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Abstract: After 5 editions of growing number of participants coming from all over Portugal, 
the Micro-Rato contest has become a well known mobile robotics contest in the country. It 
promotes a cross fertilization among teams that is strongly educational, appealing and 
challenging simultaneously for those more or less skilled. 
In order to improve the robots performance, the use of a contest simulator during 
construction is highly desirable. In fact, it allows testing the robot behaviour in parallel with 
its construction, possibly leading to the early detection of either software or hardware 
design faults. This paper describes such a simulator that is based on a multi-tasking real-
time kernel (HARTIK). The advantages of using such a software infrastructure are also 
discussed. In particular it allows enforcing the correct temporal behaviour of each simulated 
robot, leading to a more realistic simulation. 
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1. INTRODUCTION 

Started in 1995, the Micro-Rato Contest of the 
University of Aveiro (Almeida et al., 2000) has 
become a national meeting point for robotics 
enthusiasts (Fig. 1). Five editions have taken place 
with growing number of participants coming from all 
over the country. A particular aspect of the contest is 
that it uses a set of rules that allow for the 
participation of teams with very different levels of 
skills. The result is a cross fertilization among teams 
that is highly educational, appealing and challenging 

simultaneously for those more or less skilled. 

From a competitive point of view, it is obviously 
important to improve the robots performance. This 
involves extensive testing, which, typically, can be 
carried out after the robot is built, only. This means 
that undesired behavioural characteristics of the 
robot that originate from the respective programming 
and become evident after running only, are, 
sometimes, discovered too late to be fixed. Thus, the 
possibility of running the program even before the 
robot is completely built is highly desirable since it 
allows to test the robot control software in parallel 
with the robot construction and thus to early detect 
either software and/or hardware design faults. The 
availability of an adequate simulator can help 
achieving such goal.  

One of the problems that are inherent to simulation is 
the accuracy of the models used. If models are not 
accurate, the output of the simulator is not realistic 
and its usefulness as a test bed for the robot software 
is lost. The problem is further exacerbated when the 
simulator is expected to handle several independent 
entities simultaneously, such as several robots, each 
with its own dynamics. In this case, the use of a 

 

Fig. 1 - A view of the contest in the 2000 edition. 



 

modular approach supported on a multi-tasking 
infrastructure is particularly well suited. 

This paper describes a simulator for the Micro-Rato 
Contest that is based on a multi-tasking real-time 
kernel called HARTIK (Buttazzo, 1993). Section 2 
presents a discussion on the advantages of using a 
real-time kernel while section 3 introduces the contest 
rules. Section 4 is devoted to the explanation of the 
models used for the robots sensors, dynamics and 
kinematics. Section 5 presents the structure of the 
simulator and section 6 concludes the paper. 

2. WHY A REAL-TIME KERNEL? 

The simulation of a simple reactive programmable 
mobile robot is carried out by means of a cyclic 
execution of the robot software, fed with data 
generated by adequate models of the robot sensors, 
kinematics and dynamics. Basically, the simulator 
uses the virtual speed of the robot wheels to calculate 
its position after a given time interval and then 
calculate the corresponding sensor readings. These 
readings are then supplied to a copy of the control 
software that generates new motor speeds and so 
forth (Fig. 2). Each cycle in the simulation 
corresponds to one cycle of the control software. 
This correspondence establishes the relationship 
between simulation time and real time. 

When the simulation is expected to look realistic, 
while displayed at run-time on a screen, both times 
should be equivalent, i.e. both cycles should execute 
at the same rate. Thus the simulator cycle should be 
triggered periodically, according to the rate at which 
the robot control loop is or will be executed. However, 
when the simulation results are displayed at the end, 
only, the correspondence between simulation time 
and real time is not required. In this case, the 
simulator can spin on its cycle in order to generate 
the output as soon as possible. In other situations, a 
fixed relationship between simulation time and real 

time can be imposed in order to accelerate or slow 
down the simulator with respect to reality. 

Apart from the previous considerations, there is also 
an inherent problem of accuracy with the robot 
kinematics related to the path calculation. Given an 
initial position and a pair of functions for the linear 
and angular velocities of the robot (considering 
differential drive), the robot position after a given 
interval of time is obtained by integrating 
simultaneously the referred functions. In order to 
reduce the error of such simultaneous integration, it is 
usually carried out in shorter steps within the main 
simulation cycle. 

Hence, the simulation of a simple mobile 
programmable robot normally requires two chained 
cycles, an outer one corresponding to the robot 
control and a faster inner one corresponding to the 
path calculation embedded in the robot model (Fig. 2). 
The number of inner cycle executions per outer cycle 
execution depends on the average distance travelled 
by the robot in each outer cycle and on the level of 
accuracy desired for the integration. An example of a 
simulator that uses this approach is given in 
(Almeida, 1997). 

When simulating just one robot, the software 
structure required to execute the referred chained 
cycles at the appropriate rates is very simple. 
However, it becomes more complex when the number 
of robots to be simultaneously simulated increases. In 
this situation, each robot may have a different control 
cycle period and thus the merging of all cycles into 
just one main cycle (i.e. the main simulator cycle) may 
be difficult depending on the actual periods. 

The solution adopted in the ROBOCUP simulation 
league (ROBOCUP, 2000), and recently in the Ciber-
Rato contest (CR, 2000), easily supports multiple 
robots. Each robot control program is implemented as 
a different process (clients) under the Linux operating 
system. Another process (server), the world 
simulator, joins the models of all the robots and 
periodically updates the status of the world, i.e. the 
robots current positions and statuses  (Fig. 3). The 
clients, i.e. the robots, cyclically request new sensor 
readings from the server and, based on those, 
generate new commands, which, in turn, are used by 
the server to update the status of the world. If a robot 
generates more than one command within one server 
cycle, just the last command will be used in the next 
cycle and if it does not generate any command, the 
one of the previous cycle will be used. This means 
that the robots are simulated with periods that are 
integer multiples of the basic server cycle. 

This approach to multiple robot simulation has the 
advantage of being secure since the status of the 
world is local to the world simulator and thus, it is 
protected from the other processes, i.e. the compe-
titors. On the other hand, there is no protection 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 – Single mobile robot simulator 
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against temporal interference among robots. In fact, a 
robot that decides to saturate the world simulator 
with new commands at a high rate may well prevent 
other robots to pass their latest commands through. 

The problem of mutual interference can be fixed if a 
real-time kernel is used instead of a general-purpose 
operating system. In this case, such interference is  
controlled and bounded by making use of adequate 
scheduling techniques. Furthermore, the periodic 
activation of tasks is also simplified, making it easier 
to manage tasks with different activation periods.  

In the next sections, a simulator is described based on 
a multi-tasking real-time kernel. Basically, each cyclic 
activity, either robot control program or robot model, 
is encapsulated into a separate task. These tasks are 
activated periodically by the kernel, at the required 
rates, transparently to the programmer. This 
separation of activities in tasks is very intuitive and 
simplifies both the programming and the program 
maintenance. The result is a graphical simulator with a 
very realistic behaviour and a high level of flexibility. 
On the other hand, the status of the robots and their 
positions are global. Thus, this approach is not 
secure but this is not a negative aspect since this 
simulator is not used to support a software 
competition but just the teams that build robots for 
the Micro-Rato Contest. 

3. MICRO-RATO CONTEST: THE RULES 

The Micro-Rato Contest has been organised in the 
University of Aveiro, Portugal, since 1995 with the 
purpose of helping students of electronics and 
computer engineering to develop their technical skills 
in an informal way. In order to achieve this goal, a set 
of rules was made up that allows the participation of 
teams of students with very different levels of skills. 
On one hand, the technical problem has to allow 
simple solutions, possibly inefficient, so that the less 
skilled students can deal with it. Simultaneously, the 
problem must allow more complex solutions, with 

better performance, so that the more skilled students 
feel challenged. 

The choice fell on a maze-type contest where several 
small-sized robots have to achieve a given goal in the 
shortest time. 

The goal is to find an infrared beacon that is placed at 
the centre of a black circle (the finishing area), 
somewhere in the maze, without colliding with any of 
the obstacles that are placed along the way. The 
robots run three at a time and they finish their run 
after completely entering the black circle and 
stopping there. Each run can take at most 3 minutes. 

The dimensions of the robots cannot exceed 
30x30x40cm and the maze is 5 by 5 meters wide. The 
obstacles are boxes placed inside the maze and they 
reflect infrared light as well as the maze walls. 

4. MODELLING THE ROBOTS 

4.1. Previous considerations 

In order to simplify the modelling of the robots used 
by the simulator, a few assumptions have been made. 
First, all the robots are round; second they have two 
independent motors for traction and drive; and third 
they have a set of sensors to detect the obstacles, the 
beacon and the finishing area. Furthermore, the 
obstacle sensors are infrared reflection based. 

4.2. Operational parameters 

In order to model the robots in the maze the 
operational parameters associated to each object in 
the system that is to be simulated must be clearly 
identified. These objects are the obstacles, beacon 
and goal area that form the maze, and the robots with 
their sensors and electric motors. 

In what concerns the modelling of an obstacle sensor 
two parameters are needed: the intensity of the beam 
emitted and the angle of the receiver visual field (Fig. 
4a). The output is the value read by the sensor and it 
is an analogue value. 

The beacon sensor is also infrared based and it also 
returns an analogue output value similar to the 
obstacle sensor. It has only one parameter that is the 
angle of the receiver visual field (Fig. 4b). In this case, 
the infrared light is emitted by the beacon. 

 

 

 

 

 

 

 

 

 

 

Fig. 3 – A possible approach to simulate N robots. 
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Fig. 4 - Obstacle (a) and beacon (b) sensors. 
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The beacon is static in the maze and it is in the centre 
of a black circle that represents the finishing area (Fig. 
5). To model the beacon we need the position where it 
is placed in the maze, its intensity and the radius of 
the finishing area. 

The last of the sensors is the one especially 
dedicated to detecting the finishing area. It is also 
infrared based and only reacts to the black ground of 
that area. In this case, there is no parameter and the 
output is digital. 

The obstacle sensors are placed on the periphery of 
the robot while the beacon sensor is placed in the 
centre, on top of the robot, and the finishing area 
sensor is placed also in the centre but beneath the 
robot. The orientation of the sensors is defined using 
polar coordinates relative to the robot orientation. 

In what concerns the motors, it is assumed that they 
are mounted on the robot according to Fig. 6. For 
each one the distance to the robot centre must be 
specified. 

Finally, the robot itself is modelled by its position in 
the maze, direction, external radius, a set of sensors 
and a pair of motors. 

4.3. Sensor dynamics 

The obstacle sensors respond according to the 
distance from the robot to the obstacle, it means the 
closer they are, the higher the output value is. In sake 
of simplicity, it was considered that the output value 
varies linearly between a maximum value, obstacle 
near the sensor, and a minimal value, no reflection 
received which means that there is no obstacle within 
a certain range. 

Likewise, the beacon sensor responds linearly with 
the distance, between a maximum value, near the 
beacon, and a minimum one, outside a given range. 

The finishing area sensor returns ‘0’outside of that 
area and ‘1’ inside it. 

All the sensors also obey to a first order model with a 
time-constant of 10 ms. 

4.4. Robot kinematics and dynamics 

The robot kinematics is  determined by the rotating 
speeds of the motors. The position and orientation of 
the robot in the maze is obtained by integration of its 
linear and angular velocities. 

The movement of the robot can be decomposed into 
two components, displacement and rotation. The 
equations (1) allow determining the linear velocity (v), 
that causes the displacement, as well as the angular 
velocity (w), that causes the rotation. These 
equations take into account the distance between the 
motors (b) as well as the rotating speeds of both 
motors, v0 and v1 for the left and right one, 
respectively. 

v=(v0-v1)/2 w=(v0-v1)/b (1) 

In what concerns the dynamics of the robot a 
simplified linear motor model is considered where the 
rotating speed is proportional to the control signal, 
i.e. the voltage applied to the DC motor. To take into 
account the robot inertia, we used a first order model 
with a time constant of approximately 100ms. This 
value is coherent with the external behaviour of our 
robot but varies according to several aspects, like the 
weight of the robot, its moment of inertia, the torque 
of the motors. 

When a signal (ui) is applied to motor i, a torque is 
generated and then converted into velocity (vi) by the 
respective wheel. The proportional relationship is 
expressed below.  

vi=K.ui (2) 

To take into account the first order model, the result 
of (2) is passed through an equivalent discrete low-
pass filter which parameters are the time-constant of 
100ms (τ) and the sampling period of 2ms (h). The 
filter is of the IIR type (i.e. recursive) that allows a 
very compact implementation. Its transfer function in 
the Z domain is given by (3). 

Vi’ (Z) / Vi (Z) = (b1 + b2.Z
-1 ) / (a1 + a2.Z

-1 ) (3) 

This transfer function can easily be converted to the 
time domain as in (4) where k is the sample index. 

vi’(k) = 1/a1*( b1.vi (k) + b2.vi(k-1) – a2.vi’(k-1)) (4) 

By using Matlab, the parameters ai and bi can be 
readily obtained for the given values of τ and h. The 

 
Fig. 5 – Beacon and finishing area 
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final expression is given in (5). 

vi’(k) = 0.1813 vi(k-1) + 0.8187 vi’(k-1) (5) 

The values vi’(k) are those used in expressions (1) to 
update the robot’s angular and linear velocities (w 
and v respectively). The entry values are the control 
signals ui in (2) which are determined by the control 
algorithm implemented by the robot’s programmer. 

4.5. The guiding algorithm 

The main purpose of this simulator is to allow the 
testing of different guiding algorithms before the 
robot actual construction. Just to test the simulator, a 
basic algorithm was used which already allows to 
solve simple mazes although it may fail in face of more 
complex obstacle patterns. Basically, the robot 
follows the walls of the obstacles, or of the maze, and 
when the beacon is detected in the front of the robot, 
it goes straight to it. 

5. THE SIMULATOR IMPLEMENTATION 

The simulator has been developed under the 
framework of the HARTIK kernel (Buttazzo, 1993), 
using the C language and the GNU compiler. The 
HARTIK kernel schedules real-time tasks according 
to the Earliest Deadline First (EDF) criterion which 
allows for a high processor utilisation with 
guaranteed timely behaviour. The kernel also allows 
for the coexistence of hard real-time tasks, i.e. those 
which schedulability is guaranteed (given certain 
assump tions of worst-case execution time), soft real-
time tasks, i.e. those for which there are no 
guarantees but are scheduled according to a best-
effort approach with respect to their timing 
requirements, and non-real-time tasks, which 
execution is carried out in priority order and if the 
processor has no hard or soft real-time tasks to 
execute, only. The tasks can also be periodic, i.e. 
activated automatically by the kernel, or sporadic, i.e. 
activated asynchronously by external events. In the 
case of this simulator, all tasks are periodic. 
Furthermore, those with tighter time constraints have 
deadlines equal to their periods. 

5.1. Defining the tasks 

Taking into account that the robots are micropro-
cessor based, the respective software and hardware 
parts have been separated. These parts, for each 
robot, are simulated by two independent periodic 
tasks. The first one, named Mousetask , is a hard real 
time task that implements the control algorithm. It 
reads the values of the sensors, does the necessary 
computations according to the robot-guiding 
algorithm and acts over the motors, i.e. it generates 
motor voltages. The second one, named Calculate-
_Position, is also a hard real time task that handles 

the physical motion of the robot. It reads the motors 
voltages generated by Mousetask, and updates the 
robot position and direction according to the model 
explained in section 4.4. 

The graphical environment is maintained by two other 
tasks. The Redraw_Mouse_Task , which is a soft real 
time task that takes care of all the required drawing 
and redrawing of each robot, and the 
Redraw_Maze_Task, which is a non real time task 
that handles the redrawing of the maze.  

The last task, named Referee, monitors the paths of 
the robots in the maze, like the referee does in the real 
contest. It is a hard real time task that counts the 
number of collisions of each robot against the 
obstacles or other robots. The tasking structure of 
the simulator is represented in Fig. 8. 

5.2.  Time constraints 

As explained in the previous section, each robot is 
simulated by two tasks: Mousetask and Calculate-
_position. The latter takes into account the physical 
aspects of the robot to update its position. This 
calculation is achieved by simultaneously integrating 
the linear and angular velocities of the robot. This 
integration contains an intrinsic error that is smaller 
when the integration steps are shorter. Therefore, the 
faster the task runs the smaller will be the errors of 
path calculation. 

Furthermore, for every new position of the robots the 
Referee must verify whether new collisions occurred. 
This implies that the Referee task must run faster than 
the Calculate_position task, which updates the 
position of the robot. 

With a system tick of 1ms, the Referee and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 – The simulator tasking structure. 
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Calculate_Position tasks have been given periods of 
1 and 2ms respectively. 

The Mousetask is not so constrained in terms of 
period specification. In fact, its period represents the 
rate of execution of the robot control algorithm. In 
this case, we have considered a value so that, for a 
maximum speed of about 50cm per second and each 
pixel representing 1cm, the control algorithm would 
run at least once for each position increment of one 
pixel. Therefore, its period was set to 1/50s or 20ms. 

Both Redraw_Mouse_Task and Redraw_Maze_Task 
just handle the graphical representation of the 
competition and thus have no hard time constraints. 
Notice that, even if they miss a few activations, the 
correct position of the robots is still properly updated 
by the hard real-time tasks. Thus, the impact of such 
miss is minimal and confined to the display, causing 
no error in the underlying simulation. Nevertheless, to 
obtain a smooth displacement of the robot, the period 
of Redraw_Mouse_Task was set to 25ms. In what 
concerns the Redraw_Maze_Task, its action is seen 
only when the robots collide with the obstacles. Its 
period was set to 100ms. 

5.3. User interface 

According to its main function, the simulator output 
is a 2-D dynamic graphical representation of the 
contest where the virtual robots evolve in a similar 
fashion to reality. Fig. 9 shows an example of the 
simulator graphical output. Apart from the graphical 
representation, the simulator also informs the user, in 
a textual form, about the current number of collisions 
of each robot as detected by the Referee. Notice that, 
in the competition, these collisions are considered 
undesired and cause extra penalty time to be added to 
the actual time taken by the robot in its run. 

The input to the simulator is carried out by means of a 
text file which contains either the maze description, 
i.e. position of the beacon and number, position, size 

and type of the obstacles, as well as number of robots 
to run simultaneously and their starting positions. 

6. CONCLUSION 

The purpose of this work was to develop a tool that 
allowed the simulation of the Micro-Rato contest in a 
simple but efficient way. With such a tool it is 
possible to easily test different robot control 
algorithms that can be used to enhance their 
performance in the real contest. 

This paper describes such a simulator built on top of 
a real-time kernel. The advantages of using such 
software infrastructure are also discussed, namely the 
simplicity of managing multiple cyclic activities with 
different periods as well as the enforcement of the 
specified temporal behaviour of each activity. These 
aspects contribute to a more robust and realistic 
simulation.  

In this first version of the simulator, a simplified first 
order model was used for the behaviour of both 
robots and sensors. Although somehow simplistic, 
this approach already yields reasonably realistic 
results. The number of sensors available in each 
robot is parameterised and can be easily changed. In 
the current implementation, the robots have three 
obstacle sensors, two beacon sensors, one finishing 
area sensor and two motors, placed like described in 
section 4.2. 

Two tasks were implemented to simulate each robot, 
one for all the physical aspects, i.e. the robot model, 
and another for the control algorithm. A third task per 
robot was also used to handle its graphical 
representation in the maze. 

Moreover, two other tasks were used, one to monitor 
all the movements of the robots, counting also their 
collisions, and another for redrawing the maze upon 
collisions. 

The simulator was tested with several different robot 
control algorithms, in several different mazes, and it 
worked as expected with a realistic look. Future work 
will be carried out in order to establish and improve 
the accuracy of the robot and sensor models used in 
the simulator. 
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