
Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 1

Real-Time control system analysis: an integrated approach

Luigi Palopoli Luca Abeni

Fabio Conticelli Marco Di Natale

Scuola Superiore S. Anna

Via Carducci 40 - I-56127 Pisa, Italy

E-mail: fpalopoli,luca,contice,marcog@sssup.it

Giorgio Buttazzo

University of Pavia (Italy)

INFM - Pavia research unit

giorgio@sssup.it

Abstract

A typical approach for realizing digital controllers is to

synthesize the control law in the continuous-time domain

and then to implement it as a set of periodic threads com-

plying with tight temporal constraints. The strict respect

of all deadlines can often be obtained only by selecting low

activation rates which determine a remarkable performance

degradation. On the other hand, many control systems are

known to tolerate a certain amount of deadline misses.

We realized a software tool which allows to numeri-

cally evaluate the quality of the control resulting from the

scheduling. The tool has been applied to a robotic case

study. Considering a meaningful set of trajectories, we

have drawn experimental evidences that the use of soft real-

time constraints on the threads leads to significant improve-

ments in the system performance. The performance im-

provement is more evident if scheduling approaches like re-

source reservations schemes, able to separate the thread im-

portance from its activation rate, are used.

1. Introduction

Many real-time digital controllers are realized in two

steps. The first step consists of synthesizing a continuous-

time control law tailored on the plant and designed to

achieve system-level goals (stability, performance, robust-

ness, etc.). The second step is dedicated to the design of

a digital controller which implements the continuous time

control law with a good approximation. The digital con-

troller is intrinsically discrete-time, so the plant’s output

variables used to compute the controller output have to be

periodically sampled. Digital-to-Analog converters, usually

based on Zero Order Hold circuits (ZOH), transform the se-

quence of numbers generated by the digital controller into

the continuous time signals used to drive the plant’s actu-

ators (see Figure 1). In this work, we consider computer-

based embedded controllers operated by a multithreaded

PlantDigital
Controller

ZOH Samplers

u(t)u(k(1/fu))y(k(1/fy)) y(t)

Figure 1. Block diagram of a digital controller.

real-time operating system.

Control theory usually assumes a highly deterministic

timing behaviour. The most frequent assumption is that

there is a negligible or fixed time interval between the ac-

quisition of the sensor data and the release of the controller

output is negligible or fixed. In reality constant delays

like the ones deriving from ZOHs are, at least for linear

systems, relatively easy to cater with in the controller de-

sign while stochastic response time variations deriving from

data-dependencies and scheduling jitter are much more dif-

ficult to take into account. To match the control design re-

quirements, the real-time community has endeavoured to

provide a conception of time determinism on the side of

the controller implementation based on the respect of dead-

lines associated to each thread execution (henceforth called

job). This approach allows a clear separation between the

design of the control law and its implementation simplify-

ing the work of both the computer and the control engineers.

However, there are some drawbacks, since the strict guar-

antee of every deadline, based on the worst case execution

times of all threads can be often obtained only by select-

ing low activation rates. Besides, industrial practice reveals

that the advantages of pushing the activation rates beyond

the boundaries of hard real-time guarantees outweighs the

price of occasional deadline misses, tolerated by many ro-

bust control schemes. As a matter of fact, releasing the hard

deadline constraint can pay off an increase of nearly 50%

in the performance index. On the other hand, we need de-

sign guidelines to evaluate alternative scheduling schemes

(e.g. resource reservation) and fine tune the activation rates

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 2

and other scheduling parameters evaluating at each step the

effect on a cost function. This implies to assess the perfor-

mance of the scheduling algorithms in the control applica-

tion domain by extensive simulation, while retaining a re-

laxed form of determinism on the thread schedule, such as

the duration of the overload or a probabilistic guarantee.

The main contributions of this work are:

� an integrated approach for evaluating the performance

of real-time control systems in the application do-

main against changes in the structure of the controller

threads;

� a software tool that permits to perform integrated anal-

ysis on the performance of the control and on the pa-

rameters of the real-time scheduling;

� the evaluation of the performance of known scheduling

approaches on a meaningful case study. In particular

the work focuses on some important properties of re-

source reservation scheduling which proved to be very

beneficial in the system design: the possibility of per-

forming individual guarantees on each thread and the

possibility of decoupling the importance of the thread

from its activation rate.

The paper is organized as follows. Section 2 describes a

general formulation of the problem along with an overview

on the solution strategy. Section 3 presents a quick review

of the real-time scheduling approaches with a particular fo-

cus on some of their relevant properties. Section 4 describes

the software tool developed for this work. Section 5 shows

the experimental results gathered on the case study. Finally,

Section 6 states our conclusion and the future goals.

1.1. Related Work

Our approach is inspired by the integrated design for

real-time control systems proposed in [23]. In this work

an optimization procedure for the activation frequencies

of control threads is proposed; the goal is maximizing

the controller performance under schedulability constraints.

The optimization is based upon the usage of cost function,

as suggested in a previous work [27] which introduces a

methodology to evaluate the hard deadlines of the threads.

The influence of the computing delay on the controller per-

formance is treated to a good extent in [26, 25]; in partic-

ular the authors consider the case of failures in updating

the actuators (loss problem) and give an estimation of how

many such events can be tolerated. These works are inter-

esting because they show that control systems are able to

tolerate a given number of data losses possibly caused by

missed deadlines. Control techniques aimed at preserving

the system’s stability and performance against the effects of

delays (in our case due to scheduling or network transmis-

sion delays) have been widely investigated for linear sys-

tems [4, 19, 20] , while some recent work has tackled the

same problems in the nonlinear systems domain [18].

In the last years, hard real-time scheduling techniques

(originally presented in [16]), have been extended to

cope with different situations or constraints (i.e., arbitrary

deadlines[15], generic fixed priorities [5], or resource con-

straints [24]). Different approaches based on relaxed con-

straints have been proposed in [22, 11] , but they have

traditionally been limited to multimedia systems or signal

processing. The advantage of applying flexible scheduling

techniques in the domain of control applications is emerg-

ing quite clearly in recent real-time literature. In particu-

lar, [6] proposes an algorithm to dynamically change task

periods in order to adapt them to the state of the system,

while [17] use a feedback mechanism to adjust the system

workload to the maximum that keeps the number of dead-

line misses below a desired threshold. Soft real-time tech-

niques have also been considered in the design phase, for

example see [7, 12].

As far as the use of software tools for assessing the per-

formance of real-time controllers is concerned, an interest-

ing work is presented in [10], where the authors propose

a MATLAB toolbox to simulate a real-time scheduler in a

SIMULINK block. The case study used in this paper has

been shown with full details in [21] where we analyzed the

performance loss when the multilevel control law is imple-

mented by a set of hierarchical threads having a negligible

duration. Finally, a noteworthy paper is [13]; the authors

first map the classical control design parameters onto the

end-to-end requirements of the controller and then apply the

method of period calibration to derive the execution param-

eters of each thread so that the end-to-end requirements are

respected.

2. Problem statement and solution strategy

We consider the basic problem of controlling a plant de-

scribed by a set of differential equations:

_
x(t) = f(x(t);u(t); t)

y(t) = g(x(t); u(t))

(1)

where x are the plant’s state variables, u(t) are the input

variables and y(t) are the output variables. Bold fonts

are used to denote vectors. The aim is to synthesize a

continuous-time and closed-loop control law u = C(y; t).

Without loss of generality we assume that the control goal is

to asymptotically regulate the controlled variables to 0. In

order to realize such control law on a digital computer, it is

necessary to specify the interface between the plant and the

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 3

y

u

plant output

sampled plant output

controller output

1

1

Figure 2. Ideal timing of a digital controller.

y

u

plant output

sampled plant output

controller output

control thread execution1

1

Figure 3. Timing of a digital controller in a

multithreaded environment

computer and the implementation choices. The first prob-

lem is solved by using a set of samplers on the sensors and

of ZOH on the actuators as shown in Figure 1, operated at

fixed sampling rates. If f
y

i

denotes the sampling frequency

of the sensor on the i-th output variable, and f

u

j

denotes

the sampling frequency on the ZOH commanding the j-th

actuator u
j

,

u

j

(t) = u

j

(k

1

f

u

j

);8t 2 [k

1

f

u

j

; (k + 1)

1

f

u

j

[:

In this framework, the digital controller produces the

u

j

(k

1

f

u

j

) outputs based on the sampled y
i

(k

1

f

y

i

) and on the

control law C. Consider, as an example, the case of a sin-

gle control loop. Assuming f
y

1

= f

u

1

, if the execution time

of the program implementing the control law is neglected,

the timing behaviour of the controller is depicted in Fig-

ure 2. At the beginning of each period, u
1

is emitted based

on the last acquired value for y
1

: the command is a piece-

wise constant updated with a fixed period, i.e. there is no

scheduling jitter. Focusing on the implementation problem,

a natural choice for the implementation of the controller is

a set of periodic threads �
1

; �

2

; : : : ; �

n

. Such threads have

variable computation times, which can be modeled with a

stochastic variable, and their jobs may experience delays

due to scheduling. Going back to the example shown in Fig-

ure 2, a possible implementation for the controller consists

of a periodic thread that reads the sensor data, computes

the output and writes it to the actuator. Owing to the thread

computation time and to the preemptions operated by higher

priority threads, a variable delay can be introduced between

the time a new sample for y
1

is read and the time the related

value for u
1

is produced. A timing sequence which can ac-

tually occur using this scheme is shown in Figure 3. As a

consequence, the time interval separating two outputs is not

constant, causing an output jitter in the controller signal.

It is important observing that this implementation

scheme introduces two types of delays. The first type is

related to sampling; it is fixed and it does not depend on the

threads execution time. The second depends on threads ex-

ecution times and is affected by data dependent loops and

the scheduling policy. In order to quantify the performance

degradation, we introduce the following cost function [27]:

J =

Z

+1

0

(y

T
Qy + u

T
Ru)dt (2)

where Q and R are two positive definite matrices. The cost

function is divided into two parts. The term y

T
Qy accounts

for the speed of y convergence to 0 which is the control

goal. The shallower such convergence the greater the cost

which is payed in the cost function. The term u

T
Ru ac-

counts for the control energy which is spent to accomplish

the goal. The more energy demanding a controller, the

greater the price it pays in the cost function. Different im-

portance can be attached to the output variable convergence

or to the command energy by varying the ratio between the

norms of Q and R.

In [23] the authors assume a set of independent control

loops, realized by periodic threads, and hosted on a single

CPU. A cost function similar to the one in Equation 2 is

evaluated for each loop taking into account the sampling

delays only. Consequently, the cost function turns out to be

strictly decreasing with respect to the activation frequency

and it is interpolated by a decreasing exponential (see Fig-

ure 4). An optimization procedure computes the optimal

frequencies for a weighted sum of the cost functions con-

sidering the schedulability constraints and the threads worst

case execution times.

A limitation of this approach is that many important con-

trol application are realized by interacting control loops.

Moreover, when the threads execution times have a big vari-

ance, assuming the worst case may lead to a sensible un-

derutilization of the CPU which in many cases outweighs

the cost of occasional failures in updating the actuator com-

mands. To cope with these shortcomings we propose to

choose the scheduling rule and adjust the scheduling pa-

rameters according to the performance yielded in the con-

trol application domain. An essential role in this new design

approach is played by the simulation tool described in Sec-

tion 4.

When evaluating the scheduling performance, threads

execution times are described by a stochastic behaviour.

Hence, the cost function becomes a stochastic variable

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 4

0

10

20

30

40

50

60

70

80

90

100

4 5 6 7 8 9 10 11 12

C
o
s
t
F

u
n
c
ti
o
n

Thread 1 frequency

Ideal Cost Function

Figure 4. Performance index assum­

ing null execution times.

66

68

70

72

74

76

78

80

4 5 6 7 8 9 10 11 12

C
o
s
t
F

u
n
c
ti
o
n

Thread 1 frequency

Real Cost Function

Hard Schedulability Boundary

Figure 5. Cost function assuming real
execution times.

which can be averaged through multiple runs, yielding:

J = E

�

Z

+1

0

(y

T
Qy + u

T
Ru)dt

�

; (3)

where E[:℄ denotes the expectation. If the hard deadline

hypothesis is released and the thread activation frequencies

can be selected with greater flexibility, the cost function is

no more necessarily decreasing. Figure 5 shows the cost

function that we obtained in one of the experiments of Sec-

tion 5. After traversing the boundary of hard schedulabil-

ity, the function still improves since it benefits from the in-

creased activation rate, paying a little price for the occa-

sional deadline misses. If the activation rates are pushed

too far, the overloads becomes permanent or semiperma-

nent and the performance begins to degrade. This argument

shows that, even if there is a clear advantage in releasing

the hard deadline hypothesis, we still need to use some re-

laxed constraint, lest the predictability of the scheduling be

completely dissipated. Therefore, in addition to the sim-

ulation tool, we propose the use of relaxed soft real-time

constraints. In particular, in Section 3, we show that re-

source reservation scheduling approaches, providing further

degrees of freedom in the scheduling choices, are very suit-

able for this kind of integrated design.

2.1. The case study

The proposed approach has been applied to a case study

which can be considered as a representative of a wide class

of nonlinear control applications. The controlled plant is a

nonholonomic mobile robot, which is schematically illus-

trated in Figure 6. The goal of the controlled system is to

track a moving target until an assigned displacement, ex-

pressed in a frame attached to the robot, is achieved. The

control problem is analyzed with full detail in [21] and the

proposed solution is based on the back-stepping approach,

which leads to hierarchical nested subcontrollers. In the

same paper, we showed a natural implementation scheme

based on periodic threads communicating through asyn-

chronous buffers. If the robot wheels are driven by motors

������
������
������

������
������
������

������
������
������

������
������
������

ROBOT

TARGET

Displacement

Frame

Figure 6. The case study

which can be commanded through the armature currents,

the resulting controller comprises only two hierarchical lev-

els. A simplified structure of the controller is reported in

Figure 7. The data from the plant are acquired by two sen-

sors. The first sensor is a camera used to determine the

relative displacement between the robot and the target; it

is sampled with period T

1

. The second sensor is a pair of

tachimetric encoders, used to read the wheels’ angular ve-

locity; this sensor is sampled with period T

2

. The control

law is implemented by two periodic threads: �
1

; �

2

. Thread

�

1

is activated with period T
1

; it reads the relative displace-

ment from a memory buffer and produces a reference value

for the wheels’ angular speed. Thread �

2

is activated with

period T
2

; it reads the relative displacement and the wheels

actual speed and produces a value for the currents to be ap-

plied to the DC motors of the wheels. The communication

between the threads is assumed to be entirely asynchronous

In order to keep an acceptable level of complexity for the

analysis, the activity of extracting the relative displacement

between target and camera is not performed by a separate

thread, but it is accounted for in the computation time of

thread �
1

. We remark that in this scheme the control loops

are interacting; hence, it is not possible to apply the method-

ology proposed in [23].

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 5

Relative

Velocity

Angular

Displacement
τ

1

τ
2

Control

Threads

Memory

Buffers

Reference
Angular
Velocity

Memory

Buffer

ZOH

Computer

Camera

Robot

Target

Encoders

T1

T2

Motor Armature Currents

Figure 7. Control Scheme applied to the case study

3. Scheduling the Controller Threads

The controller is implemented as a set of concurrent pe-

riodic threads, and some form of determinism is required in

the scheduling. Traditional real-time systems provide a de-

terministic schedule by guaranteeing that each job finishes

within its period; in this section we will introduce a more

relaxed form of guarantee, to improve the system perfor-

mance.

For the sake of clarity, we give some basic definitions. A

controller is implemented by a set � = f�

0

; : : : ; �

n

g, where

each thread �

i

is a stream of instances, or jobs, J
i;j

with

j = 0; 1; 2; : : :. Each job J

i;j

arrives (is activated) at the

beginning of a new period, at time r
i;j

= jT

i

(where T
i

is

the thread period), executes for a time

i;j

, and finishes at

time f
i;j

. We denote by C

i

= max

j

f

i;j

g the Worst Case

Execution Time (WCET) of thread �

i

and by

i

its mean

execution time. Each job J
i;j

is assigned a deadline d
i;j

as

d

i;j

= r

i;j

+ T

i

, and the goal of real-time scheduling algo-

rithms is to guarantee that J
i;j

finishes within its deadline

d

i;j

(that is, f
i;j

� d

i;j

). Such a guarantee is defined to be

hard if it ensures that 8i; j; f
i;j

� d

i;j

. If some jobs are al-

lowed to miss their deadlines we talk about soft guarantee.

In the sequel, we will briefly examine the type of guarantee

provided by some well known scheduling approaches.

3.1. Hard Real­Time Scheduling

In [16] two classical algorithms are proposed: Earliest

Deadline First (EDF), based on dynamic priorities, and Rate

Monotonic (RM), based on static priorities. Using these

algorithms, each job J

i;j

finishes within its deadline if the

following admission test is verified:

n

X

i=0

C

i

T

i

� U

lub

(4)

with U

lub

= 1 for EDF and U

lub

= n(2

1

n

� 1) for RM.

While for EDF this condition is necessary and sufficient,

for RM it is only sufficient (if threads periods are harmonic,

U

lub

= 1 also for RM). Since the admission test is done

on the worst case condition, the system can be underuti-

lized if C
i

>>

i

. Consequently, in order to preserve the

hard schedulability, very large periods have to be assigned

to control threads, with the risk of achieving a poor perfor-

mance.

While EDF and RM are known to be optimal when the

system is not overloaded, they suffer in overload conditions.

The RM algorithm in overload condition makes the longest

period threads miss their deadlines, in favor of the shortest

period ones. Therefore the only way for attaching impor-

tance to a thread is decreasing its period. Using EDF there

is not a predictable way of attaching more importance to a

thread with respect to the others in overload condition

3.2. Soft Real­Time Scheduling

An easy way to increase the system utilization can be

to use the RM or EDF scheduling algorithms without the

admission test in Equation 4. By making this choice, it

is possible to select shorter periods for the control threads,

at the price of no guarantee for the deadlines and possible

overload situations. Clearly, the overload should be not per-

manent, otherwise the schedule becomes completely unpre-

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 6

dictable. Before getting on, we need to introduce a formal

definition of overload: a scheduling system is said to be

overloaded in the interval (t
1

; t

2

) if the time demanded by

all threads �
i

2 � in the interval is greater than t
2

� t

1

.

If we define the time demanded by thread �

i

in interval

(0; t) as

D

i

(0; t) =

X

j:d

i;j

�t

i;j

the time demanded by all the threads in the system in (0; t)

is D(0; t) =

P

i

D

i

(0; t). Using this definition, the over-

load condition is said to be permanent if lim
t!1

D(0;t)

t

>

1. In this case, the schedule is not predictable and nothing

can be said about any deadline.

A straightforward application of the queueing the-

ory [14], shows that if the RM or EDF scheduling algo-

rithms are used with a relaxed (optimistic) admission test

changing Equation 4 into

n

X

i=0

e

i

T

i

� U

lub

; (5)

with

i

< e

i

� C

i

, then the system shall not be subject to

permanent overloads. Obviously, whenever the execution

time of �
i

turns out to be lower than e
i

, temporary overloads

may occur.

3.3. Resource Reservations

In order to take full advantage from soft real-time

scheduling, a method to control the number of deadlines

missed by each thread is needed. This problem can be

solved by scheduling techniques known as CPU reservation

[1, 22]. Using a CPU reservation technique, each thread �
i

is assigned a pair (Q
i

; T

i

), where T

i

is the thread period,

and Q

i

is the amount of CPU time reserved to �

i

in a pe-

riod. If
P

j

Q

j

T

j

� U

lub

, �
i

is guaranteed to execute for Q
i

time units every T
i

, independently from the other threads.

As shown in [3], proportional share scheduling [28, 11]

introduces similar concepts, but gives less control over CPU

allocation.

In this work we focus on a particular reservation tech-

nique, called Constant Bandwidth Server (CBS)[1]. This

approach is based on a global EDF scheduler that sched-

ules threads according to their absolute scheduling dead-

lines assigned by a server mechanism (the Constant Band-

width Server). Each thread is served by a dedicated CBS

that enforces the reservation. The server mechanism as-

signs each job an initial deadline, which guarantees the re-

served bandwidth B

i

. A bandwidth isolation property is

achieved by postponing the assigned deadline each time the

thread demands more than the reserved bandwidth. Inter-

ested readers are referred to the cited paper for a precise and

complete description of the algorithm and its properties.

With respect to the techniques shown in the previous sec-

tions, the use of the CBS algorithm (and of the resource

reservation approaches in general) provides a wider control

on the type of determinism that can be achieved. In [2] it

is shown that if the Probability Distribution Function (PDF)

of the execution times of �
i

is known and if Q
i

>

i

, then

it is possible to compute the probability that job J

i;j

fin-

ishes within its deadline r
i;j

+ kT

i

. Two things have to be

noted: the first is that each thread can be guaranteed inde-

pendently from the others: the second is that the guarantee

can be based on different levels of criticality. In particu-

lar thread criticality can range from hard (the probability

to respect the deadline r

i;j

+ T

i

is 1) to soft (the proba-

bility to respect a deadline depends on the reserved band-

width). The guarantee is performed on each single thread �
i

:

given U
i

(
) = Pf

i;j

=
g (the execution times PDF), the

probabilistic guarantee algorithms computes the probability

Pff

i;j

< r

i;j

+ Æg that a job finishes within a probabilistic

deadline Æ. This probability depends only on the PDF of

the execution times of �
i

, on the bandwidth reserved to the

thread and on the thread period, and does not depend on the

other threads’ parameters. Using this approach, if a thread

set � is not schedulable with hard deadlines, it is possible

to guarantee each thread �
i

2 � with a different criticality:

in particular, if Q
i

� C

i

(and
P

j

Q

j

T

j

� U

lub

) �
i

is guar-

anteed to respect all its deadlines. In this way it is possible

to perform hard guarantee on some threads, and a relaxed

guarantee on others.

Furthermore, if the PDF is limited (that is, 9�
i

:
 >

�

i

) U(
) = 0), the task’s completion times can be limited

even when Q
i

< C

i

(however, it is necessary that Q
i

>

i

).

In other words, a thread �
i

served by a CBS has a minimum

guaranteed execution rate.

Summarizing, the use of a CBS scheduling approach al-

lows to raise the activation rates, while the effects of the

transient overloads can be controlled by concentrating the

deadline misses on the less important threads. In Section 5

we will show the effectiveness of this method and its sim-

plicity.

4. The software tool

The integrated approach proposed in this paper requires

the possibility of performing an integrated simulation of a

plant and a computer based digital controller. In order to

do this, we developed the Real-Time Controller Simulator

(RTCSIM), a tool that uses a scheduling simulator and a

differential equations integrator to simulate the actual im-

plementation of the system.

The plant is described by a set of ordinary differential

equations (ODE) depending on the physical parameters and

on the external inputs. The digital controller is composed of

the following elements: 1) a set of samplers, which period-

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 7

OCTAVE

RTSIM

Module

Data Proc.

Numerical

Module

The numerical integrator

reads the command values.

The data processing module

samples the plants

output variables.

RTSIM generated events

are used to drive the

numerical ode integration

RTSIM generated events

trigger the computation

within the data processing

module.

Figure 8. A software architectural view on

RTCSIM

ically read the output of the plant; 2) a set of computing

threads, described by statistical timing parameters which

perform the computation and share the CPU according to

a given scheduling policy; 3) a set of ZOHs, which convert

the numerical outputs into piecewise constant signals to be

used as input variables for the plant.

Our software tool is designed to simulate complex con-

trol systems (in the plant equation or in the control law

structure). Since the statistical analysis requires multi-

ple runs for each simulation, a fundamental requirement

for the tool is high performance. The tool allows to test

different scheduling policies and mutual exclusion pro-

tocols. An important requirement for our software is

free availability; all its components are covered by the

GPL license so that they can be freely downloaded from

http://hartik.sssup.it/˜luigi/rtcsim and

used. The tool is composed of three independent compo-

nents: a numerical module, a real-time systems simulator

and a data processing module (see Fig. 8) .

The numerical module is used to perform the ODE in-

tegration for the plant and provides all the support for the

linear algebra and other numerical computation. It is es-

sentially based on the OCTAVE C++ [9] library. Different

plants can be described by simply providing the implemen-

tation of a limited set of pure virtual methods; the most im-

portant of these methods is the differential equation which

can be written in a very natural way using the mathematical

abstractions provided by the numerical module.

To simulate the implementation of the controller in a

multithreaded real-time system, we used a pre-existing li-

brary, called RTSIM [8]. RTSIM is a modular tool devised

to simulate distributed real-time systems. We report some of

its basic features referring the reader to the cited paper for

further details. The structure of RTSIM is layered. The low-

ermost level, called METASIM, offers a set of basic classes

for creating entities and events, along with a set of impor-

tant utilities including execution tracers, statistics collectors

and random variables generators. The upper levels of RT-

SIM offer a wide set of predefined entities for simulating

real-time systems, such as pseudoinstructions, threads, ker-

nels, servers etc. Real-time threads can be constructed as

aggregations of pseudoinstructions having fixed or random

duration; they can be handled by kernels endowed with dif-

ferent scheduling policies (Cyclic Executive, RM and EDF,

Proportional share), or by aperiodic servers (Polling server,

Sporadic Server , Constant Bandwidth Server, etc.). It is

also possible to simulate mutually exclusive accesses to re-

sources handled by different protocols (FIFO, Priority In-

heritance/Priority Ceiling, Stack Resource Policy). Once

a structure of threads has been specified along with their

scheduling policy, RTSIM permits to construct a timed se-

quence of events associated with the activation and termi-

nation instants of the jobs, with the beginning and the end

of a pseudoinstruction and so forth.

In the original RTSIM design, threads and their pseu-

doinstructions cannot perform “actual” computations; in

other words no functional code can easily be associated

with them, lest the simulator structure be radically changed.

We found it convenient to introduce a third separate mod-

ule (the data processing module) to fill in this gap: its

goal is to simulate the computational part of a digital con-

troller, RTSIM being focused on reconstructing its timing

behaviour. The data module offers two types of compo-

nents: computing units and storage units. In order to spec-

ify a computing unit, the programmer has to derive it from

an abstract class and has to provide an implementation for

three pure virtual methods. The first method acquires data

from storage units and save them into the objects internal

state. The second method is used to compute the output

values based on the current state. The third one writes the

data onto storage units. Three type of storage units exist:

input buffers, memory buffers, output buffers. Input buffers

are used to contain the data sampled from the plant; com-

puting units are only allowed to read from them. Output

buffers are models of a Zero Order Hold behaviour for the

data applied to the plants simulated actuators; computing

units are allowed to write into this type of storage units. Fi-

nally Read/Write buffers model memory location used by

the computing units to communicate intermediate results

one another; so they can be accessed by the computational

units in both directions.

The three modules interact one another via well defined

interfaces. The information flow between the numerical

module and the data processing module is bidirectional. In

fact, the numerical module needs to read the data held in

the output buffer when integrating the differential equations.

On the other hand, the data processing module needs to read

the plant state, upon every sampling event, to update the

content of the input buffers.

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 8

50

100

150

200

250

300

350

400

450

3 4 5 6 7 8 9

C
o

s
t

F
u

n
c
ti
o

n

Thread 1 frequency

RM Scheduler

Thread 2 frequency = 300
Thread 2 frequency = 250
Thread 2 frequency = 200

Figure 9. Cost function: RM scheduling.

The relation between RTSIM and the data processing

module can be explained considering that the computation

units operations and the plant sampling have to be triggered

at specific instants. Such instants are associated with the

events produced by the RTSIM module. Finally the inter-

action between RTSIM and the numerical module is deter-

mined by the plant ODE integration: the RTSIM generated

events are used to drive the integration.

5. Experimental Results

The simulation tool described in Section 4 has been ap-

plied to the case study described in Section 2.1 in order to

show the influence of the scheduling choices on the system

performance.

The robot physical parameters have been identified on a

mobile robot provided by the IDEA s.r.l. company. We re-

call that the robot controller uses data having different tim-

ing characteristics. In particular the outer loop uses data

coming from an external camera with a sampling period T
1

,

while the inner loop uses data sampled from a tachometer

sensor with a period T

2

. In the sequel we will also refer

to the activation frequencies f
i

defined as 1

T

i

. The loops

are executed by periodic threads �
1

and �
2

according to the

scheme shown in Figure 7. The threads’ execution times

have been assumed to be random variables uniformly dis-

tributed for the i-th thread in the range [

i

; C

i

℄, where

i

is

the minimum execution time of the thread.

In order to produce a quantitative evaluation of the sys-

tem’s performance, we used the cost function in Equation 3.

The system output is the difference between the measured

relative displacement between the robot and its target and

the desired one, both evaluated in the robot frame.

The simulations have been performed assuming the

robot must track a still target having coordinates x
g

=

[3; 1:5℄

T in the inertial frame, while the initial robot co-

ordinates are x = [0; 0℄

T. The final desired displacement in

60

80

100

120

140

3 4 5 6 7 8 9

C
o

s
t

F
u

n
c
ti
o

n

Thread 1 frequency

EDF Scheduler

Thread 2 frequency = 300
Thread 2 frequency = 250
Thread 2 frequency = 200

Hard Real-Time Region Boundary

Figure 10. Cost function: EDF scheduling.

65

66

67

68

69

70

71

72

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

C
o

s
t

F
u

n
c
ti
o

n

Thread 1 Reserved Bandwidth

CBS Scheduler

f1 = 6.4 f2 = 200

Figure 11. Cost function: CBS scheduling.

the robot’s frame is x(d) = [0:2; 1℄

T. Choosing the weight

matrices Q = I , R = 10

-3
I , the continuous time controller

yields a value for the cost function equal to 35:1.

A preliminary study [21] (performed assuming null ex-

ecution times for the controller threads) revealed that the

choice of f
1

has an influence on the system’s performance

remarkably greater than the choice of f
2

. An intuitive ex-

planation could be that, although �
2

always finishes within

its deadline, it is forced to use outdated data if �
1

is de-

layed. For this paper, assume the thread execution times

as

1

= 40ms, C
1

= 100ms,

2

= 1ms, C
2

= 2ms.

In order to model computation activities different from the

control threads - for example data logging - we used a pe-

riodic thread having a fixed computation time C
3

= 4ms

and an activation period T
3

= 20ms. This activity “steals”

a processor utilization factor u
3

=

C

3

T3

= 0:2.

In a first set of experiments, we tested the influence of

the threads activation rates on J when the RM and EDF

scheduling algorithms are used. All the experiments have

been performed by running 30 repetitions of each simula-

tion, and estimating the mean cost function (as expressed in

Equation 3) along with the 95% confidence interval. The

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 9

-4

-3

-2

-1

0

1

2

3

4

5

6

0 2 4 6 8 10

X
 D

is
p
la

c
e
m

e
n
t

Time (sec)

System Output

Ideal Controller
CBS Scheduled Controller

Soft EDF
Hard EDF

Figure 12. System output (x displace­

ment)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

Y
 D

is
p
la

c
e
m

e
n
t

Time (sec)

System Output

Ideal Controller
CBS Scheduled Controller

Soft EDF
Hard EDF

Figure 13. System output (y displace­

ment)

ranges of possible frequencies f
1

and f
2

have been selected

according to considerations on the physical characteristics

of the device and were set to [300Hz; 500Hz℄ for f
2

, while

the upper bound for f
1

was chosen to respect Equation 5.

Figure 9 shows the variation of the cost function with re-

spect to f
1

and f
2

when the RM algorithm is used to sched-

ule the controller threads: high values for f
2

(f
2

= 300)

determine a significant performance loss, since the schedu-

lability is jeopardized. Decreasing f

2

to 200Hz, the sys-

tem workload diminishes, and subsequently �

1

is offered

the possibility of respecting a greater number of deadlines;

as a result, the system performance improves. This result is

in accordance with our preliminary study and our considera-

tions on the system. As a matter of fact, the direct influence

that f
2

has on J is lower than its indirect influence caused

by the deadline misses on the �
1

thread.

A similar effect can be observed for �
1

: if its activation

frequency is too high, the cost function rises (especially in

combination with big values for f
2

); on the other hand, �
1

is more important for the controller, so decreasing its ac-

tivation rate beyond a reasonable limit leads to a perfor-

mance degradation. The optimal value for the cost function

(J RM

= 71:16) is achieved by choosing (f

1

= 6; f

2

=

200).

Figure 10 plots the cost function variations when the

EDF algorithm is used. The behaviour is similar to the one

observed using the RM algorithm, although the values ob-

tained for the cost function are lower, meaning that a better

performance can be achieved.

It is worth noting that the optimal frequency assign-

ment under EDF results in f

1

=

1000ms

156ms

= 6:4Hz and

f

2

=

1000ms

5ms

= 200Hz, giving J

EDF

= 68:126801.

Since 100

156

+

2

5

+

5

20

= 1:291 > 1 this configuration is outside

the hard guarantee region. In Figure 10, the boundary of the

hard guarantee region is shown: it can be seen that the best

performance that can be obtained using real-time schedul-

ing is J = 83:208, with f
1

= 4Hz, and f
2

= 200Hz.

In all experiments, we obtained a confidence interval

smaller than 3% of the mean value.

Using a reservation technique, such as the CBS, an ad-

ditional degree of freedom - represented by the reserved

amount of resource - can be used to further improve per-

formance. As an example, we executed a simulation run

by scheduling the controller threads with dedicated CBS

servers, assigning frequencies f

1

= 6:4Hz, and f

2

=

200Hz which resulted to be optimal using EDF. Since we

assumed the presence of residual computation activities us-

ing 0:2 of the system bandwidth, the bandwidth B

1

and

B

2

, associated to �

1

and �

2

respectively, have been cho-

sen according to the relation: B
1

+ B

2

= 0:8. Thus, we

varied B

1

from 0:5 to 0:7 and assigned B

2

= 0:8 � B

1

.

The resulting cost function is plotted in Figure 11: by in-

creasing the bandwidth assigned to �

1

(the most important

task) the performance increases, until the limit B
1

= 0:61

is reached. Increasing B

1

beyond this limits slows down

�

2

too much and J degrades. The optimal cost function

is J CBS

= 65:4793 < J

EDF : this fact confirms that the

reservation approach is beneficial. We remark that using the

CBS scheduler, it is possible to attach more importance to

the �

1

thread regardless of its activation rate. The plot is

not exactly convex but it presents a peak for B
1

= 0:58:

this effect seems rather to be a consequence of the strong

nonlinearity of the system.

In order to visually assess the performance improve-

ment obtained using soft real-time techniques (and reser-

vations in particular), Figure 12 and 13 show as an example

the dynamics of the x and y coordinates of the displace-

ment obtained using different kind of scheduling. In par-

ticular, the figures show the dynamics obtained using an

ideal controller (with 0 execution times for the controller

threads), the CBS scheduled controller with f

1

= 6:4Hz,

f

2

= 200Hz and B
1

= 0:61, the soft EDF controller with

f

1

= 6:4Hz and f
2

= 200Hz and the hard EDF controller

with f

1

= 6Hz and f

2

= 200Hz. The plots show a per-

formance improvement on the CBS scheduled case more

Proc. of IEEE Real-time Systems Syposium, Orlando, December 2000 10

evident than it would be expected from the numerical dif-

ferences in the cost function.

6. Conclusions

In this paper we presented a novel approach for realizing

software architectures targeted to real-time controllers. We

realized a software tool for the joint simulation of the plant

dynamics and of the scheduling of the controller threads.

This tool enabled us to investigate the effects of the schedul-

ing policy on the controller performance. In particular we

showed, on a meaningful case-study, that the performance

of classical real-time scheduling approaches (based on a

strict respect of every deadline) can be poor, if compared to

soft real-time approaches able to tolerate transient overload

situations. The only evidences of this fact are, so far, ex-

perimental. As a future work we aim at achieving a deeper

analytical insight into this problem.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-

tions in hard real-time systems. In Proceedings of the IEEE

Real Time Systems Symposium, Madrid, Spain, December

1998.
[2] L. Abeni and G. Buttazzo. Qos guarantee using probabilistic

dealines. In Proceedings of the IEEE Euromicro Conference

on Real-Time, York, England, June 1998.
[3] L. Abeni, G. Lipari, and G. Buttazzo. Constant bandwidth

vs proportional share resource allocation. In Proceedings of

the IEEE International Conference on Mutimedia Computing

and Systems, Florence, Italy, June 1999.
[4] K. Åstrom and B. Wittenmark. Computer Controlled Sys-

tems, (3rd ed.). Prentice Hall, 1997.
[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. Wellings. Applying new scheduling theory to static pri-

ority preemptive scheduling. Software Engineering Journal,

8(5):284–292, September 1993.
[6] G. Buttazzo, L. Abeni, and G. Lipari. Elastic task model for

adaptive rate control. In Proceedings of the IEEE Real Time

Systems Symposium, Madrid, Spain, December 1998.
[7] M. Caccamo, G. Buttazzo, and L. Sha. Elastic feedback con-

trol. In Proceedings of the IEEE Euromicro Conference on

Real-Time, Stocolm, Sweden, June 2000.
[8] A. Casile, G. Buttazzo, G. Lamastra, and G. Lipari. Simula-

tion and tracing of hybrid task sets on distributed systems. In

Real Time Computing Systems and Applications, 1998.
[9] J. Eaton et al. http://bevo.che.wisc.edu/octave.

[10] J. Eker and A. Cervin. A matlab toolbox for real-time and

control systems co-design. In Proc. of The Real-Time Com-

putiong Systems and Applications, Hong Kong, China, De-

cember 1999.
[11] P. Goyal, X. Guo, and H. M. Vin. A hierarchical cpu sched-

uler for multimedia operating systems. In 2nd OSDI Sympo-

sium, October 1996.
[12] D.-I. Kang, R. Gerber, and M. Sakena. Performance-based

design of distributed real-time systems. In IEEE Real-Time

Technology and Applications Symposium, pages 2–13, June

1997.
[13] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin.

Visual asessment of a real-time system design: a case study

on a cnc controller. In Proceedings of the IEEE Real-time

Systems Symposium, 1996.
[14] L. Kleinrock. Queuing Systems. Wiley-Interscience, 1975.
[15] J. Leung and J. W. Whitehead. On the complexity of fixed

priority scheduling of periodic real-time tasks. Performance

Evaluation, 2(4), 1982.
[16] C. L. Liu and J. Layland. Scheduling alghorithms for multi-

programming in a hard real-time environment. Journal of the

ACM, 20(1), 1973.
[17] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Design and

evaluation of a feedback control EDF scheduling algorithm.

In Proceedings of the IEEE Real Time Systems Symposium,

Phoenix, Arizona, December 1999.
[18] S. Monaco and D. Normand-Cyrot. Nonlinear systems, vol-

ume 3, chapter 5. Chapman & Hall, 1996.
[19] J. Nilsson, B. Bernhardsson, and B. Wittenmark. Some top-

ics in real-time control. In Proc. American control confer-

ence, Philadelphia, June 1998.
[20] J. Nilsson, B. Bernhardsson, and B. Wittenmark. Stochastic

analysis and control of real-time systems with random time

delays. Automatica, 34(1):57–64, 1998.
[21] L. Palopoli, F.Conticelli, and B. Allotta. Multi-level stabiliz-

ing control of nonholonomic vehicles and its multirate digital

implementation. In Proc. of IEEE Conference on Robotics

and Automation 2000 (ICRA 2000), Stanford, USA, April

2000.
[22] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource

kernels: A resource-centric approach to real-time and multi-

media systems. In Proceedings of the SPIE/ACM Conference

on Multimedia Computing and Networking, January 1998.
[23] D. Seto, J. Lehoczky, L. Sha, and K. Shin. On task schedula-

bility in real-time control systems. In IEEE Real Time System

Symposium, December 1996.
[24] L. Sha, R. Rajkumar, and john P. Lehoczky. Priority inher-

itance protocols: An approach to real-time synchronization.

IEEE transaction on computers, 39(9), september 1990.
[25] K. Shin and X. Chui. Computing time delay and its effects

on real-time control systems. IEEE Transactions on Control

Systems Technology, 3(2):218–224, June 1995.
[26] K. Shin and H. Kim. Derivation and application of hard

deadlines for real-time contol systems. IEEE Transactions on

Systesms, Man and Cybernetics, 22(6):1403–1412, Novem-

ber/December 1992.
[27] K. Shin, C. Krishna, and Y. Lee. A unified method for eval-

uationg real-time computer controllers and its application.

IEEE Transactions on Automatic Control, AC30(4):357–366,

April 1985.
[28] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.

Gehrke, and C. G. Plaxton. A proportional share resource

allocation algorithm for real-time, time-shared systems. In

Proceedings of the IEEE Real Time Systems Symposium, De-

cember 1996.

