsk)

0 16 9 0
1 9 8 3
2 8 7 3
3 7 7 3

Table 3. Deadlines and finishing times com-
puted by the TB* algorithm.

When the process of shortening the aperiodic dead-
line occurs, at every step the actual aperiodic block-
ing time Ba(t; dsk) of Jk has to be computed. At
the �rst step, the actual aperiodic blocking time is
Ba(2; 16) = 0, then, at the second step, the task �2
blocks Jk, so the actual aperiodic blocking time be-
comes Ba(2; 9) = 3, and the same occurs at the next
steps; thus, we have:

Ba(2; 16) = 0:

Ba(2; 9) = Ba(2; 8) = Ba(2; 7) = 3:

The schedule produced by EDF using the deadline
d�k = d3k = 7 is shown in Figure 5. Notice that at t = 19
the �rst idle time is reached, showing that the whole
task set is schedulable.

In section 2.2.2 is shown that the TB� for indepen-
dent tasks is an optimal algorithm. Unfortunately, in
the presence of resource constraints, the TB� loses its
optimality. In fact, Figure 6 shows that the optimal
deadline for Jk is doptk = 4, where doptk < d�k = 7.

5. Conclusions

In this paper, we addressed the problem of schedul-
ing hybrid task sets consisting of hard periodic and soft
aperiodic tasks that may share resources in exclusive
mode in a dynamic environment, where tasks are sched-
uled based on their deadlines. The analysis has been
carried out by considering that resources are accessed
through the Stack Resource Policy and aperiodic tasks
are serviced by the tunable TB� server. This servicing
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Figure 5. Schedule produced by EDF+SRP
with d�k = 7.
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Figure 6. Optimal schedule produced by EDF
+ SRP with doptk = 4.

technique is used to improve aperiodic responsiveness
in the presence of resource constraints.

The o�-line analysis proposed in this paper, can be
used to perform o�-line guarantee of critical periodic
tasks and to reserve a bandwidth to serve aperiodic
tasks on line.

In the presence of resource constraints we showed
that the TB� loses optimality. As the future work we
plan to further investigate this issue and extend the
analysis to periodic task set with elastic periods.
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