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Abstract

In this paper, we present a general scheduling
methodology for managing overruns in a real-time en-
vironment, where tasks may have different critical-
ity and flexible timing constraints.  The proposed
method achieves isolation among tasks through a re-
source reservation mechanism which bounds the effects
of task interference, but also performs efficient reclaim-
ing of the unused computation times to relax the wuti-
lization constraints imposed by isolation. The enhance-
ments achieved by the proposed approach resulted to
be very effective with respect to classical reservation
schemes. The performance has been evaluated by im-
plementing the algorithm on a real-time kernel. The
runtime overhead introduced by the scheduling mech-
anism has also been investigated with specific experi-
ments, in order to be taken into account in the schedu-
lability analysis. Howewver, it resulted to be negligible in
most practical cases.

1. Introduction

In most real-time systems, predictability is achieved
by enforcing timing constraints on application tasks,
whose feasibility is guaranteed off line by means of
proper schedulability tests based on worst-case execu-
tion time (WCET) estimations. Theoretically, such an
approach works fine if all the tasks have a regular be-
havior and all WCETs are precisely estimated. In prac-
tical cases, however, a precise estimation of WCETs is
very difficult to achieve, because several low level mech-
anisms present in modern computer architectures (such
as interrupts, DMA, pipelining, caching, and prefetch-
ing) introduce a form of non deterministic behavior in
tasks’ execution, whose duration cannot be predicted
in advance.

Even though a precise WCET estimation could be
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derived for each task, a worst-case feasibility analy-
sis would be very inefficient when task execution times
have a high variance. In this case, a classical off-line
hard guarantee would waste the system’s computa-
tional resources for preserving the task set feasibility
under sporadic peak load situations, even though the
average workload is much lower. Such a waste of re-
sources (which increases the overall system’s cost) can
be justified for very critical applications (e.g., military
defense systems or safety critical space missions), in
which a single deadline miss may cause catastrophic
consequences. However, it does not represent a good
solution for those applications (the majority) in which
several deadline misses can be tolerated by the sys-
tem, as long as the average task rates are guaranteed
off line. There are many soft real-time applications in
which the worst-case duration of some tasks is rare but
much longer than the average case. In multimedia sys-
tems, for instance, the time for decoding a video frame
in MPEG players can vary significantly as a function
of the data contained in the previous frames. As an-
other example, consider a visual tracking system where,
in order to increase responsiveness, the moving target
is searched in a small window centered in a predicted
position, rather than in the entire visual field. If the
target is not found in the predicted area, the search
has to be performed in a larger region until, eventu-
ally, the entire visual field is scanned in the worst-case.
If the system is well designed, the target is found very
quickly in the predicted area most of the times. Thus,
the worst-case situation is very rare, but very expen-
sive in terms of computational resources (computation
time increases quadratically as a function of the num-
ber of trials). In this case, an off-line guarantee based
on WCETSs would drastically reduce the frequency of
the tracking task, causing a severe performance degra-
dation with respect to a soft guarantee based on the av-
erage execution time. On the other hand, uncontrolled



overruns! are very dangerous if not properly handled,

since they may heavily interfere with the execution of
other tasks, which could be more critical. Consider for
example the task set given in Table 1, where two tasks,
71 and 7, have a constant execution time, whereas 73
has an average computation time (C5"Y = 3) much
lower than its worst-case value (C3"** = 10). Here, if
the schedulability analysis is performed using the av-
erage computation time C5"Y, the total processor uti-
lization becomes 0.92, meaning that the system is not
overloaded; however, under the Earliest Deadline First
(EDF) algorithm [9] the tasks can experience long de-
lays during overruns, as illustrated in Figure 1. Similar
examples can easily be found also under fixed priority
assignments (e.g., under the Rate Monotonic algorithm
[9]), when overruns occur in the high priority tasks.

| Task | C/7 | Cm* | T; |

T1 1 1 6
T2 5 5 10
T3 3 10 12

Table 1. Task set parameters.
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Figure 1. Negative effects of uncontrolled
overruns.

To prevent an overrun to introduce unbounded de-
lays on tasks’ execution, the system could either decide
to abort the current instance of the task experiencing
the overrun or let it continue with a lower priority. The
first solution is not safe, because the instance could be
in a critical section when aborted, thus leaving a shared
resource with inconsistent data (very dangerous). The
second solution is much more flexible, since the de-
gree of interference caused by the overrun on the other
tasks can be tuned acting on the priority assigned to
the “faulty” task for executing the remaining compu-
tation.

LA task is said to overrun when it executes for more than its
guaranteed execution time.

A general technique for limiting the effects of over-
runs is based on a resource reservation approach [10,
16, 1], according to which each task is assigned (off line)
a fraction of the available resources and is handled by a
dedicated server, which prevents the served task from
demanding more than the reserved amount. Although
such a method is essential for achieving predictability
in the presence of tasks with variable execution times,
the overall system’s performance becomes quite depen-
dent on a correct resource allocation. For example, if
the CPU bandwidth allocated to a task is much less
than its average requested value, the task may slow
down too much, degrading the system’s performance.
On the other hand, if the allocated bandwidth is much
greater than the actual needs, the system will run with
low efficiency, wasting the available resources.

To overcome this problem, we propose a general
scheduling methodology for managing overruns in a
controlled fashion. In particular, the proposed tech-
nique allows to

e achieve isolation among tasks, through a resource
reservation mechanism which bounds the effects of
task overruns;

e perform efficient reclaiming of the unused com-
putation times, through a global capacity sharing
mechanism which allows to exploit early comple-
tions, in order to relax the bandwidth constraints
enforced by isolation;

e handle tasks with different criticality and flexible
timing constraints, to enhance the performance of
those real-time applications which allow a certain
degree of flexibility.

Although the idea of resource reclaiming and capac-
ity sharing is not new in the literature, as discussed
in Section 6 on related work, the peculiarity of our
method is to increase resource utilization while preserv-
ing isolation, so that not only soft tasks, but also hard
real-time tasks can benefit from our approach. More-
over, unlike other similar approaches, our method was
not developed for enhancing aperiodic responsiveness
of soft tasks, but to efficiently handle overruns in real-
time (hard and soft) tasks, where some form of relaxed
guarantee is required off line.

As a final remark, performance experiments on the
algorithm (illustrated in Section 5) show that the run-
time overhead introduced by the mechanism is negli-
gible in most of practical cases and can be controlled
through the amount of budget assigned to each server.

The rest of the paper is organized as follows: Sec-
tion 2 describes the basic idea behind the proposed



approach; Section 3 illustrates the capacity sharing al-
gorithm; Section 4 presents some theoretical results
which validate the proposed model; Section 5 illus-
trates some experimental results; Section 6 presents
the related work; and Section 7 contains our conclu-
sions and future work.

2. Basic concepts

Throughout the paper, each task 7; is considered as
a stream of jobs (or task instances) 7;; (j =1,2,...),
each characterized by a request time r; ;, an execution
time ¢; j, and a deadline d; ;. In the following, P; de-
notes the desired activation period of the task, C***
its maximum computation time, and C;'"Y its average
computation time.

In the proposed approach, each task is handled by a
dedicated Constant Bandwidth Server (CBS) [1], which
provides isolation among tasks, and a capacity sharing
mechanism allows tasks to reclaim the unused compu-
tations due to early completions. Due to the isolation
mechanism introduced by the multiple server approach,
there are no particular restrictions on the task model
that can be handled by the proposed method. Hence,
tasks can be hard, soft, periodic, or aperiodic. Al-
though the method is built upon on the CBS, it can eas-
ily be generalized to be used with any capacity-based
server.

In the following section we will briefly recall the CBS
algorithm and its main properties.

2.1. The CBS algorithm

A CBS is characterized by an ordered pair (Qs,Ts),
where () is the maximum budget and T is the period
of the server. The ratio Uy = @Q,/T is denoted as the
server bandwidth. At each instant, a fixed deadline
ds . and a budget ¢, is associated with the server. Ev-
ery time a new job 7; ; has to be served, it is assigned a
dynamic deadline d; ; equal to the current server dead-
line dy ;. The current budget ¢y represents the amount
of computation time schedulable by the CBS using the
current server deadline. Whenever a served job exe-
cutes, the budget c¢; is decreased by the same amount
and, every time ¢, = 0, the server budget is recharged
to the maximum value @; and a new server deadline is
generated as dg g1 = ds;, + L.

Figure 2 illustrates an example in which a task 7,
with maximum computation time C7'** = 2 and pe-
riod P; = 5, is scheduled by EDF together with another
task 75, served by a CBS having a budget s = 3 and
a period T = 6. Initially, ¢, = 0 and ds 9o = 0. When
job 721 (requiring 5 units of computation) arrives at
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Figure 2. Example of a CBS server.

time t = 3, ¢, is charged at the value @J; = 3 and the
job is assigned a deadline d;; =t + 15 = 9. At time
t = 6, the budget is exhausted, so c; is replenished and
a new deadline d,» = ds ;1 + Ts = 15 is generated by
the server and assigned to job 73 ;.

In [1] it is proved that in any interval of time of
length L a CBS with bandwidth U will never demand
more than Ug L, independently from the actual task re-
quests. Such a property allows us to use a bandwidth
reservation strategy to allocate a fraction of the CPU
time to soft tasks whose computation time cannot be
easily bounded. The most important consequence of
this result is that such tasks can be scheduled together
with hard tasks without affecting the a priori guaran-
tee, even in the case in which soft requests exceed the
expected load.

2.2. The capacity sharing approach

The capacity sharing (CASH) mechanism proposed
in this paper works in conjunction with the CBS. To
illustrate the idea behind our approach, we present an
example to show the potential improvements that can
be achieved by a proper exploitation of the unused com-
putation times coming from early completions.

Ideally, we would like to reserve a given bandwidth
to each task, to achieve isolation; but we would also
like to reclaim the unused time left by the other tasks
as much as possible, so giving a chance to a task to
handle its overruns without introducing long delays.

Consider the example shown in Figure 3, where
three tasks are handled by three servers with budgets
@1 =1, Q2 =5, Qs = 3, and periods 71 = 4, Ty = 10,
T5 = 12, respectively. At time ¢ = 6, job 72 1 completes
earlier with respect to the allocated budget, whereas
job 731 requires one extra unit of time. Figure 3a il-
lustrates the case in which no reclaiming is used and
tasks are served by the plain CBS algorithm. Notice



that, in spite of the budget saved by 7, the third
server is forced to postpone its current deadline when
its budget is exhausted (it happens at time ¢ = 9). As
shown in Figure 3b, however, we observe that the spare
capacity saved by 7 ; can be used by 73; to advance
its execution and prevent the server from postponing
its deadline.
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Figure 3. Overruns handled by a plain CBS
(a) versus overruns handled by a CBS with
the CASH reclaiming mechanism (b).

The reclaiming mechanism working with the CBS
uses a global queue, the CASH queue, of spare capac-
ities ordered by deadline. Whenever a task completes
its execution and its server budget is greater than zero,
the residual capacity can be used by any active task to
advance its execution. When using a spare capacity,
the task can be scheduled using the current deadline of
the server which the spare capacity belongs to. In this
way, each task can use its own capacity along with the
residual capacities deriving by the other servers.

Whenever a new task instance is scheduled for ex-
ecution, the server tries to use the residual capacities
with deadlines less than or equal to the one assigned
to the served instance; if these capacities are exhausted
and the instance is not completed, the server starts us-
ing its own capacity. Every time a task ends its execu-
tion and the server becomes idle, the residual capacity
(if any) is inserted with its deadline in the global queue
of available capacities. Spare capacities are ordered
by deadline and are consumed according to an EDF
policy. The main benefit of the proposed reclaiming
mechanism is to reduce the number of deadline shifts,

so executing periodic activities with more stable fre-
quencies.

This method, although developed for overrun con-
trol, can also be very effective in different, contexts; for
example, for improving the average response times of
the served tasks, enhancing the performance of con-
trol applications, or increasing dependability in fault-
tolerant real-time systems using recovery strategies un-
der time redundancy. In such systems, in fact, an ef-
ficient reclaiming mechanism is important to exploit
the unused computation time of backup copies whose
primaries ended successfully.

3. The algorithm

In this section we formally describe the CASH algo-
rithm assuming that each task 7; is handled by a dedi-
cated CBS server S; running on a uniprocessor system.
Capacity reclaiming is performed through the use of
a global queue, called the CASH queue, containing all
the residual capacities ordered by deadlines.

3.1. Algorithm rules

The CASH algorithm can be defined as follows:

1. Each server S; is characterized by a budget ¢; and
by an ordered pair (Q;,T;), where @; is the max-
imum budget and Tj is the period of the server.
The ratio U; = Q;/T; is denoted as the server
bandwidth. At each instant, a fixed deadline d; ;
is associated with the server. At the beginning
Vi, d;o = 0.

2. Each task instance 7; ; handled by server S; is as-
signed a dynamic deadline equal to the current
server deadline d; j.

3. A server S; is said to be active at time ¢ if there
are pending instances. A server is said to be idle
at time ¢ if it is not active.

4. When a task instance 7; ; arrives and the server
is idle, the server generates a new deadline d; ; =
max(r;j,dir—1) + T; and ¢; is recharged at the
maximum value @);.

5. When a task instance 7; ; arrives and the server is
active the request is enqueued in a queue of pend-
ing jobs according to a given (arbitrary) discipline.

6. Whenever instance 7; ; is scheduled for execution,
the server S; uses the capacity ¢, in the CASH
queue (if there is one) with the earliest deadline
dy, such that d, < d; j, otherwise its own capacity
¢; is used.



7. Whenever job 7;; executes, the used budget ¢,
or ¢; is decreased by the same amount. When ¢,
becomes equal to zero, it is extracted from the
CASH queue and the next capacity in the queue
with deadline less than or equal to d; ; can be used.

8. When the server is active and ¢; becomes equal to
zero, the server budget is recharged at the maxi-
mum value @); and a new server deadline is gener-
ated as d¢7k = dz}kfl + T;.

9. When a task instance finishes, the next pending
instance, if any, is served using the current budget
and deadline. If there are no pending jobs, the
server becomes idle, the residual capacity ¢; > 0 (if
any) is inserted in the CASH queue with deadline
equal to the server deadline, and ¢; is set equal to
ZEro.

10. Whenever the processor becomes idle for an inter-
val of time A, the capacity ¢, (if exists) with the
earliest deadline in the CASH queue is decreased
by the same amount of time until the CASH queue
becomes empty.

3.2. An example

To better understand the proposed approach, we
will describe a simple example which shows how our
reclaiming algorithm works. Consider a task set con-
sisting of two periodic tasks, 7 and 7o, with peri-
ods P, = 4 and P, = 8, maximum execution times
C7*** =4 and C3*** = 3, and average execution times
C1" =3 and Cy"Y = 2. Each task is scheduled by a
dedicated CBS having a period equal to the task pe-
riod and a budget equal to the average execution time.
Hence, a task completing before its average execution
time saves some budget, whereas it experiences an over-
run if it completes after. A possible execution of the
task set is reported in Figure 4, which also shows the
capacity of each server and the residual capacities gen-
erated by each task. At time t = 2, task 7; has an early
completion and a residual capacity equal to one with
deadline equal to 4 becomes available. After that,
consumes the above residual capacity before starting
to use its own capacity; hence, at time ¢ = 4, a 7» over-
run is handled without postponing its deadline. Notice
that each task tries to use residual capacities before
using its own capacity and that whenever an idle inter-
val occurs (see interval [19, 20]), the residual capacity
with the earliest deadline has to be discharged by the
same amount in order to handle the residual capacities
correctly.

The example above shows that overruns can be han-
dled efficiently without postponing any deadline. A

classical CBS instead, would postpone some deadlines
in order to guarantee tasks isolation. Clearly, if all the
tasks consume their allocated budget, no reclaiming
can be done and our approach performs the same as a
plain CBS. However, this situation is very rare, hence
our approach helps in improving the average system’s
performance.
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Figure 4. Example of global resource reclaim-
ing.

4. Theoretical validation of the model

In this section we analyze the schedulability condi-
tion for a hybrid task set consisting of hard and soft
periodic tasks. Each is scheduled using a dedicated
CBS. If each hard periodic task is scheduled by a server
with maximum budget equal to the task wcet and with
period equal to the task period, it behaves like a stan-
dard hard task scheduled by EDF. The difference is
that each task can gain and use extra capacities and
yields its residual capacity to other tasks. This run-
time exchange, however, does not affect schedulability;
thus, the task set can be guaranteed using the classical
Liu and Layland condition:

—~ Qi
<<y,

where (); is the maximum server budget and T; is the
server period. Before proving the schedulability condi-
tion, the following lemma will prove that all the gen-
erated capacities are exhausted before their respective
deadlines.

Lemma 1 Given a set I' of capacity based servers
along with the CASH algorithm, each capacity gener-
ated during the scheduling is exhausted before its dead-



line if and only if:

Z%SL (1)

where @Q; is the mazimum server budget and T; is the
server period.

Proof.

If. Assume equation (1) holds and suppose that a
capacity c¢* is not exhausted at time t*, when the cor-
responding deadline is reached. Let t, > 0 be the last
time before t* at which no capacity is discharging; that
is, the last instant before ¢t* during which the CPU is
idle and the CASH queue is empty (if there is no such
time, set t, = 0). Let ¢, > 0 be the last time before ¢*
at which a capacity with deadline after ¢* is discharg-
ing (if there is no such time, set ¢, = 0). If we take
t = max(t,,ts), time ¢ has the property that only ca-
pacities created after ¢ and with deadline less than or
equal to t* are used during [¢,t*]. Let Qv (t1,%2) be the
sum of capacities created after t; and with deadline less
than or equal to 2; since a capacity misses its deadline
at time t*, it must be that:

Qr(t,t") > (t" - 1)

In the interval [¢,t*], we can write that:

n *

(t—t) < Qrt,t) < Y V tJ Q< —n> =,
i=1 =

which is a contradiction.

Only if. Suppose that ). C% > 1. Then, we show
there exists an interval [t1, 2] in which Qp(t1,t2) >
(t2 — t1). Assume that all the servers are activated at
time 0; then, for L = lem(Th, ..., T),,) we can write that:

S L " Qi
QT(O’L):ZLEJQi:;EQi:L;T>L,

i=1 v

hence, the “only if condition” follows. O

We now formally prove the schedulability condition
with the following theorem:

Theorem 1 Let T, be a set of periodic hard tasks,
where each task 7; is scheduled by o dedicated server
with Q; = C™** and T; = P;, and let T, be a set of
soft tasks scheduled by a group of servers with total uti-
lization U*°Tt. Then, Ty, is feasible if and only if

Y Erversn, (2)
i €T Tl

Proof.

The theorem follows immediately from Lemma 1; in
fact, we can notice that each hard task instance has
available at least its own capacity equal to the task
WCET. Lemma 1 states that each capacity is always
discharged before its deadline, hence it follows that
each hard task instance has to finish by its deadline. O

It is worth noting that Theorem 1 also holds un-
der a generic capacity-based server having a periodic
behavior and a bandwidth Us.

5. Performance evaluation

The CASH algorithm has been implemented in the
HARTIK kernel [6] to measure the performance gain
introduced by the capacity sharing mechanism and to
verify the results predicted by the theory. In particular,
we performed our experiments on a set of control tasks
with the objective of minimizing a performance cost
function under the schedulability constraints imposed
by the system. Before illustrating the achieved results,
we will briefly introduce some basic concepts useful for
better understanding the experiments.

5.1. Background concepts

In a digital control system, the overall control per-
formance is a function of the sampling rates used by the
control tasks: the higher the rates, the better the per-
formance. However, task rates are limited by the total
processor utilization, which must be less than a max-
imum value in order to have a feasible schedule. On
the other hand, each task 7; is characterized by a min-
imum frequency f™", below which the performance
is unacceptable and the control becomes unstable. In
this sense, 1/f™" represents a hard relative deadline
for task ;.

A performance cost function can be defined using
the concept of Performance Loss Index (PLI), orig-
inally introduced in [13], to measure the difference
between a digital and continuous control as a func-
tion of the sampling frequency. In particular, if J
and Jp(f) are the performance indices generated by
a continuous-time control and its digital implementa-
tion at a sampling frequency f, a PLI can be defined
as AJ(f) = [Ip(f) — J|.

As noted in [12], AJ(f) is convex and monotonically
decreasing with the frequency, hence, for each control
task, it can be approximated by the following exponen-
tial function:

AJi(fi) = aze” 1,



where f; is the frequency of 7;, «; is a magnitude co-
efficient, and (; is the decay rate. The PLI of the
overall system AJ(f1,..., fn) can then be defined as
AJ(f1, s fn) = 2, wiAJ;i(fi), where w; is a design
parameter determined from the application (it can be
considered a weight related to task’s importance).

Ideally, we would like to minimize the overall PLI by
increasing task rates as much as possible during nor-
mal load conditions, but we would also like to guaran-
tee each task its minimum frequency, in the worst-case
scenario.

To guarantee a minimum frequency to each task, we
use the algorithm proposed in [12], able to determine
a set of optimal rates f{** which minimize a given PLI
under a set of hard schedulability constraints.

To improve the average system’s performance, a less
pessimistic analysis was proposed in [3] to increase the
task rates. According to this method, each task is as-
signed a normal computation time ¢ < C7*** to per-
form a relaxed guarantee in normal load conditions (¢}
can be set equal to C;"? or to a different value com-
puted by analyzing the probabilistic distribution of the
task computation time). Moreover, each task can dy-
namically change its frequency depending on the cur-
rent load. If d; ; is the deadline used by the server to
schedule job 7; ;, the next job 7; ;41 will start at time

rij+1 = maz(dij, rij + —5o7), (3)

fi

where P! is the optimal frequency computed by the
Seto et al. algorithm [12] for task 7;, assuming 7
needs an execution time equal to its normal compu-
tation time. Hence, each job 7; ; has a variable period
PL' =Tij+1 —Tij-

5.2. Experimental results

A set of experiments has been performed to verify
the effectiveness of the CASH algorithm in enhancing
the PLI in a set of periodic control tasks. Table 2
shows the parameters of the task set selected for this
experiment. Each task 7; has a normal computation
time equal to its average computation time such that
Vi ¢} = O = 0.70/"%. The optimal frequency f{*
represents the frequency computed by the Seto et al.
algorithm [12] assuming that each task has the same
weight w; = 1, the same magnitude coefficient a; = 1
and the same decay rate 8; = 0.4. The f™" value
represents the minimum frequency each task can run
at (following the elastic control model described in the
above section). The minimum value of the PLI com-
puted by the optimization algorithm is AJ°P* = (.0432.
Such a theoretical value, however, can be reached only

if every instance of each task 7; executes exactly for
C;"Y. Notice that each task has a reserved bandwidth
U = cpfP.

The performance of the algorithm was measured by
computing the PLI of the task set as a function of the
budget assigned to each server. For instance a value of
0.9 on the x-axis means that each server has a maxi-
mum budget @; = 0.9C***. Whenever the maximum
budget is changed (on the x-axis) the server period is
set according to the assigned bandwidth. Computation
times have a uniform distribution and each computa-
tion time is obtained by splitting the whole execution
time in a fixed part (C7%) plus a random part (C"?"¢),
where C/#* = 209 — C™% and C"*"? is obtained by
a uniform distribution in interval [0, C™* — C/i2].

Figure 5 compares the plain CBS with the
CBS+CASH algorithm. The optimal PLI (theoretical
value) is also drawn as a reference value along with the
experimental results. The graph shows that no gain
is obtained by the CASH algorithm when the server
budget is set equal to the task C™**. However, as the
server budget decreases, the CASH algorithm becomes
more effective, improving the PLI with respect to the
plain CBS. It is worth noting that the PLI has a peak
for @); = 0.5C***. This strange behaviour is a direct
consequence of the CBS deadline postponement rule
and can be explained as follows.

Whenever a deadline is postponed by the CBS, the
new deadline is increased by a server period. Let us
focus, for instance, on task 75, when @5 = 0.5C*** =
5ms and T = 50ms (being Us = 0.1). Since Cy"Y =
0.7C8** = Tms, during overruns the task period is
increased up to 100ms. This value is much greater
than the average period of the task deriving from the
allocated bandwidth (P = C5"Y /U5 = 70ms). Such
an effect, becomes less significant for smaller values of
the server budget. For example, when ()5 = 0.4Cf"** =
4ms and T5 = 40ms, during overruns the task period
becomes 80ms, which is closer to the average period.
The same consideration holds for the other tasks.

In conclusion, this experiment shows that the CASH
algorithm can achieve a PLI very close to the opti-
mal value when the server budget is a small fraction of
the average computation time, although the algorithm
yields good results also for server budgets equal to the
task average computation times.

5.3. Considerations on runtime overhead

A final set of experiments has also been conducted
to estimate the runtime overhead introduced by the
CBS+CASH algorithm. A quantitative analysis of the
overhead is useful to provide a criterion for setting the



| Task [| €™ (ms) [ ¢f (ms) | £ (Hz) | f |

m 25 175 11.85 5
- 1255 8.75 13.58 5
T3 38 26.6 10.8 5
- 38 26.6 10.8 5
Ts 10 7 14.14 5

Table 2. Task set parameters.

CBS —+—
CBS+CASH ---x---
optimal PLI ---%---

Performance Loss index

Server budget as fraction of WCET

Figure 5. PLI of a task set with C*?¢ = 0.7C"™%*,

servers’ budgets, since, as shown in Figure 5, a small
budget allows to improve the PLI, but increases the
number of deadline postponements.

Our experiments have been performed on a Pentium
133 MHz using the task set shown in Table 2. Since in
the HARTIK kernel the scheduling algorithm executes
in the context of the running task, the scheduling over-
head has the effect of increasing the actual execution
time of each task. Therefore, the overhead due to the
CBS+CASH algorithm has been measured as a differ-
ence between the average computation time ¢ of the
longest task served with a budget equal to its WCET
(so that no deadline is postponed) and the average
computation time ¢’ computed with a budget equal
to a small fraction of the WCET, so that the server
deadline is postponed n times, in the average. Hence,
the overhead w due to a single deadline postponement
performed by the CBS+CASH algorithm, resulted to
be

7 —¢

w = = 42us.

Notice that w does not include the overhead due to
preemption. To investigate the effects of the algorithm
overhead on the PLI, the guarantee test has been mod-

ified to take the overhead into account. If ); is the
budget assigned to server S;, the net budget used by
the task is Q7"®* = @; — w. Hence, the guarantee test
can be rewritten as:

where Q7¢*/T; is bandwidth that must be assigned to
task 7; according to the Seto et al. algorithm to mini-
mize the PLI. Since the overhead reduces the available
bandwidth, the optimal PLI increases its value as the
server budget is decreased.

Figure 6 shows the optimal PLI (with overhead in-
cluded) as a function of the budget assigned to each
server. It is worth noting that the overhead effect is
negligible up to @5 = 0.1C™**; therefore, the server
budget can be set equal to 0.2C™** for the task set of
Table 2, obtaining a PLI very close to the optimal one
(see Figure 5).

As a final remark, we note that lower values of the
budget could slightly improve the PLI; however, they
cannot be easily assigned if the server budget becomes
comparable with the time granularity of the kernel.

0.1

optimal PLI with overhead —+—

Performance Loss index

0.04 L L L L L L L L L
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Server budget as fraction of WCET

Figure 6. Optimal PLI taking the scheduling
overhead into account.

6. Related work

Different approaches have been proposed in the lit-
erature to deal with overruns and variable execution
times. In [15], the authors provide an upper bound
of completion times of jobs chains with variable ex-
ecution times and arbitrary release times. In [11], a
guarantee is computed for tasks whose jobs are char-
acterized by variable computation times and interar-
rival times, occurring with a cyclical pattern. In [10],



a capacity reservation technique is used to bound the
computational demand of tasks with variable compu-
tation times, in a fixed priority environment. Accord-
ing to this approach, a fraction of the CPU bandwidth
is reserved to each task to achieve temporal isolation.
Although such a solution prevents unbounded inter-
ference, overruns are not handled efficiently. In fact,
whenever a job consumes the reserved budget, its re-
maining portion is scheduled in background, so pro-
longing its completion for an unpredictable amount of
time. In [16] the authors present a Transform-Task
Method (TTM) according to which a task is split into
two pieces, where the second piece (i.e., the exceeding
computation time causing the overrun) is handled as
a job served by a Sporadic Server [14]. Using this ap-
proach, a probabilistic guarantee is performed on tasks
whose execution times have known distribution. In [5],
the authors propose two approaches for handling over-
runs. The first approach, called the Overrun Server
Method (OSM), extends the TTM method to combine
a general baseline algorithm for scheduling normal pe-
riodic tasks with a generic aperiodic server for handling
overruns. Although, this method performs better than
handling overruns in background, it cannot ensure that
the remaining portion of a task instance is always exe-
cuted before the next one. The second approach, called
the Isolation Server Method (ISM), can achieve isola-
tion among tasks, but it cannot provide a priori guar-
antee.

A more efficient technique, namely the Constant
Bandwidth Server (CBS), is proposed in [1] under a
dynamic priority environment. As in [10], a fraction
of the CPU bandwidth is reserved to each task, but
tasks are scheduled by EDF using a suitable deadline,
computed as a function of the reserved bandwidth and
the actual requests. If a task requires to execute more
than expected, its deadline is postponed and its bud-
get replenished. This method allows to achieve isola-
tion among tasks and overruns are handled efficiently
based on their actual deadline. As mentioned in the
introduction, although isolation mechanisms are essen-
tial for increasing system’s reliability in the presence of
tasks with variable execution times, the correct behav-
ior of the system strongly depends on a correct reserva-
tion policy. Recently, this problem has been addressed
by a number of authors, who proposed new techniques
to reduce such a negative aspect of isolation.

In [7], the authors proposed the Bandwidth Shar-
ing Server (BSS) to handle several multi-thread ap-
plications on a single processor, by allowing threads
belonging to the same application to reclaim the spare
time due to early completions. Although the algorithm
provides isolation among applications, no isolation is

guaranteed among tasks belonging to the same appli-
cation. A multi-application environment is also treated
in [4], where a two-level scheduling architecture is used
to handle each application by a dedicated server. This
approach is able to isolate the effect of overloads at
the application level, rather than at the task level, but
does not provide a global reclaiming mechanism to ef-
ficiently exploit the reserved bandwidths.

In [3], the authors proposed a methodology for im-
proving the performance of hard control applications
using a resource reservation approach combined with
a suitable off-line analysis, based on the Seto et al.
algorithm [12]. A less pessimistic analysis and a lo-
cal reclaiming mechanism is used to increase the aver-
age task rates, while a proper overrun control mech-
anism is adopted to guarantee each task a minimum
rate. However, since the reclaiming is local to each
task (i.e., no capacity sharing is allowed), the improve-
ment achieved over the Seto et al. algorithm is not
so significant. In [8], the authors proposed an elegant
technique for scheduling a set of real-time tasks on a
single processor, so that each task runs as it is exe-
cuting on a slower dedicated processor. The method
achieves isolation and allows to reclaim most of the
spare time unused by tasks. A critical parameter of this
approach is the time granularity used in the algorithm;
in fact, a small quantum reduces the scheduling error,
but increases the overhead due to context switches. In
[2], the authors propose a capacity sharing protocol
for enhancing soft aperiodic responsiveness in a fixed
priority environment, where each soft task is handled
by a dedicated server. Although the basic idea of ca-
pacity sharing is the same as the one proposed in our
paper, the main difference with our CASH algorithm
is that in [2] each server can “steal” capacity from the
other servers to advance the execution of the served
task, thus loosing isolation among the served tasks (a
low priority server could receive less bandwidth than
requested). In our case, instead, a capacity is given
only after a job is completed and a new replenishment
is always performed (with a suitable deadline) when
a new job arrives. These rules allow the algorithm to
preserve the isolation property. Moreover, with respect
to the capacity sharing protocol, the CASH algorithm
is used to solve a different problem (overrun control) in
a different context (dynamic deadline scheduling with
resource reservation).

7. Conclusions

In this paper we presented a capacity sharing
(CASH) mechanism which allows to achieve temporal
protection on tasks’ execution, while performing effi-



cient reclaiming of the unused computation times. The
algorithm is able to handle tasks with soft, hard, as well
as flexible timing constraints.

The work integrates and extends two recent ad-
vances in real-time computing: the elastic control ap-
proach [3], which allows to optimize the control perfor-
mance under schedulability constraints, and the Con-
stant Bandwidth Server [1], which provides isolation
among application tasks.

The CASH algorithm has been implemented in the
HARTIK kernel in order to evaluate its performance
and validate our theoretical results. The experiments
show the effectiveness of the reclaiming mechanism in
enhancing the performance loss index through an in-
crease of tasks’ frequencies. The enhancement becomes
more significant when the task computation times are
characterized by a large variance. Specific tests on the
reclaiming mechanism showed that the overhead intro-
duced by the algorithm does not limit its use in real
applications.

As a future work, we plan to apply this technique for
handling fault-tolerant applications where, each task is
composed by a primary and a backup copy.
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