
Proeedings of the IEEE Real-Time Systems Symposium, Orlando, Florida, Deember 2000. 1

Capaity Sharing for Overrun Control

Maro Caamo Giorgio Buttazzo Lui Sha

Suola Superiore S. Anna University of Pavia (Italy) University of Illinois

Pisa (Italy) INFM Researh Unit Urbana, IL 61801

aamo�sssup.it giorgio�sssup.it lrs�s.uiu.edu

Abstrat

In this paper, we present a general sheduling

methodology for managing overruns in a real-time en-

vironment, where tasks may have di�erent ritial-

ity and exible timing onstraints. The proposed

method ahieves isolation among tasks through a re-

soure reservation mehanism whih bounds the e�ets

of task interferene, but also performs eÆient relaim-

ing of the unused omputation times to relax the uti-

lization onstraints imposed by isolation. The enhane-

ments ahieved by the proposed approah resulted to

be very e�etive with respet to lassial reservation

shemes. The performane has been evaluated by im-

plementing the algorithm on a real-time kernel. The

runtime overhead introdued by the sheduling meh-

anism has also been investigated with spei� experi-

ments, in order to be taken into aount in the shedu-

lability analysis. However, it resulted to be negligible in

most pratial ases.

1. Introdution

In most real-time systems, preditability is ahieved

by enforing timing onstraints on appliation tasks,

whose feasibility is guaranteed o� line by means of

proper shedulability tests based on worst-ase exeu-

tion time (WCET) estimations. Theoretially, suh an

approah works �ne if all the tasks have a regular be-

havior and all WCETs are preisely estimated. In pra-

tial ases, however, a preise estimation of WCETs is

very diÆult to ahieve, beause several low level meh-

anisms present in modern omputer arhitetures (suh

as interrupts, DMA, pipelining, ahing, and prefeth-

ing) introdue a form of non deterministi behavior in

tasks' exeution, whose duration annot be predited

in advane.

Even though a preise WCET estimation ould be

derived for eah task, a worst-ase feasibility analy-

sis would be very ineÆient when task exeution times

have a high variane. In this ase, a lassial o�-line

hard guarantee would waste the system's omputa-

tional resoures for preserving the task set feasibility

under sporadi peak load situations, even though the

average workload is muh lower. Suh a waste of re-

soures (whih inreases the overall system's ost) an

be justi�ed for very ritial appliations (e.g., military

defense systems or safety ritial spae missions), in

whih a single deadline miss may ause atastrophi

onsequenes. However, it does not represent a good

solution for those appliations (the majority) in whih

several deadline misses an be tolerated by the sys-

tem, as long as the average task rates are guaranteed

o� line. There are many soft real-time appliations in

whih the worst-ase duration of some tasks is rare but

muh longer than the average ase. In multimedia sys-

tems, for instane, the time for deoding a video frame

in MPEG players an vary signi�antly as a funtion

of the data ontained in the previous frames. As an-

other example, onsider a visual traking system where,

in order to inrease responsiveness, the moving target

is searhed in a small window entered in a predited

position, rather than in the entire visual �eld. If the

target is not found in the predited area, the searh

has to be performed in a larger region until, eventu-

ally, the entire visual �eld is sanned in the worst-ase.

If the system is well designed, the target is found very

quikly in the predited area most of the times. Thus,

the worst-ase situation is very rare, but very expen-

sive in terms of omputational resoures (omputation

time inreases quadratially as a funtion of the num-

ber of trials). In this ase, an o�-line guarantee based

on WCETs would drastially redue the frequeny of

the traking task, ausing a severe performane degra-

dation with respet to a soft guarantee based on the av-

erage exeution time. On the other hand, unontrolled



overruns

1

are very dangerous if not properly handled,

sine they may heavily interfere with the exeution of

other tasks, whih ould be more ritial. Consider for

example the task set given in Table 1, where two tasks,

�

1

and �

2

, have a onstant exeution time, whereas �

3

has an average omputation time (C

avg

3

= 3) muh

lower than its worst-ase value (C

max

3

= 10). Here, if

the shedulability analysis is performed using the av-

erage omputation time C

avg

3

, the total proessor uti-

lization beomes 0.92, meaning that the system is not

overloaded; however, under the Earliest Deadline First

(EDF) algorithm [9℄ the tasks an experiene long de-

lays during overruns, as illustrated in Figure 1. Similar

examples an easily be found also under �xed priority

assignments (e.g., under the Rate Monotoni algorithm

[9℄), when overruns our in the high priority tasks.

Task C

avg

i

C

max

i

T

i

�

1

1 1 6

�

2

5 5 10

�

3

3 10 12

Table 1. Task set parameters.

τ 1

τ 3

τ 2

0 2 4 6 8 10 12 14 16 18 20

6 12 18

10 20

Figure 1. Negative effects of uncontrolled

overruns.

To prevent an overrun to introdue unbounded de-

lays on tasks' exeution, the system ould either deide

to abort the urrent instane of the task experiening

the overrun or let it ontinue with a lower priority. The

�rst solution is not safe, beause the instane ould be

in a ritial setion when aborted, thus leaving a shared

resoure with inonsistent data (very dangerous). The

seond solution is muh more exible, sine the de-

gree of interferene aused by the overrun on the other

tasks an be tuned ating on the priority assigned to

the \faulty" task for exeuting the remaining ompu-

tation.

1

A task is said to overrun when it exeutes for more than its

guaranteed exeution time.

A general tehnique for limiting the e�ets of over-

runs is based on a resoure reservation approah [10,

16, 1℄, aording to whih eah task is assigned (o� line)

a fration of the available resoures and is handled by a

dediated server, whih prevents the served task from

demanding more than the reserved amount. Although

suh a method is essential for ahieving preditability

in the presene of tasks with variable exeution times,

the overall system's performane beomes quite depen-

dent on a orret resoure alloation. For example, if

the CPU bandwidth alloated to a task is muh less

than its average requested value, the task may slow

down too muh, degrading the system's performane.

On the other hand, if the alloated bandwidth is muh

greater than the atual needs, the system will run with

low eÆieny, wasting the available resoures.

To overome this problem, we propose a general

sheduling methodology for managing overruns in a

ontrolled fashion. In partiular, the proposed teh-

nique allows to

� ahieve isolation among tasks, through a resoure

reservation mehanism whih bounds the e�ets of

task overruns;

� perform eÆient relaiming of the unused om-

putation times, through a global apaity sharing

mehanism whih allows to exploit early omple-

tions, in order to relax the bandwidth onstraints

enfored by isolation;

� handle tasks with di�erent ritiality and exible

timing onstraints, to enhane the performane of

those real-time appliations whih allow a ertain

degree of exibility.

Although the idea of resoure relaiming and apa-

ity sharing is not new in the literature, as disussed

in Setion 6 on related work, the peuliarity of our

method is to inrease resoure utilization while preserv-

ing isolation, so that not only soft tasks, but also hard

real-time tasks an bene�t from our approah. More-

over, unlike other similar approahes, our method was

not developed for enhaning aperiodi responsiveness

of soft tasks, but to eÆiently handle overruns in real-

time (hard and soft) tasks, where some form of relaxed

guarantee is required o� line.

As a �nal remark, performane experiments on the

algorithm (illustrated in Setion 5) show that the run-

time overhead introdued by the mehanism is negli-

gible in most of pratial ases and an be ontrolled

through the amount of budget assigned to eah server.

The rest of the paper is organized as follows: Se-

tion 2 desribes the basi idea behind the proposed



approah; Setion 3 illustrates the apaity sharing al-

gorithm; Setion 4 presents some theoretial results

whih validate the proposed model; Setion 5 illus-

trates some experimental results; Setion 6 presents

the related work; and Setion 7 ontains our onlu-

sions and future work.

2. Basi onepts

Throughout the paper, eah task �

i

is onsidered as

a stream of jobs (or task instanes) �

i;j

(j = 1; 2; : : :),

eah haraterized by a request time r

i;j

, an exeution

time 

i;j

, and a deadline d

i;j

. In the following, P

i

de-

notes the desired ativation period of the task, C

max

i

its maximum omputation time, and C

avg

i

its average

omputation time.

In the proposed approah, eah task is handled by a

dediated Constant Bandwidth Server (CBS) [1℄, whih

provides isolation among tasks, and a apaity sharing

mehanism allows tasks to relaim the unused ompu-

tations due to early ompletions. Due to the isolation

mehanism introdued by the multiple server approah,

there are no partiular restritions on the task model

that an be handled by the proposed method. Hene,

tasks an be hard, soft, periodi, or aperiodi. Al-

though the method is built upon on the CBS, it an eas-

ily be generalized to be used with any apaity-based

server.

In the following setion we will briey reall the CBS

algorithm and its main properties.

2.1. The CBS algorithm

A CBS is haraterized by an ordered pair (Q

s

; T

s

),

where Q

s

is the maximum budget and T

s

is the period

of the server. The ratio U

s

= Q

s

=T

s

is denoted as the

server bandwidth. At eah instant, a �xed deadline

d

s;k

and a budget 

s

is assoiated with the server. Ev-

ery time a new job �

i;j

has to be served, it is assigned a

dynami deadline d

i;j

equal to the urrent server dead-

line d

s;k

. The urrent budget 

s

represents the amount

of omputation time shedulable by the CBS using the

urrent server deadline. Whenever a served job exe-

utes, the budget 

s

is dereased by the same amount

and, every time 

s

= 0, the server budget is reharged

to the maximum value Q

s

and a new server deadline is

generated as d

s;k+1

= d

s;k

+ T

s

.

Figure 2 illustrates an example in whih a task �

1

,

with maximum omputation time C

max

1

= 2 and pe-

riod P

1

= 5, is sheduled by EDF together with another

task �

2

, served by a CBS having a budget Q

s

= 3 and

a period T

s

= 6. Initially, 

s

= 0 and d

s;0

= 0. When

job �

2;1

(requiring 5 units of omputation) arrives at

=3

T =6

τ

15

9 15

10

τ

s
c

Q
s

s

1

0

0 3

3

5

1

3

5

2

Figure 2. Example of a CBS server.

time t = 3, 

s

is harged at the value Q

s

= 3 and the

job is assigned a deadline d

s;1

= t + T

s

= 9. At time

t = 6, the budget is exhausted, so 

s

is replenished and

a new deadline d

s;2

= d

s;1

+ T

s

= 15 is generated by

the server and assigned to job �

2;1

.

In [1℄ it is proved that in any interval of time of

length L a CBS with bandwidth U

s

will never demand

more than U

s

L, independently from the atual task re-

quests. Suh a property allows us to use a bandwidth

reservation strategy to alloate a fration of the CPU

time to soft tasks whose omputation time annot be

easily bounded. The most important onsequene of

this result is that suh tasks an be sheduled together

with hard tasks without a�eting the a priori guaran-

tee, even in the ase in whih soft requests exeed the

expeted load.

2.2. The capacity sharing approach

The apaity sharing (CASH) mehanism proposed

in this paper works in onjuntion with the CBS. To

illustrate the idea behind our approah, we present an

example to show the potential improvements that an

be ahieved by a proper exploitation of the unused om-

putation times oming from early ompletions.

Ideally, we would like to reserve a given bandwidth

to eah task, to ahieve isolation; but we would also

like to relaim the unused time left by the other tasks

as muh as possible, so giving a hane to a task to

handle its overruns without introduing long delays.

Consider the example shown in Figure 3, where

three tasks are handled by three servers with budgets

Q

1

= 1, Q

2

= 5, Q

3

= 3, and periods T

1

= 4, T

2

= 10,

T

3

= 12, respetively. At time t = 6, job �

2;1

ompletes

earlier with respet to the alloated budget, whereas

job �

3;1

requires one extra unit of time. Figure 3a il-

lustrates the ase in whih no relaiming is used and

tasks are served by the plain CBS algorithm. Notie



that, in spite of the budget saved by �

2;1

, the third

server is fored to postpone its urrent deadline when

its budget is exhausted (it happens at time t = 9). As

shown in Figure 3b, however, we observe that the spare

apaity saved by �

2;1

an be used by �

3;1

to advane

its exeution and prevent the server from postponing

its deadline.

τ 1

τ 3

τ 2

τ 1

τ 3

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

��
��
��
��

��
��
��
��

(a)

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24

-1

+1

Figure 3. Overruns handled by a plain CBS

(a) versus overruns handled by a CBS with

the CASH reclaiming mechanism (b).

The relaiming mehanism working with the CBS

uses a global queue, the CASH queue, of spare apa-

ities ordered by deadline. Whenever a task ompletes

its exeution and its server budget is greater than zero,

the residual apaity an be used by any ative task to

advane its exeution. When using a spare apaity,

the task an be sheduled using the urrent deadline of

the server whih the spare apaity belongs to. In this

way, eah task an use its own apaity along with the

residual apaities deriving by the other servers.

Whenever a new task instane is sheduled for ex-

eution, the server tries to use the residual apaities

with deadlines less than or equal to the one assigned

to the served instane; if these apaities are exhausted

and the instane is not ompleted, the server starts us-

ing its own apaity. Every time a task ends its exeu-

tion and the server beomes idle, the residual apaity

(if any) is inserted with its deadline in the global queue

of available apaities. Spare apaities are ordered

by deadline and are onsumed aording to an EDF

poliy. The main bene�t of the proposed relaiming

mehanism is to redue the number of deadline shifts,

so exeuting periodi ativities with more stable fre-

quenies.

This method, although developed for overrun on-

trol, an also be very e�etive in di�erent ontexts; for

example, for improving the average response times of

the served tasks, enhaning the performane of on-

trol appliations, or inreasing dependability in fault-

tolerant real-time systems using reovery strategies un-

der time redundany. In suh systems, in fat, an ef-

�ient relaiming mehanism is important to exploit

the unused omputation time of bakup opies whose

primaries ended suessfully.

3. The algorithm

In this setion we formally desribe the CASH algo-

rithm assuming that eah task �

i

is handled by a dedi-

ated CBS server S

i

running on a uniproessor system.

Capaity relaiming is performed through the use of

a global queue, alled the CASH queue, ontaining all

the residual apaities ordered by deadlines.

3.1. Algorithm rules

The CASH algorithm an be de�ned as follows:

1. Eah server S

i

is haraterized by a budget 

i

and

by an ordered pair (Q

i

; T

i

), where Q

i

is the max-

imum budget and T

i

is the period of the server.

The ratio U

i

= Q

i

=T

i

is denoted as the server

bandwidth. At eah instant, a �xed deadline d

i;k

is assoiated with the server. At the beginning

8i; d

i;0

= 0.

2. Eah task instane �

i;j

handled by server S

i

is as-

signed a dynami deadline equal to the urrent

server deadline d

i;k

.

3. A server S

i

is said to be ative at time t if there

are pending instanes. A server is said to be idle

at time t if it is not ative.

4. When a task instane �

i;j

arrives and the server

is idle, the server generates a new deadline d

i;k

=

max(r

i;j

; d

i;k�1

) + T

i

and 

i

is reharged at the

maximum value Q

i

.

5. When a task instane �

i;j

arrives and the server is

ative the request is enqueued in a queue of pend-

ing jobs aording to a given (arbitrary) disipline.

6. Whenever instane �

i;j

is sheduled for exeution,

the server S

i

uses the apaity 

q

in the CASH

queue (if there is one) with the earliest deadline

d

q

, suh that d

q

� d

i;k

, otherwise its own apaity



i

is used.



7. Whenever job �

i;j

exeutes, the used budget 

q

or 

i

is dereased by the same amount. When 

q

beomes equal to zero, it is extrated from the

CASH queue and the next apaity in the queue

with deadline less than or equal to d

i;k

an be used.

8. When the server is ative and 

i

beomes equal to

zero, the server budget is reharged at the maxi-

mum value Q

i

and a new server deadline is gener-

ated as d

i;k

= d

i;k�1

+ T

i

.

9. When a task instane �nishes, the next pending

instane, if any, is served using the urrent budget

and deadline. If there are no pending jobs, the

server beomes idle, the residual apaity 

i

> 0 (if

any) is inserted in the CASH queue with deadline

equal to the server deadline, and 

i

is set equal to

zero.

10. Whenever the proessor beomes idle for an inter-

val of time �, the apaity 

q

(if exists) with the

earliest deadline in the CASH queue is dereased

by the same amount of time until the CASH queue

beomes empty.

3.2. An example

To better understand the proposed approah, we

will desribe a simple example whih shows how our

relaiming algorithm works. Consider a task set on-

sisting of two periodi tasks, �

1

and �

2

, with peri-

ods P

1

= 4 and P

2

= 8, maximum exeution times

C

max

1

= 4 and C

max

2

= 3, and average exeution times

C

avg

1

= 3 and C

avg

2

= 2. Eah task is sheduled by a

dediated CBS having a period equal to the task pe-

riod and a budget equal to the average exeution time.

Hene, a task ompleting before its average exeution

time saves some budget, whereas it experienes an over-

run if it ompletes after. A possible exeution of the

task set is reported in Figure 4, whih also shows the

apaity of eah server and the residual apaities gen-

erated by eah task. At time t = 2, task �

1

has an early

ompletion and a residual apaity equal to one with

deadline equal to 4 beomes available. After that, �

2

onsumes the above residual apaity before starting

to use its own apaity; hene, at time t = 4, a �

2

over-

run is handled without postponing its deadline. Notie

that eah task tries to use residual apaities before

using its own apaity and that whenever an idle inter-

val ours (see interval [19, 20℄), the residual apaity

with the earliest deadline has to be disharged by the

same amount in order to handle the residual apaities

orretly.

The example above shows that overruns an be han-

dled eÆiently without postponing any deadline. A

lassial CBS instead, would postpone some deadlines

in order to guarantee tasks isolation. Clearly, if all the

tasks onsume their alloated budget, no relaiming

an be done and our approah performs the same as a

plain CBS. However, this situation is very rare, hene

our approah helps in improving the average system's

performane.

��
��
��
��

�
�
�
�

τ
2

τ
1

�
�
�
�

��
��
��
��

1 1 1 2 2

capacities
Residual

0 4 8 2012 16 24

0

4 12 16 20 24

8 16 24

normal execution

overrun

Figure 4. Example of global resource reclaim

ing.

4. Theoretial validation of the model

In this setion we analyze the shedulability ondi-

tion for a hybrid task set onsisting of hard and soft

periodi tasks. Eah is sheduled using a dediated

CBS. If eah hard periodi task is sheduled by a server

with maximum budget equal to the task wet and with

period equal to the task period, it behaves like a stan-

dard hard task sheduled by EDF. The di�erene is

that eah task an gain and use extra apaities and

yields its residual apaity to other tasks. This run-

time exhange, however, does not a�et shedulability;

thus, the task set an be guaranteed using the lassial

Liu and Layland ondition:

n

X

i=1

Q

i

T

i

� 1;

where Q

i

is the maximum server budget and T

i

is the

server period. Before proving the shedulability ondi-

tion, the following lemma will prove that all the gen-

erated apaities are exhausted before their respetive

deadlines.

Lemma 1 Given a set � of apaity based servers

along with the CASH algorithm, eah apaity gener-

ated during the sheduling is exhausted before its dead-



line if and only if:

n

X

i=1

Q

i

T

i

� 1; (1)

where Q

i

is the maximum server budget and T

i

is the

server period.

Proof.

If. Assume equation (1) holds and suppose that a

apaity 

�

is not exhausted at time t

�

, when the or-

responding deadline is reahed. Let t

a

� 0 be the last

time before t

�

at whih no apaity is disharging; that

is, the last instant before t

�

during whih the CPU is

idle and the CASH queue is empty (if there is no suh

time, set t

a

= 0). Let t

b

� 0 be the last time before t

�

at whih a apaity with deadline after t

�

is disharg-

ing (if there is no suh time, set t

b

= 0). If we take

t = max(t

a

; t

b

), time t has the property that only a-

paities reated after t and with deadline less than or

equal to t

�

are used during [t; t

�

℄. Let Q

T

(t

1

; t

2

) be the

sum of apaities reated after t

1

and with deadline less

than or equal to t

2

; sine a apaity misses its deadline

at time t

�

, it must be that:

Q

T

(t; t

�

) > (t

�

� t)

In the interval [t; t

�

℄, we an write that:

(t

�

�t) < Q

T

(t; t

�

) �

n

X

i=1

�

t

�

� t

T

i

�

Q

i

� (t

�

�t)

n

X

i=1

Q

i

T

i

;

whih is a ontradition.

Only if. Suppose that

P

i

Q

i

T

i

> 1. Then, we show

there exists an interval [t

1

; t

2

℄ in whih Q

T

(t

1

; t

2

) >

(t

2

� t

1

). Assume that all the servers are ativated at

time 0; then, for L = lm(T

1

; :::; T

n

) we an write that:

Q

T

(0; L) =

n

X

i=1

�

L

T

i

�

Q

i

=

n

X

i=1

L

T

i

Q

i

= L

n

X

i=1

Q

i

T

i

> L;

hene, the \only if ondition" follows. 2

We now formally prove the shedulability ondition

with the following theorem:

Theorem 1 Let T

h

be a set of periodi hard tasks,

where eah task �

i

is sheduled by a dediated server

with Q

i

= C

max

i

and T

i

= P

i

, and let T

s

be a set of

soft tasks sheduled by a group of servers with total uti-

lization U

soft

. Then, T

h

is feasible if and only if

X

�

i

2T

h

Q

i

T

i

+ U

soft

� 1; (2)

Proof.

The theorem follows immediately from Lemma 1; in

fat, we an notie that eah hard task instane has

available at least its own apaity equal to the task

WCET. Lemma 1 states that eah apaity is always

disharged before its deadline, hene it follows that

eah hard task instane has to �nish by its deadline. 2

It is worth noting that Theorem 1 also holds un-

der a generi apaity-based server having a periodi

behavior and a bandwidth U

s

.

5. Performane evaluation

The CASH algorithm has been implemented in the

HARTIK kernel [6℄ to measure the performane gain

introdued by the apaity sharing mehanism and to

verify the results predited by the theory. In partiular,

we performed our experiments on a set of ontrol tasks

with the objetive of minimizing a performane ost

funtion under the shedulability onstraints imposed

by the system. Before illustrating the ahieved results,

we will briey introdue some basi onepts useful for

better understanding the experiments.

5.1. Background concepts

In a digital ontrol system, the overall ontrol per-

formane is a funtion of the sampling rates used by the

ontrol tasks: the higher the rates, the better the per-

formane. However, task rates are limited by the total

proessor utilization, whih must be less than a max-

imum value in order to have a feasible shedule. On

the other hand, eah task �

i

is haraterized by a min-

imum frequeny f

min

i

, below whih the performane

is unaeptable and the ontrol beomes unstable. In

this sense, 1=f

min

i

represents a hard relative deadline

for task �

i

.

A performane ost funtion an be de�ned using

the onept of Performane Loss Index (PLI), orig-

inally introdued in [13℄, to measure the di�erene

between a digital and ontinuous ontrol as a fun-

tion of the sampling frequeny. In partiular, if J

and J

D

(f) are the performane indies generated by

a ontinuous-time ontrol and its digital implementa-

tion at a sampling frequeny f , a PLI an be de�ned

as �J(f) = jJ

D

(f)� J j.

As noted in [12℄, �J(f) is onvex and monotonially

dereasing with the frequeny, hene, for eah ontrol

task, it an be approximated by the following exponen-

tial funtion:

�J

i

(f

i

) = �

i

e

��

i

f

i

;



where f

i

is the frequeny of �

i

, �

i

is a magnitude o-

eÆient, and �

i

is the deay rate. The PLI of the

overall system �J(f

1

; :::; f

n

) an then be de�ned as

�J(f

1

; :::; f

n

) =

P

i

w

i

�J

i

(f

i

), where w

i

is a design

parameter determined from the appliation (it an be

onsidered a weight related to task's importane).

Ideally, we would like to minimize the overall PLI by

inreasing task rates as muh as possible during nor-

mal load onditions, but we would also like to guaran-

tee eah task its minimum frequeny, in the worst-ase

senario.

To guarantee a minimum frequeny to eah task, we

use the algorithm proposed in [12℄, able to determine

a set of optimal rates f

opt

i

whih minimize a given PLI

under a set of hard shedulability onstraints.

To improve the average system's performane, a less

pessimisti analysis was proposed in [3℄ to inrease the

task rates. Aording to this method, eah task is as-

signed a normal omputation time 

n

i

� C

max

i

to per-

form a relaxed guarantee in normal load onditions (

n

i

an be set equal to C

avg

i

or to a di�erent value om-

puted by analyzing the probabilisti distribution of the

task omputation time). Moreover, eah task an dy-

namially hange its frequeny depending on the ur-

rent load. If d

i;j

is the deadline used by the server to

shedule job �

i;j

, the next job �

i;j+1

will start at time

r

i;j+1

= max(d

i;j

; r

i;j

+

1

f

opt

i

); (3)

where f

opt

i

is the optimal frequeny omputed by the

Seto et al. algorithm [12℄ for task �

i

, assuming �

i

needs an exeution time equal to its normal ompu-

tation time. Hene, eah job �

i;j

has a variable period

P

i;j

= r

i;j+1

� r

i;j

.

5.2. Experimental results

A set of experiments has been performed to verify

the e�etiveness of the CASH algorithm in enhaning

the PLI in a set of periodi ontrol tasks. Table 2

shows the parameters of the task set seleted for this

experiment. Eah task �

i

has a normal omputation

time equal to its average omputation time suh that

8i 

n

i

= C

avg

i

= 0:7C

max

i

. The optimal frequeny f

opt

i

represents the frequeny omputed by the Seto et al.

algorithm [12℄ assuming that eah task has the same

weight w

i

= 1, the same magnitude oeÆient �

i

= 1

and the same deay rate �

i

= 0:4. The f

min

i

value

represents the minimum frequeny eah task an run

at (following the elasti ontrol model desribed in the

above setion). The minimum value of the PLI om-

puted by the optimization algorithm is �J

opt

= 0:0432.

Suh a theoretial value, however, an be reahed only

if every instane of eah task �

i

exeutes exatly for

C

avg

i

. Notie that eah task has a reserved bandwidth

U

i

= 

n

i

f

opt

i

.

The performane of the algorithm was measured by

omputing the PLI of the task set as a funtion of the

budget assigned to eah server. For instane a value of

0.9 on the x-axis means that eah server has a maxi-

mum budget Q

i

= 0:9C

max

i

. Whenever the maximum

budget is hanged (on the x-axis) the server period is

set aording to the assigned bandwidth. Computation

times have a uniform distribution and eah omputa-

tion time is obtained by splitting the whole exeution

time in a �xed part (C

fix

) plus a random part (C

rand

),

where C

fix

= 2C

avg

�C

max

and C

rand

is obtained by

a uniform distribution in interval [0; C

max

� C

fix

℄.

Figure 5 ompares the plain CBS with the

CBS+CASH algorithm. The optimal PLI (theoretial

value) is also drawn as a referene value along with the

experimental results. The graph shows that no gain

is obtained by the CASH algorithm when the server

budget is set equal to the task C

max

. However, as the

server budget dereases, the CASH algorithm beomes

more e�etive, improving the PLI with respet to the

plain CBS. It is worth noting that the PLI has a peak

for Q

i

= 0:5C

max

i

. This strange behaviour is a diret

onsequene of the CBS deadline postponement rule

and an be explained as follows.

Whenever a deadline is postponed by the CBS, the

new deadline is inreased by a server period. Let us

fous, for instane, on task �

5

, when Q

5

= 0:5C

max

5

=

5ms and T

5

= 50ms (being U

5

= 0:1). Sine C

avg

5

=

0:7C

max

5

= 7ms, during overruns the task period is

inreased up to 100ms. This value is muh greater

than the average period of the task deriving from the

alloated bandwidth (P

avg

5

= C

avg

5

=U

5

= 70ms). Suh

an e�et, beomes less signi�ant for smaller values of

the server budget. For example, whenQ

5

= 0:4C

max

5

=

4ms and T

5

= 40ms, during overruns the task period

beomes 80ms, whih is loser to the average period.

The same onsideration holds for the other tasks.

In onlusion, this experiment shows that the CASH

algorithm an ahieve a PLI very lose to the opti-

mal value when the server budget is a small fration of

the average omputation time, although the algorithm

yields good results also for server budgets equal to the

task average omputation times.

5.3. Considerations on runtime overhead

A �nal set of experiments has also been onduted

to estimate the runtime overhead introdued by the

CBS+CASH algorithm. A quantitative analysis of the

overhead is useful to provide a riterion for setting the



Task C

max

i

(ms) 

n

i

(ms) f

opt

i

(Hz) f

min

i

�

1

25 17.5 11.85 5

�

2

12.5 8.75 13.58 5

�

3

38 26.6 10.8 5

�

4

38 26.6 10.8 5

�

5

10 7 14.14 5

Table 2. Task set parameters.

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rf

o
rm

a
n
c
e
 L

o
s
s
 i
n
d
e
x

Server budget as fraction of WCET

CBS
CBS+CASH
optimal PLI

Figure 5. PLI of a task set withC

avg

= 0:7C

max.

servers' budgets, sine, as shown in Figure 5, a small

budget allows to improve the PLI, but inreases the

number of deadline postponements.

Our experiments have been performed on a Pentium

133 MHz using the task set shown in Table 2. Sine in

the HARTIK kernel the sheduling algorithm exeutes

in the ontext of the running task, the sheduling over-

head has the e�et of inreasing the atual exeution

time of eah task. Therefore, the overhead due to the

CBS+CASH algorithm has been measured as a di�er-

ene between the average omputation time 

0

of the

longest task served with a budget equal to its WCET

(so that no deadline is postponed) and the average

omputation time 

00

omputed with a budget equal

to a small fration of the WCET, so that the server

deadline is postponed n times, in the average. Hene,

the overhead ! due to a single deadline postponement

performed by the CBS+CASH algorithm, resulted to

be

! =



00

� 

0

n

= 42�s:

Notie that ! does not inlude the overhead due to

preemption. To investigate the e�ets of the algorithm

overhead on the PLI, the guarantee test has been mod-

i�ed to take the overhead into aount. If Q

i

is the

budget assigned to server S

i

, the net budget used by

the task is Q

net

i

= Q

i

� !. Hene, the guarantee test

an be rewritten as:

n

X

i=1

Q

net

i

T

i

� 1� !

n

X

i=1

1

T

i

;

where Q

net

i

=T

i

is bandwidth that must be assigned to

task �

i

aording to the Seto et al. algorithm to mini-

mize the PLI. Sine the overhead redues the available

bandwidth, the optimal PLI inreases its value as the

server budget is dereased.

Figure 6 shows the optimal PLI (with overhead in-

luded) as a funtion of the budget assigned to eah

server. It is worth noting that the overhead e�et is

negligible up to Q

s

= 0:1C

max

; therefore, the server

budget an be set equal to 0:2C

max

for the task set of

Table 2, obtaining a PLI very lose to the optimal one

(see Figure 5).

As a �nal remark, we note that lower values of the

budget ould slightly improve the PLI; however, they

annot be easily assigned if the server budget beomes

omparable with the time granularity of the kernel.

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

P
e
rf

o
rm

a
n
c
e
 L

o
s
s
 i
n
d
e
x

Server budget as fraction of WCET

optimal PLI with overhead

Figure 6. Optimal PLI taking the scheduling
overhead into account.

6. Related work

Di�erent approahes have been proposed in the lit-

erature to deal with overruns and variable exeution

times. In [15℄, the authors provide an upper bound

of ompletion times of jobs hains with variable ex-

eution times and arbitrary release times. In [11℄, a

guarantee is omputed for tasks whose jobs are har-

aterized by variable omputation times and interar-

rival times, ourring with a ylial pattern. In [10℄,



a apaity reservation tehnique is used to bound the

omputational demand of tasks with variable ompu-

tation times, in a �xed priority environment. Aord-

ing to this approah, a fration of the CPU bandwidth

is reserved to eah task to ahieve temporal isolation.

Although suh a solution prevents unbounded inter-

ferene, overruns are not handled eÆiently. In fat,

whenever a job onsumes the reserved budget, its re-

maining portion is sheduled in bakground, so pro-

longing its ompletion for an unpreditable amount of

time. In [16℄ the authors present a Transform-Task

Method (TTM) aording to whih a task is split into

two piees, where the seond piee (i.e., the exeeding

omputation time ausing the overrun) is handled as

a job served by a Sporadi Server [14℄. Using this ap-

proah, a probabilisti guarantee is performed on tasks

whose exeution times have known distribution. In [5℄,

the authors propose two approahes for handling over-

runs. The �rst approah, alled the Overrun Server

Method (OSM), extends the TTM method to ombine

a general baseline algorithm for sheduling normal pe-

riodi tasks with a generi aperiodi server for handling

overruns. Although, this method performs better than

handling overruns in bakground, it annot ensure that

the remaining portion of a task instane is always exe-

uted before the next one. The seond approah, alled

the Isolation Server Method (ISM), an ahieve isola-

tion among tasks, but it annot provide a priori guar-

antee.

A more eÆient tehnique, namely the Constant

Bandwidth Server (CBS), is proposed in [1℄ under a

dynami priority environment. As in [10℄, a fration

of the CPU bandwidth is reserved to eah task, but

tasks are sheduled by EDF using a suitable deadline,

omputed as a funtion of the reserved bandwidth and

the atual requests. If a task requires to exeute more

than expeted, its deadline is postponed and its bud-

get replenished. This method allows to ahieve isola-

tion among tasks and overruns are handled eÆiently

based on their atual deadline. As mentioned in the

introdution, although isolation mehanisms are essen-

tial for inreasing system's reliability in the presene of

tasks with variable exeution times, the orret behav-

ior of the system strongly depends on a orret reserva-

tion poliy. Reently, this problem has been addressed

by a number of authors, who proposed new tehniques

to redue suh a negative aspet of isolation.

In [7℄, the authors proposed the Bandwidth Shar-

ing Server (BSS) to handle several multi-thread ap-

pliations on a single proessor, by allowing threads

belonging to the same appliation to relaim the spare

time due to early ompletions. Although the algorithm

provides isolation among appliations, no isolation is

guaranteed among tasks belonging to the same appli-

ation. A multi-appliation environment is also treated

in [4℄, where a two-level sheduling arhiteture is used

to handle eah appliation by a dediated server. This

approah is able to isolate the e�et of overloads at

the appliation level, rather than at the task level, but

does not provide a global relaiming mehanism to ef-

�iently exploit the reserved bandwidths.

In [3℄, the authors proposed a methodology for im-

proving the performane of hard ontrol appliations

using a resoure reservation approah ombined with

a suitable o�-line analysis, based on the Seto et al.

algorithm [12℄. A less pessimisti analysis and a lo-

al relaiming mehanism is used to inrease the aver-

age task rates, while a proper overrun ontrol meh-

anism is adopted to guarantee eah task a minimum

rate. However, sine the relaiming is loal to eah

task (i.e., no apaity sharing is allowed), the improve-

ment ahieved over the Seto et al. algorithm is not

so signi�ant. In [8℄, the authors proposed an elegant

tehnique for sheduling a set of real-time tasks on a

single proessor, so that eah task runs as it is exe-

uting on a slower dediated proessor. The method

ahieves isolation and allows to relaim most of the

spare time unused by tasks. A ritial parameter of this

approah is the time granularity used in the algorithm;

in fat, a small quantum redues the sheduling error,

but inreases the overhead due to ontext swithes. In

[2℄, the authors propose a apaity sharing protool

for enhaning soft aperiodi responsiveness in a �xed

priority environment, where eah soft task is handled

by a dediated server. Although the basi idea of a-

paity sharing is the same as the one proposed in our

paper, the main di�erene with our CASH algorithm

is that in [2℄ eah server an \steal" apaity from the

other servers to advane the exeution of the served

task, thus loosing isolation among the served tasks (a

low priority server ould reeive less bandwidth than

requested). In our ase, instead, a apaity is given

only after a job is ompleted and a new replenishment

is always performed (with a suitable deadline) when

a new job arrives. These rules allow the algorithm to

preserve the isolation property. Moreover, with respet

to the apaity sharing protool, the CASH algorithm

is used to solve a di�erent problem (overrun ontrol) in

a di�erent ontext (dynami deadline sheduling with

resoure reservation).

7. Conlusions

In this paper we presented a apaity sharing

(CASH) mehanism whih allows to ahieve temporal

protetion on tasks' exeution, while performing eÆ-



ient relaiming of the unused omputation times. The

algorithm is able to handle tasks with soft, hard, as well

as exible timing onstraints.

The work integrates and extends two reent ad-

vanes in real-time omputing: the elasti ontrol ap-

proah [3℄, whih allows to optimize the ontrol perfor-

mane under shedulability onstraints, and the Con-

stant Bandwidth Server [1℄, whih provides isolation

among appliation tasks.

The CASH algorithm has been implemented in the

HARTIK kernel in order to evaluate its performane

and validate our theoretial results. The experiments

show the e�etiveness of the relaiming mehanism in

enhaning the performane loss index through an in-

rease of tasks' frequenies. The enhanement beomes

more signi�ant when the task omputation times are

haraterized by a large variane. Spei� tests on the

relaiming mehanism showed that the overhead intro-

dued by the algorithm does not limit its use in real

appliations.

As a future work, we plan to apply this tehnique for

handling fault-tolerant appliations where, eah task is

omposed by a primary and a bakup opy.

Referenes

[1℄ L. Abeni and G. Buttazzo, \Integrating Multi-

media Appliations in Hard Real-Time Systems",

Pro. of the IEEE Real-Time Systems Symposium,

Madrid, Spain, Deember 1998.

[2℄ G. Bernat and A. Burns, \Multiple Servers

and Capaity Sharing for Implementing Flexi-

ble Sheduling," Tehnial Report, University of

York, Marh 2000.

[3℄ M. Caamo, G. Buttazzo, and L. Sha \Elas-

ti Feedbak Control", IEEE Proeedings of the

12th Euromiro Conferene on Real-Time Sys-

tems, Stokholm, Sweden, June 2000.

[4℄ Z. Deng and J. W. S. Liu, \Sheduling Real-Time

Appliations in an Open Environment", Proeed-

ings of the IEEE Real-Time Systems Symposium,

San Franiso, Deember 1997.

[5℄ M. K. Gardner and J. W.S. Liu, \Performane of

algorithms for sheduling real-time systems with

overrun and overload", IEEE Proeedings of the

11th Euromiro Conferene on Real-Time Sys-

tems, York, UK, June 1999.

[6℄ G. Lamastra, G. Lipari, G. Buttazzo, A. Casile,

and F. Contielli, \HARTIK 3.0: A Portable Sys-

tem for Developing Real-Time Appliations," Pro-

eedings of the IEEE Real-Time Computing Sys-

tems and Appliations, Taipei, Taiwan, Otober

1997.

[7℄ G. Lipari and G. Buttazzo, \Sheduling Real-

Time Multi-Task Appliations in an Open Sys-

tem", IEEE Proeedings of the 11th Euromiro

Conferene on Real-Time Systems, York, Eng-

land, pp. 234-241, June 1999.

[8℄ G. Lipari and S. Baruah, \Greedy relaima-

tion of unused bandwidth in onstant-bandwidth

servers," IEEE Proeedings of the 12th Euromi-

ro Conferene on Real-Time Systems, Stokholm,

Sweden, June 2000.

[9℄ C.L. Liu and J.W. Layland, \Sheduling Algo-

rithms for Multiprogramming in a Hard real-Time

Environment," Journal of the ACM 20(1), 1973,

pp. 40{61.

[10℄ C. W. Merer, S. Savage, and H. Tokuda, \Pro-

essor Capaity Reserves for Multimedia Operat-

ing Systems" Proeedings of the IEEE Interna-

tional Conferene on Multimedia Computing and

Systems, May 1994.

[11℄ A. K. Mok and D. Chen, \A multiframe model for

real-time tasks," Proeedings of IEEE Real-Time

System Symposium, Washington, Deember 1996.

[12℄ D. Seto, J.P. Lehozky, L. Sha, and K.G. Shin,

\On Task Shedulability in Real-Time Control

Systems," Proeedings of the IEEE Real-Time

Systems Symposium, Deember 1996.

[13℄ K.G. Shin, C.M. Krishna, and Y.-H. Lee, \A Uni-

�ed Method for Evaluating Real-Time Computer

Controllers and Its Appliation," IEEE Transa-

tions on Automati Control, pp. 357-365, April

1985.

[14℄ B. Sprunt, L. Sha, and J. P. Lehozky, \Aperiodi

sheduling for hard real-time system". The Jour-

nal of Real-Time Systems, 1, pp. 27-60, 1989.

[15℄ J. Sun and J.W.S. Liu, \Bounding Completion

Times of Jobs with Arbitrary Release Times and

Variable Exeution Times", Proeedings of IEEE

Real-Time System Symposium, Deember 1996.

[16℄ T.-S. Tia, Z. Deng, M. Shankar, M. Storh, J. Sun,

L.-C. Wu, and J.W.-S. Liu, \Probabilisti Perfor-

mane Guarantee for Real-Time Tasks with Vary-

ing Computation Times," Proeedings of IEEE

Real-Time Tehnology and Appliations Sympo-

sium, Chiago, Illinois, January 1995.


