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Abstra
t

In this paper, we present a general s
heduling

methodology for managing overruns in a real-time en-

vironment, where tasks may have di�erent 
riti
al-

ity and 
exible timing 
onstraints. The proposed

method a
hieves isolation among tasks through a re-

sour
e reservation me
hanism whi
h bounds the e�e
ts

of task interferen
e, but also performs eÆ
ient re
laim-

ing of the unused 
omputation times to relax the uti-

lization 
onstraints imposed by isolation. The enhan
e-

ments a
hieved by the proposed approa
h resulted to

be very e�e
tive with respe
t to 
lassi
al reservation

s
hemes. The performan
e has been evaluated by im-

plementing the algorithm on a real-time kernel. The

runtime overhead introdu
ed by the s
heduling me
h-

anism has also been investigated with spe
i�
 experi-

ments, in order to be taken into a

ount in the s
hedu-

lability analysis. However, it resulted to be negligible in

most pra
ti
al 
ases.

1. Introdu
tion

In most real-time systems, predi
tability is a
hieved

by enfor
ing timing 
onstraints on appli
ation tasks,

whose feasibility is guaranteed o� line by means of

proper s
hedulability tests based on worst-
ase exe
u-

tion time (WCET) estimations. Theoreti
ally, su
h an

approa
h works �ne if all the tasks have a regular be-

havior and all WCETs are pre
isely estimated. In pra
-

ti
al 
ases, however, a pre
ise estimation of WCETs is

very diÆ
ult to a
hieve, be
ause several low level me
h-

anisms present in modern 
omputer ar
hite
tures (su
h

as interrupts, DMA, pipelining, 
a
hing, and prefet
h-

ing) introdu
e a form of non deterministi
 behavior in

tasks' exe
ution, whose duration 
annot be predi
ted

in advan
e.

Even though a pre
ise WCET estimation 
ould be

derived for ea
h task, a worst-
ase feasibility analy-

sis would be very ineÆ
ient when task exe
ution times

have a high varian
e. In this 
ase, a 
lassi
al o�-line

hard guarantee would waste the system's 
omputa-

tional resour
es for preserving the task set feasibility

under sporadi
 peak load situations, even though the

average workload is mu
h lower. Su
h a waste of re-

sour
es (whi
h in
reases the overall system's 
ost) 
an

be justi�ed for very 
riti
al appli
ations (e.g., military

defense systems or safety 
riti
al spa
e missions), in

whi
h a single deadline miss may 
ause 
atastrophi



onsequen
es. However, it does not represent a good

solution for those appli
ations (the majority) in whi
h

several deadline misses 
an be tolerated by the sys-

tem, as long as the average task rates are guaranteed

o� line. There are many soft real-time appli
ations in

whi
h the worst-
ase duration of some tasks is rare but

mu
h longer than the average 
ase. In multimedia sys-

tems, for instan
e, the time for de
oding a video frame

in MPEG players 
an vary signi�
antly as a fun
tion

of the data 
ontained in the previous frames. As an-

other example, 
onsider a visual tra
king system where,

in order to in
rease responsiveness, the moving target

is sear
hed in a small window 
entered in a predi
ted

position, rather than in the entire visual �eld. If the

target is not found in the predi
ted area, the sear
h

has to be performed in a larger region until, eventu-

ally, the entire visual �eld is s
anned in the worst-
ase.

If the system is well designed, the target is found very

qui
kly in the predi
ted area most of the times. Thus,

the worst-
ase situation is very rare, but very expen-

sive in terms of 
omputational resour
es (
omputation

time in
reases quadrati
ally as a fun
tion of the num-

ber of trials). In this 
ase, an o�-line guarantee based

on WCETs would drasti
ally redu
e the frequen
y of

the tra
king task, 
ausing a severe performan
e degra-

dation with respe
t to a soft guarantee based on the av-

erage exe
ution time. On the other hand, un
ontrolled



overruns
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are very dangerous if not properly handled,

sin
e they may heavily interfere with the exe
ution of

other tasks, whi
h 
ould be more 
riti
al. Consider for

example the task set given in Table 1, where two tasks,

�

1

and �

2

, have a 
onstant exe
ution time, whereas �

3

has an average 
omputation time (C

avg

3

= 3) mu
h

lower than its worst-
ase value (C

max

3

= 10). Here, if

the s
hedulability analysis is performed using the av-

erage 
omputation time C

avg

3

, the total pro
essor uti-

lization be
omes 0.92, meaning that the system is not

overloaded; however, under the Earliest Deadline First

(EDF) algorithm [9℄ the tasks 
an experien
e long de-

lays during overruns, as illustrated in Figure 1. Similar

examples 
an easily be found also under �xed priority

assignments (e.g., under the Rate Monotoni
 algorithm

[9℄), when overruns o

ur in the high priority tasks.

Task C

avg

i

C

max

i

T

i

�

1

1 1 6

�

2

5 5 10

�

3

3 10 12

Table 1. Task set parameters.
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Figure 1. Negative effects of uncontrolled

overruns.

To prevent an overrun to introdu
e unbounded de-

lays on tasks' exe
ution, the system 
ould either de
ide

to abort the 
urrent instan
e of the task experien
ing

the overrun or let it 
ontinue with a lower priority. The

�rst solution is not safe, be
ause the instan
e 
ould be

in a 
riti
al se
tion when aborted, thus leaving a shared

resour
e with in
onsistent data (very dangerous). The

se
ond solution is mu
h more 
exible, sin
e the de-

gree of interferen
e 
aused by the overrun on the other

tasks 
an be tuned a
ting on the priority assigned to

the \faulty" task for exe
uting the remaining 
ompu-

tation.

1

A task is said to overrun when it exe
utes for more than its

guaranteed exe
ution time.

A general te
hnique for limiting the e�e
ts of over-

runs is based on a resour
e reservation approa
h [10,

16, 1℄, a

ording to whi
h ea
h task is assigned (o� line)

a fra
tion of the available resour
es and is handled by a

dedi
ated server, whi
h prevents the served task from

demanding more than the reserved amount. Although

su
h a method is essential for a
hieving predi
tability

in the presen
e of tasks with variable exe
ution times,

the overall system's performan
e be
omes quite depen-

dent on a 
orre
t resour
e allo
ation. For example, if

the CPU bandwidth allo
ated to a task is mu
h less

than its average requested value, the task may slow

down too mu
h, degrading the system's performan
e.

On the other hand, if the allo
ated bandwidth is mu
h

greater than the a
tual needs, the system will run with

low eÆ
ien
y, wasting the available resour
es.

To over
ome this problem, we propose a general

s
heduling methodology for managing overruns in a


ontrolled fashion. In parti
ular, the proposed te
h-

nique allows to

� a
hieve isolation among tasks, through a resour
e

reservation me
hanism whi
h bounds the e�e
ts of

task overruns;

� perform eÆ
ient re
laiming of the unused 
om-

putation times, through a global 
apa
ity sharing

me
hanism whi
h allows to exploit early 
omple-

tions, in order to relax the bandwidth 
onstraints

enfor
ed by isolation;

� handle tasks with di�erent 
riti
ality and 
exible

timing 
onstraints, to enhan
e the performan
e of

those real-time appli
ations whi
h allow a 
ertain

degree of 
exibility.

Although the idea of resour
e re
laiming and 
apa
-

ity sharing is not new in the literature, as dis
ussed

in Se
tion 6 on related work, the pe
uliarity of our

method is to in
rease resour
e utilization while preserv-

ing isolation, so that not only soft tasks, but also hard

real-time tasks 
an bene�t from our approa
h. More-

over, unlike other similar approa
hes, our method was

not developed for enhan
ing aperiodi
 responsiveness

of soft tasks, but to eÆ
iently handle overruns in real-

time (hard and soft) tasks, where some form of relaxed

guarantee is required o� line.

As a �nal remark, performan
e experiments on the

algorithm (illustrated in Se
tion 5) show that the run-

time overhead introdu
ed by the me
hanism is negli-

gible in most of pra
ti
al 
ases and 
an be 
ontrolled

through the amount of budget assigned to ea
h server.

The rest of the paper is organized as follows: Se
-

tion 2 des
ribes the basi
 idea behind the proposed



approa
h; Se
tion 3 illustrates the 
apa
ity sharing al-

gorithm; Se
tion 4 presents some theoreti
al results

whi
h validate the proposed model; Se
tion 5 illus-

trates some experimental results; Se
tion 6 presents

the related work; and Se
tion 7 
ontains our 
on
lu-

sions and future work.

2. Basi
 
on
epts

Throughout the paper, ea
h task �

i

is 
onsidered as

a stream of jobs (or task instan
es) �

i;j

(j = 1; 2; : : :),

ea
h 
hara
terized by a request time r

i;j

, an exe
ution

time 


i;j

, and a deadline d

i;j

. In the following, P

i

de-

notes the desired a
tivation period of the task, C

max

i

its maximum 
omputation time, and C

avg

i

its average


omputation time.

In the proposed approa
h, ea
h task is handled by a

dedi
ated Constant Bandwidth Server (CBS) [1℄, whi
h

provides isolation among tasks, and a 
apa
ity sharing

me
hanism allows tasks to re
laim the unused 
ompu-

tations due to early 
ompletions. Due to the isolation

me
hanism introdu
ed by the multiple server approa
h,

there are no parti
ular restri
tions on the task model

that 
an be handled by the proposed method. Hen
e,

tasks 
an be hard, soft, periodi
, or aperiodi
. Al-

though the method is built upon on the CBS, it 
an eas-

ily be generalized to be used with any 
apa
ity-based

server.

In the following se
tion we will brie
y re
all the CBS

algorithm and its main properties.

2.1. The CBS algorithm

A CBS is 
hara
terized by an ordered pair (Q

s

; T

s

),

where Q

s

is the maximum budget and T

s

is the period

of the server. The ratio U

s

= Q

s

=T

s

is denoted as the

server bandwidth. At ea
h instant, a �xed deadline

d

s;k

and a budget 


s

is asso
iated with the server. Ev-

ery time a new job �

i;j

has to be served, it is assigned a

dynami
 deadline d

i;j

equal to the 
urrent server dead-

line d

s;k

. The 
urrent budget 


s

represents the amount

of 
omputation time s
hedulable by the CBS using the


urrent server deadline. Whenever a served job exe-


utes, the budget 


s

is de
reased by the same amount

and, every time 


s

= 0, the server budget is re
harged

to the maximum value Q

s

and a new server deadline is

generated as d

s;k+1

= d

s;k

+ T

s

.

Figure 2 illustrates an example in whi
h a task �

1

,

with maximum 
omputation time C

max

1

= 2 and pe-

riod P

1

= 5, is s
heduled by EDF together with another

task �

2

, served by a CBS having a budget Q

s

= 3 and

a period T

s

= 6. Initially, 


s

= 0 and d

s;0

= 0. When

job �

2;1

(requiring 5 units of 
omputation) arrives at

=3

T =6

τ

15
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τ

s
c

Q
s

s

1
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Figure 2. Example of a CBS server.

time t = 3, 


s

is 
harged at the value Q

s

= 3 and the

job is assigned a deadline d

s;1

= t + T

s

= 9. At time

t = 6, the budget is exhausted, so 


s

is replenished and

a new deadline d

s;2

= d

s;1

+ T

s

= 15 is generated by

the server and assigned to job �

2;1

.

In [1℄ it is proved that in any interval of time of

length L a CBS with bandwidth U

s

will never demand

more than U

s

L, independently from the a
tual task re-

quests. Su
h a property allows us to use a bandwidth

reservation strategy to allo
ate a fra
tion of the CPU

time to soft tasks whose 
omputation time 
annot be

easily bounded. The most important 
onsequen
e of

this result is that su
h tasks 
an be s
heduled together

with hard tasks without a�e
ting the a priori guaran-

tee, even in the 
ase in whi
h soft requests ex
eed the

expe
ted load.

2.2. The capacity sharing approach

The 
apa
ity sharing (CASH) me
hanism proposed

in this paper works in 
onjun
tion with the CBS. To

illustrate the idea behind our approa
h, we present an

example to show the potential improvements that 
an

be a
hieved by a proper exploitation of the unused 
om-

putation times 
oming from early 
ompletions.

Ideally, we would like to reserve a given bandwidth

to ea
h task, to a
hieve isolation; but we would also

like to re
laim the unused time left by the other tasks

as mu
h as possible, so giving a 
han
e to a task to

handle its overruns without introdu
ing long delays.

Consider the example shown in Figure 3, where

three tasks are handled by three servers with budgets

Q

1

= 1, Q

2

= 5, Q

3

= 3, and periods T

1

= 4, T

2

= 10,

T

3

= 12, respe
tively. At time t = 6, job �

2;1


ompletes

earlier with respe
t to the allo
ated budget, whereas

job �

3;1

requires one extra unit of time. Figure 3a il-

lustrates the 
ase in whi
h no re
laiming is used and

tasks are served by the plain CBS algorithm. Noti
e



that, in spite of the budget saved by �

2;1

, the third

server is for
ed to postpone its 
urrent deadline when

its budget is exhausted (it happens at time t = 9). As

shown in Figure 3b, however, we observe that the spare


apa
ity saved by �

2;1


an be used by �

3;1

to advan
e

its exe
ution and prevent the server from postponing

its deadline.

τ 1

τ 3

τ 2

τ 1

τ 3

τ 2

0 2 4 6 8 10 12 14 16 18 20 22 24

��
��
��
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��
��
��
��
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(b)

0 2 4 6 8 10 12 14 16 18 20 22 24

-1

+1

Figure 3. Overruns handled by a plain CBS

(a) versus overruns handled by a CBS with

the CASH reclaiming mechanism (b).

The re
laiming me
hanism working with the CBS

uses a global queue, the CASH queue, of spare 
apa
-

ities ordered by deadline. Whenever a task 
ompletes

its exe
ution and its server budget is greater than zero,

the residual 
apa
ity 
an be used by any a
tive task to

advan
e its exe
ution. When using a spare 
apa
ity,

the task 
an be s
heduled using the 
urrent deadline of

the server whi
h the spare 
apa
ity belongs to. In this

way, ea
h task 
an use its own 
apa
ity along with the

residual 
apa
ities deriving by the other servers.

Whenever a new task instan
e is s
heduled for ex-

e
ution, the server tries to use the residual 
apa
ities

with deadlines less than or equal to the one assigned

to the served instan
e; if these 
apa
ities are exhausted

and the instan
e is not 
ompleted, the server starts us-

ing its own 
apa
ity. Every time a task ends its exe
u-

tion and the server be
omes idle, the residual 
apa
ity

(if any) is inserted with its deadline in the global queue

of available 
apa
ities. Spare 
apa
ities are ordered

by deadline and are 
onsumed a

ording to an EDF

poli
y. The main bene�t of the proposed re
laiming

me
hanism is to redu
e the number of deadline shifts,

so exe
uting periodi
 a
tivities with more stable fre-

quen
ies.

This method, although developed for overrun 
on-

trol, 
an also be very e�e
tive in di�erent 
ontexts; for

example, for improving the average response times of

the served tasks, enhan
ing the performan
e of 
on-

trol appli
ations, or in
reasing dependability in fault-

tolerant real-time systems using re
overy strategies un-

der time redundan
y. In su
h systems, in fa
t, an ef-

�
ient re
laiming me
hanism is important to exploit

the unused 
omputation time of ba
kup 
opies whose

primaries ended su

essfully.

3. The algorithm

In this se
tion we formally des
ribe the CASH algo-

rithm assuming that ea
h task �

i

is handled by a dedi-


ated CBS server S

i

running on a unipro
essor system.

Capa
ity re
laiming is performed through the use of

a global queue, 
alled the CASH queue, 
ontaining all

the residual 
apa
ities ordered by deadlines.

3.1. Algorithm rules

The CASH algorithm 
an be de�ned as follows:

1. Ea
h server S

i

is 
hara
terized by a budget 


i

and

by an ordered pair (Q

i

; T

i

), where Q

i

is the max-

imum budget and T

i

is the period of the server.

The ratio U

i

= Q

i

=T

i

is denoted as the server

bandwidth. At ea
h instant, a �xed deadline d

i;k

is asso
iated with the server. At the beginning

8i; d

i;0

= 0.

2. Ea
h task instan
e �

i;j

handled by server S

i

is as-

signed a dynami
 deadline equal to the 
urrent

server deadline d

i;k

.

3. A server S

i

is said to be a
tive at time t if there

are pending instan
es. A server is said to be idle

at time t if it is not a
tive.

4. When a task instan
e �

i;j

arrives and the server

is idle, the server generates a new deadline d

i;k

=

max(r

i;j

; d

i;k�1

) + T

i

and 


i

is re
harged at the

maximum value Q

i

.

5. When a task instan
e �

i;j

arrives and the server is

a
tive the request is enqueued in a queue of pend-

ing jobs a

ording to a given (arbitrary) dis
ipline.

6. Whenever instan
e �

i;j

is s
heduled for exe
ution,

the server S

i

uses the 
apa
ity 


q

in the CASH

queue (if there is one) with the earliest deadline

d

q

, su
h that d

q

� d

i;k

, otherwise its own 
apa
ity




i

is used.



7. Whenever job �

i;j

exe
utes, the used budget 


q

or 


i

is de
reased by the same amount. When 


q

be
omes equal to zero, it is extra
ted from the

CASH queue and the next 
apa
ity in the queue

with deadline less than or equal to d

i;k


an be used.

8. When the server is a
tive and 


i

be
omes equal to

zero, the server budget is re
harged at the maxi-

mum value Q

i

and a new server deadline is gener-

ated as d

i;k

= d

i;k�1

+ T

i

.

9. When a task instan
e �nishes, the next pending

instan
e, if any, is served using the 
urrent budget

and deadline. If there are no pending jobs, the

server be
omes idle, the residual 
apa
ity 


i

> 0 (if

any) is inserted in the CASH queue with deadline

equal to the server deadline, and 


i

is set equal to

zero.

10. Whenever the pro
essor be
omes idle for an inter-

val of time �, the 
apa
ity 


q

(if exists) with the

earliest deadline in the CASH queue is de
reased

by the same amount of time until the CASH queue

be
omes empty.

3.2. An example

To better understand the proposed approa
h, we

will des
ribe a simple example whi
h shows how our

re
laiming algorithm works. Consider a task set 
on-

sisting of two periodi
 tasks, �

1

and �

2

, with peri-

ods P

1

= 4 and P

2

= 8, maximum exe
ution times

C

max

1

= 4 and C

max

2

= 3, and average exe
ution times

C

avg

1

= 3 and C

avg

2

= 2. Ea
h task is s
heduled by a

dedi
ated CBS having a period equal to the task pe-

riod and a budget equal to the average exe
ution time.

Hen
e, a task 
ompleting before its average exe
ution

time saves some budget, whereas it experien
es an over-

run if it 
ompletes after. A possible exe
ution of the

task set is reported in Figure 4, whi
h also shows the


apa
ity of ea
h server and the residual 
apa
ities gen-

erated by ea
h task. At time t = 2, task �

1

has an early


ompletion and a residual 
apa
ity equal to one with

deadline equal to 4 be
omes available. After that, �

2


onsumes the above residual 
apa
ity before starting

to use its own 
apa
ity; hen
e, at time t = 4, a �

2

over-

run is handled without postponing its deadline. Noti
e

that ea
h task tries to use residual 
apa
ities before

using its own 
apa
ity and that whenever an idle inter-

val o

urs (see interval [19, 20℄), the residual 
apa
ity

with the earliest deadline has to be dis
harged by the

same amount in order to handle the residual 
apa
ities


orre
tly.

The example above shows that overruns 
an be han-

dled eÆ
iently without postponing any deadline. A


lassi
al CBS instead, would postpone some deadlines

in order to guarantee tasks isolation. Clearly, if all the

tasks 
onsume their allo
ated budget, no re
laiming


an be done and our approa
h performs the same as a

plain CBS. However, this situation is very rare, hen
e

our approa
h helps in improving the average system's

performan
e.
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normal execution

overrun

Figure 4. Example of global resource reclaim­

ing.

4. Theoreti
al validation of the model

In this se
tion we analyze the s
hedulability 
ondi-

tion for a hybrid task set 
onsisting of hard and soft

periodi
 tasks. Ea
h is s
heduled using a dedi
ated

CBS. If ea
h hard periodi
 task is s
heduled by a server

with maximum budget equal to the task w
et and with

period equal to the task period, it behaves like a stan-

dard hard task s
heduled by EDF. The di�eren
e is

that ea
h task 
an gain and use extra 
apa
ities and

yields its residual 
apa
ity to other tasks. This run-

time ex
hange, however, does not a�e
t s
hedulability;

thus, the task set 
an be guaranteed using the 
lassi
al

Liu and Layland 
ondition:

n

X

i=1

Q

i

T

i

� 1;

where Q

i

is the maximum server budget and T

i

is the

server period. Before proving the s
hedulability 
ondi-

tion, the following lemma will prove that all the gen-

erated 
apa
ities are exhausted before their respe
tive

deadlines.

Lemma 1 Given a set � of 
apa
ity based servers

along with the CASH algorithm, ea
h 
apa
ity gener-

ated during the s
heduling is exhausted before its dead-



line if and only if:

n

X

i=1

Q

i

T

i

� 1; (1)

where Q

i

is the maximum server budget and T

i

is the

server period.

Proof.

If. Assume equation (1) holds and suppose that a


apa
ity 


�

is not exhausted at time t

�

, when the 
or-

responding deadline is rea
hed. Let t

a

� 0 be the last

time before t

�

at whi
h no 
apa
ity is dis
harging; that

is, the last instant before t

�

during whi
h the CPU is

idle and the CASH queue is empty (if there is no su
h

time, set t

a

= 0). Let t

b

� 0 be the last time before t

�

at whi
h a 
apa
ity with deadline after t

�

is dis
harg-

ing (if there is no su
h time, set t

b

= 0). If we take

t = max(t

a

; t

b

), time t has the property that only 
a-

pa
ities 
reated after t and with deadline less than or

equal to t

�

are used during [t; t

�

℄. Let Q

T

(t

1

; t

2

) be the

sum of 
apa
ities 
reated after t

1

and with deadline less

than or equal to t

2

; sin
e a 
apa
ity misses its deadline

at time t

�

, it must be that:

Q

T

(t; t

�

) > (t

�

� t)

In the interval [t; t

�

℄, we 
an write that:

(t

�

�t) < Q

T

(t; t

�

) �

n

X

i=1

�

t

�

� t

T

i

�

Q

i

� (t

�

�t)

n

X

i=1

Q

i

T

i

;

whi
h is a 
ontradi
tion.

Only if. Suppose that

P

i

Q

i

T

i

> 1. Then, we show

there exists an interval [t

1

; t

2

℄ in whi
h Q

T

(t

1

; t

2

) >

(t

2

� t

1

). Assume that all the servers are a
tivated at

time 0; then, for L = l
m(T

1

; :::; T

n

) we 
an write that:

Q

T

(0; L) =

n

X

i=1

�

L

T

i

�

Q

i

=

n

X

i=1

L

T

i

Q

i

= L

n

X

i=1

Q

i

T

i

> L;

hen
e, the \only if 
ondition" follows. 2

We now formally prove the s
hedulability 
ondition

with the following theorem:

Theorem 1 Let T

h

be a set of periodi
 hard tasks,

where ea
h task �

i

is s
heduled by a dedi
ated server

with Q

i

= C

max

i

and T

i

= P

i

, and let T

s

be a set of

soft tasks s
heduled by a group of servers with total uti-

lization U

soft

. Then, T

h

is feasible if and only if

X

�

i

2T

h

Q

i

T

i

+ U

soft

� 1; (2)

Proof.

The theorem follows immediately from Lemma 1; in

fa
t, we 
an noti
e that ea
h hard task instan
e has

available at least its own 
apa
ity equal to the task

WCET. Lemma 1 states that ea
h 
apa
ity is always

dis
harged before its deadline, hen
e it follows that

ea
h hard task instan
e has to �nish by its deadline. 2

It is worth noting that Theorem 1 also holds un-

der a generi
 
apa
ity-based server having a periodi


behavior and a bandwidth U

s

.

5. Performan
e evaluation

The CASH algorithm has been implemented in the

HARTIK kernel [6℄ to measure the performan
e gain

introdu
ed by the 
apa
ity sharing me
hanism and to

verify the results predi
ted by the theory. In parti
ular,

we performed our experiments on a set of 
ontrol tasks

with the obje
tive of minimizing a performan
e 
ost

fun
tion under the s
hedulability 
onstraints imposed

by the system. Before illustrating the a
hieved results,

we will brie
y introdu
e some basi
 
on
epts useful for

better understanding the experiments.

5.1. Background concepts

In a digital 
ontrol system, the overall 
ontrol per-

forman
e is a fun
tion of the sampling rates used by the


ontrol tasks: the higher the rates, the better the per-

forman
e. However, task rates are limited by the total

pro
essor utilization, whi
h must be less than a max-

imum value in order to have a feasible s
hedule. On

the other hand, ea
h task �

i

is 
hara
terized by a min-

imum frequen
y f

min

i

, below whi
h the performan
e

is una

eptable and the 
ontrol be
omes unstable. In

this sense, 1=f

min

i

represents a hard relative deadline

for task �

i

.

A performan
e 
ost fun
tion 
an be de�ned using

the 
on
ept of Performan
e Loss Index (PLI), orig-

inally introdu
ed in [13℄, to measure the di�eren
e

between a digital and 
ontinuous 
ontrol as a fun
-

tion of the sampling frequen
y. In parti
ular, if J

and J

D

(f) are the performan
e indi
es generated by

a 
ontinuous-time 
ontrol and its digital implementa-

tion at a sampling frequen
y f , a PLI 
an be de�ned

as �J(f) = jJ

D

(f)� J j.

As noted in [12℄, �J(f) is 
onvex and monotoni
ally

de
reasing with the frequen
y, hen
e, for ea
h 
ontrol

task, it 
an be approximated by the following exponen-

tial fun
tion:

�J

i

(f

i

) = �

i

e

��

i

f

i

;



where f

i

is the frequen
y of �

i

, �

i

is a magnitude 
o-

eÆ
ient, and �

i

is the de
ay rate. The PLI of the

overall system �J(f

1

; :::; f

n

) 
an then be de�ned as

�J(f

1

; :::; f

n

) =

P

i

w

i

�J

i

(f

i

), where w

i

is a design

parameter determined from the appli
ation (it 
an be


onsidered a weight related to task's importan
e).

Ideally, we would like to minimize the overall PLI by

in
reasing task rates as mu
h as possible during nor-

mal load 
onditions, but we would also like to guaran-

tee ea
h task its minimum frequen
y, in the worst-
ase

s
enario.

To guarantee a minimum frequen
y to ea
h task, we

use the algorithm proposed in [12℄, able to determine

a set of optimal rates f

opt

i

whi
h minimize a given PLI

under a set of hard s
hedulability 
onstraints.

To improve the average system's performan
e, a less

pessimisti
 analysis was proposed in [3℄ to in
rease the

task rates. A

ording to this method, ea
h task is as-

signed a normal 
omputation time 


n

i

� C

max

i

to per-

form a relaxed guarantee in normal load 
onditions (


n

i


an be set equal to C

avg

i

or to a di�erent value 
om-

puted by analyzing the probabilisti
 distribution of the

task 
omputation time). Moreover, ea
h task 
an dy-

nami
ally 
hange its frequen
y depending on the 
ur-

rent load. If d

i;j

is the deadline used by the server to

s
hedule job �

i;j

, the next job �

i;j+1

will start at time

r

i;j+1

= max(d

i;j

; r

i;j

+

1

f

opt

i

); (3)

where f

opt

i

is the optimal frequen
y 
omputed by the

Seto et al. algorithm [12℄ for task �

i

, assuming �

i

needs an exe
ution time equal to its normal 
ompu-

tation time. Hen
e, ea
h job �

i;j

has a variable period

P

i;j

= r

i;j+1

� r

i;j

.

5.2. Experimental results

A set of experiments has been performed to verify

the e�e
tiveness of the CASH algorithm in enhan
ing

the PLI in a set of periodi
 
ontrol tasks. Table 2

shows the parameters of the task set sele
ted for this

experiment. Ea
h task �

i

has a normal 
omputation

time equal to its average 
omputation time su
h that

8i 


n

i

= C

avg

i

= 0:7C

max

i

. The optimal frequen
y f

opt

i

represents the frequen
y 
omputed by the Seto et al.

algorithm [12℄ assuming that ea
h task has the same

weight w

i

= 1, the same magnitude 
oeÆ
ient �

i

= 1

and the same de
ay rate �

i

= 0:4. The f

min

i

value

represents the minimum frequen
y ea
h task 
an run

at (following the elasti
 
ontrol model des
ribed in the

above se
tion). The minimum value of the PLI 
om-

puted by the optimization algorithm is �J

opt

= 0:0432.

Su
h a theoreti
al value, however, 
an be rea
hed only

if every instan
e of ea
h task �

i

exe
utes exa
tly for

C

avg

i

. Noti
e that ea
h task has a reserved bandwidth

U

i

= 


n

i

f

opt

i

.

The performan
e of the algorithm was measured by


omputing the PLI of the task set as a fun
tion of the

budget assigned to ea
h server. For instan
e a value of

0.9 on the x-axis means that ea
h server has a maxi-

mum budget Q

i

= 0:9C

max

i

. Whenever the maximum

budget is 
hanged (on the x-axis) the server period is

set a

ording to the assigned bandwidth. Computation

times have a uniform distribution and ea
h 
omputa-

tion time is obtained by splitting the whole exe
ution

time in a �xed part (C

fix

) plus a random part (C

rand

),

where C

fix

= 2C

avg

�C

max

and C

rand

is obtained by

a uniform distribution in interval [0; C

max

� C

fix

℄.

Figure 5 
ompares the plain CBS with the

CBS+CASH algorithm. The optimal PLI (theoreti
al

value) is also drawn as a referen
e value along with the

experimental results. The graph shows that no gain

is obtained by the CASH algorithm when the server

budget is set equal to the task C

max

. However, as the

server budget de
reases, the CASH algorithm be
omes

more e�e
tive, improving the PLI with respe
t to the

plain CBS. It is worth noting that the PLI has a peak

for Q

i

= 0:5C

max

i

. This strange behaviour is a dire
t


onsequen
e of the CBS deadline postponement rule

and 
an be explained as follows.

Whenever a deadline is postponed by the CBS, the

new deadline is in
reased by a server period. Let us

fo
us, for instan
e, on task �

5

, when Q

5

= 0:5C

max

5

=

5ms and T

5

= 50ms (being U

5

= 0:1). Sin
e C

avg

5

=

0:7C

max

5

= 7ms, during overruns the task period is

in
reased up to 100ms. This value is mu
h greater

than the average period of the task deriving from the

allo
ated bandwidth (P

avg

5

= C

avg

5

=U

5

= 70ms). Su
h

an e�e
t, be
omes less signi�
ant for smaller values of

the server budget. For example, whenQ

5

= 0:4C

max

5

=

4ms and T

5

= 40ms, during overruns the task period

be
omes 80ms, whi
h is 
loser to the average period.

The same 
onsideration holds for the other tasks.

In 
on
lusion, this experiment shows that the CASH

algorithm 
an a
hieve a PLI very 
lose to the opti-

mal value when the server budget is a small fra
tion of

the average 
omputation time, although the algorithm

yields good results also for server budgets equal to the

task average 
omputation times.

5.3. Considerations on runtime overhead

A �nal set of experiments has also been 
ondu
ted

to estimate the runtime overhead introdu
ed by the

CBS+CASH algorithm. A quantitative analysis of the

overhead is useful to provide a 
riterion for setting the



Task C

max

i

(ms) 


n

i

(ms) f

opt

i

(Hz) f

min

i

�

1

25 17.5 11.85 5

�

2

12.5 8.75 13.58 5

�

3

38 26.6 10.8 5

�

4

38 26.6 10.8 5

�

5

10 7 14.14 5

Table 2. Task set parameters.
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Figure 5. PLI of a task set withC

avg

= 0:7C

max.

servers' budgets, sin
e, as shown in Figure 5, a small

budget allows to improve the PLI, but in
reases the

number of deadline postponements.

Our experiments have been performed on a Pentium

133 MHz using the task set shown in Table 2. Sin
e in

the HARTIK kernel the s
heduling algorithm exe
utes

in the 
ontext of the running task, the s
heduling over-

head has the e�e
t of in
reasing the a
tual exe
ution

time of ea
h task. Therefore, the overhead due to the

CBS+CASH algorithm has been measured as a di�er-

en
e between the average 
omputation time 


0

of the

longest task served with a budget equal to its WCET

(so that no deadline is postponed) and the average


omputation time 


00


omputed with a budget equal

to a small fra
tion of the WCET, so that the server

deadline is postponed n times, in the average. Hen
e,

the overhead ! due to a single deadline postponement

performed by the CBS+CASH algorithm, resulted to

be

! =




00

� 


0

n

= 42�s:

Noti
e that ! does not in
lude the overhead due to

preemption. To investigate the e�e
ts of the algorithm

overhead on the PLI, the guarantee test has been mod-

i�ed to take the overhead into a

ount. If Q

i

is the

budget assigned to server S

i

, the net budget used by

the task is Q

net

i

= Q

i

� !. Hen
e, the guarantee test


an be rewritten as:

n

X

i=1

Q

net

i

T

i

� 1� !

n

X

i=1

1

T

i

;

where Q

net

i

=T

i

is bandwidth that must be assigned to

task �

i

a

ording to the Seto et al. algorithm to mini-

mize the PLI. Sin
e the overhead redu
es the available

bandwidth, the optimal PLI in
reases its value as the

server budget is de
reased.

Figure 6 shows the optimal PLI (with overhead in-


luded) as a fun
tion of the budget assigned to ea
h

server. It is worth noting that the overhead e�e
t is

negligible up to Q

s

= 0:1C

max

; therefore, the server

budget 
an be set equal to 0:2C

max

for the task set of

Table 2, obtaining a PLI very 
lose to the optimal one

(see Figure 5).

As a �nal remark, we note that lower values of the

budget 
ould slightly improve the PLI; however, they


annot be easily assigned if the server budget be
omes


omparable with the time granularity of the kernel.
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Figure 6. Optimal PLI taking the scheduling
overhead into account.

6. Related work

Di�erent approa
hes have been proposed in the lit-

erature to deal with overruns and variable exe
ution

times. In [15℄, the authors provide an upper bound

of 
ompletion times of jobs 
hains with variable ex-

e
ution times and arbitrary release times. In [11℄, a

guarantee is 
omputed for tasks whose jobs are 
har-

a
terized by variable 
omputation times and interar-

rival times, o

urring with a 
y
li
al pattern. In [10℄,



a 
apa
ity reservation te
hnique is used to bound the


omputational demand of tasks with variable 
ompu-

tation times, in a �xed priority environment. A

ord-

ing to this approa
h, a fra
tion of the CPU bandwidth

is reserved to ea
h task to a
hieve temporal isolation.

Although su
h a solution prevents unbounded inter-

feren
e, overruns are not handled eÆ
iently. In fa
t,

whenever a job 
onsumes the reserved budget, its re-

maining portion is s
heduled in ba
kground, so pro-

longing its 
ompletion for an unpredi
table amount of

time. In [16℄ the authors present a Transform-Task

Method (TTM) a

ording to whi
h a task is split into

two pie
es, where the se
ond pie
e (i.e., the ex
eeding


omputation time 
ausing the overrun) is handled as

a job served by a Sporadi
 Server [14℄. Using this ap-

proa
h, a probabilisti
 guarantee is performed on tasks

whose exe
ution times have known distribution. In [5℄,

the authors propose two approa
hes for handling over-

runs. The �rst approa
h, 
alled the Overrun Server

Method (OSM), extends the TTM method to 
ombine

a general baseline algorithm for s
heduling normal pe-

riodi
 tasks with a generi
 aperiodi
 server for handling

overruns. Although, this method performs better than

handling overruns in ba
kground, it 
annot ensure that

the remaining portion of a task instan
e is always exe-


uted before the next one. The se
ond approa
h, 
alled

the Isolation Server Method (ISM), 
an a
hieve isola-

tion among tasks, but it 
annot provide a priori guar-

antee.

A more eÆ
ient te
hnique, namely the Constant

Bandwidth Server (CBS), is proposed in [1℄ under a

dynami
 priority environment. As in [10℄, a fra
tion

of the CPU bandwidth is reserved to ea
h task, but

tasks are s
heduled by EDF using a suitable deadline,


omputed as a fun
tion of the reserved bandwidth and

the a
tual requests. If a task requires to exe
ute more

than expe
ted, its deadline is postponed and its bud-

get replenished. This method allows to a
hieve isola-

tion among tasks and overruns are handled eÆ
iently

based on their a
tual deadline. As mentioned in the

introdu
tion, although isolation me
hanisms are essen-

tial for in
reasing system's reliability in the presen
e of

tasks with variable exe
ution times, the 
orre
t behav-

ior of the system strongly depends on a 
orre
t reserva-

tion poli
y. Re
ently, this problem has been addressed

by a number of authors, who proposed new te
hniques

to redu
e su
h a negative aspe
t of isolation.

In [7℄, the authors proposed the Bandwidth Shar-

ing Server (BSS) to handle several multi-thread ap-

pli
ations on a single pro
essor, by allowing threads

belonging to the same appli
ation to re
laim the spare

time due to early 
ompletions. Although the algorithm

provides isolation among appli
ations, no isolation is

guaranteed among tasks belonging to the same appli-


ation. A multi-appli
ation environment is also treated

in [4℄, where a two-level s
heduling ar
hite
ture is used

to handle ea
h appli
ation by a dedi
ated server. This

approa
h is able to isolate the e�e
t of overloads at

the appli
ation level, rather than at the task level, but

does not provide a global re
laiming me
hanism to ef-

�
iently exploit the reserved bandwidths.

In [3℄, the authors proposed a methodology for im-

proving the performan
e of hard 
ontrol appli
ations

using a resour
e reservation approa
h 
ombined with

a suitable o�-line analysis, based on the Seto et al.

algorithm [12℄. A less pessimisti
 analysis and a lo-


al re
laiming me
hanism is used to in
rease the aver-

age task rates, while a proper overrun 
ontrol me
h-

anism is adopted to guarantee ea
h task a minimum

rate. However, sin
e the re
laiming is lo
al to ea
h

task (i.e., no 
apa
ity sharing is allowed), the improve-

ment a
hieved over the Seto et al. algorithm is not

so signi�
ant. In [8℄, the authors proposed an elegant

te
hnique for s
heduling a set of real-time tasks on a

single pro
essor, so that ea
h task runs as it is exe-


uting on a slower dedi
ated pro
essor. The method

a
hieves isolation and allows to re
laim most of the

spare time unused by tasks. A 
riti
al parameter of this

approa
h is the time granularity used in the algorithm;

in fa
t, a small quantum redu
es the s
heduling error,

but in
reases the overhead due to 
ontext swit
hes. In

[2℄, the authors propose a 
apa
ity sharing proto
ol

for enhan
ing soft aperiodi
 responsiveness in a �xed

priority environment, where ea
h soft task is handled

by a dedi
ated server. Although the basi
 idea of 
a-

pa
ity sharing is the same as the one proposed in our

paper, the main di�eren
e with our CASH algorithm

is that in [2℄ ea
h server 
an \steal" 
apa
ity from the

other servers to advan
e the exe
ution of the served

task, thus loosing isolation among the served tasks (a

low priority server 
ould re
eive less bandwidth than

requested). In our 
ase, instead, a 
apa
ity is given

only after a job is 
ompleted and a new replenishment

is always performed (with a suitable deadline) when

a new job arrives. These rules allow the algorithm to

preserve the isolation property. Moreover, with respe
t

to the 
apa
ity sharing proto
ol, the CASH algorithm

is used to solve a di�erent problem (overrun 
ontrol) in

a di�erent 
ontext (dynami
 deadline s
heduling with

resour
e reservation).

7. Con
lusions

In this paper we presented a 
apa
ity sharing

(CASH) me
hanism whi
h allows to a
hieve temporal

prote
tion on tasks' exe
ution, while performing eÆ-




ient re
laiming of the unused 
omputation times. The

algorithm is able to handle tasks with soft, hard, as well

as 
exible timing 
onstraints.

The work integrates and extends two re
ent ad-

van
es in real-time 
omputing: the elasti
 
ontrol ap-

proa
h [3℄, whi
h allows to optimize the 
ontrol perfor-

man
e under s
hedulability 
onstraints, and the Con-

stant Bandwidth Server [1℄, whi
h provides isolation

among appli
ation tasks.

The CASH algorithm has been implemented in the

HARTIK kernel in order to evaluate its performan
e

and validate our theoreti
al results. The experiments

show the e�e
tiveness of the re
laiming me
hanism in

enhan
ing the performan
e loss index through an in-


rease of tasks' frequen
ies. The enhan
ement be
omes

more signi�
ant when the task 
omputation times are


hara
terized by a large varian
e. Spe
i�
 tests on the

re
laiming me
hanism showed that the overhead intro-

du
ed by the algorithm does not limit its use in real

appli
ations.

As a future work, we plan to apply this te
hnique for

handling fault-tolerant appli
ations where, ea
h task is


omposed by a primary and a ba
kup 
opy.
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