

USING A REAL-TIME KERNEL TO SIMULATE THE
 MICRO-RATO ROBOTICS CONTEST

João Capucho1, Luís Almeida1, Giorgio Buttazzo2
etjcnc@ieeta.pt, lda@det.ua.pt, buttazzo@unipv.it

1DET - IEETA

Universidade de Aveiro
P-3810-193 Aveiro, Portugal

2DIS - Università di Pavia
Via Ferrata 1

I-27100 Pavia, Italia

Abstract: After 5 editions of growing number of participants coming from all over Portugal,
the Micro-Rato contest has become a well known mobile robotics contest in the country. It
promotes a cross fertilization among teams that is strongly educational, appealing and
challenging simultaneously for those more or less skilled.
In order to improve the robots performance, the use of a contest simulator during
construction is highly desirable. In fact, it allows testing the robot behaviour in parallel with
its construction, possibly leading to the early detection of either software or hardware
design faults. This paper describes such a simulator that is based on a multi-tasking real-
time kernel (HARTIK). The advantages of using such a software infrastructure are also
discussed. In particular it allows enforcing the correct temporal behaviour of each simulated
robot, leading to a more realistic simulation.

Keywords: Robotics, Simulators, Real-time systems, Robot programming.

1. INTRODUCTION

Started in 1995, the Micro-Rato Contest of the
University of Aveiro (Almeida et al., 2000) has
become a national meeting point for robotics
enthusiasts (Fig. 1). Five editions have taken place
with growing number of participants coming from all
over the country. A particular aspect of the contest is
that it uses a set of rules that allow for the
participation of teams with very different levels of
skills. The result is a cross fertilization among teams
that is highly educational, appealing and challenging

simultaneously for those more or less skilled.

From a competitive point of view, it is obviously
important to improve the robots performance. This
involves extensive testing, which, typically, can be
carried out after the robot is built, only. This means
that undesired behavioural characteristics of the
robot that originate from the respective programming
and become evident after running only, are,
sometimes, discovered too late to be fixed. Thus, the
possibility of running the program even before the
robot is completely built is highly desirable since it
allows to test the robot control software in parallel
with the robot construction and thus to early detect
either software and/or hardware design faults. The
availability of an adequate simulator can help
achieving such goal.

One of the problems that are inherent to simulation is
the accuracy of the models used. If models are not
accurate, the output of the simulator is not realistic
and its usefulness as a test bed for the robot software
is lost. The problem is further exacerbated when the
simulator is expected to handle several independent
entities simultaneously, such as several robots, each
with its own dynamics. In this case, the use of a

Fig. 1 - A view of the contest in the 2000 edition.

modular approach supported on a multi-tasking
infrastructure is particularly well suited.

This paper describes a simulator for the Micro-Rato
Contest that is based on a multi-tasking real-time
kernel called HARTIK (Buttazzo, 1993). Section 2
presents a discussion on the advantages of using a
real-time kernel while section 3 introduces the contest
rules. Section 4 is devoted to the explanation of the
models used for the robots sensors, dynamics and
kinematics. Section 5 presents the structure of the
simulator and section 6 concludes the paper.

2. WHY A REAL-TIME KERNEL?

The simulation of a simple reactive programmable
mobile robot is carried out by means of a cyclic
execution of the robot software, fed with data
generated by adequate models of the robot sensors,
kinematics and dynamics. Basically, the simulator
uses the virtual speed of the robot wheels to calculate
its position after a given time interval and then
calculate the corresponding sensor readings. These
readings are then supplied to a copy of the control
software that generates new motor speeds and so
forth (Fig. 2). Each cycle in the simulation
corresponds to one cycle of the control software.
This correspondence establishes the relationship
between simulation time and real time.

When the simulation is expected to look realistic,
while displayed at run-time on a screen, both times
should be equivalent, i.e. both cycles should execute
at the same rate. Thus the simulator cycle should be
triggered periodically, according to the rate at which
the robot control loop is or will be executed. However,
when the simulation results are displayed at the end,
only, the correspondence between simulation time
and real time is not required. In this case, the
simulator can spin on its cycle in order to generate
the output as soon as possible. In other situations, a
fixed relationship between simulation time and real

time can be imposed in order to accelerate or slow
down the simulator with respect to reality.

Apart from the previous considerations, there is also
an inherent problem of accuracy with the robot
kinematics related to the path calculation. Given an
initial position and a pair of functions for the linear
and angular velocities of the robot (considering
differential drive), the robot position after a given
interval of time is obtained by integrating
simultaneously the referred functions. In order to
reduce the error of such simultaneous integration, it is
usually carried out in shorter steps within the main
simulation cycle.

Hence, the simulation of a simple mobile
programmable robot normally requires two chained
cycles, an outer one corresponding to the robot
control and a faster inner one corresponding to the
path calculation embedded in the robot model (Fig. 2).
The number of inner cycle executions per outer cycle
execution depends on the average distance travelled
by the robot in each outer cycle and on the level of
accuracy desired for the integration. An example of a
simulator that uses this approach is given in
(Almeida, 1997).

When simulating just one robot, the software
structure required to execute the referred chained
cycles at the appropriate rates is very simple.
However, it becomes more complex when the number
of robots to be simultaneously simulated increases. In
this situation, each robot may have a different control
cycle period and thus the merging of all cycles into
just one main cycle (i.e. the main simulator cycle) may
be difficult depending on the actual periods.

The solution adopted in the ROBOCUP simulation
league (ROBOCUP, 2000), and recently in the Ciber-
Rato contest (CR, 2000), easily supports multiple
robots. Each robot control program is implemented as
a different process (clients) under the Linux operating
system. Another process (server), the world
simulator, joins the models of all the robots and
periodically updates the status of the world, i.e. the
robots current positions and statuses (Fig. 3). The
clients, i.e. the robots, cyclically request new sensor
readings from the server and, based on those,
generate new commands, which, in turn, are used by
the server to update the status of the world. If a robot
generates more than one command within one server
cycle, just the last command will be used in the next
cycle and if it does not generate any command, the
one of the previous cycle will be used. This means
that the robots are simulated with periods that are
integer multiples of the basic server cycle.

This approach to multiple robot simulation has the
advantage of being secure since the status of the
world is local to the world simulator and thus, it is
protected from the other processes, i.e. the compe-
titors. On the other hand, there is no protection

Fig. 2 – Single mobile robot simulator

Robot control
program

Robot model

Path
calculation

against temporal interference among robots. In fact, a
robot that decides to saturate the world simulator
with new commands at a high rate may well prevent
other robots to pass their latest commands through.

The problem of mutual interference can be fixed if a
real-time kernel is used instead of a general-purpose
operating system. In this case, such interference is
controlled and bounded by making use of adequate
scheduling techniques. Furthermore, the periodic
activation of tasks is also simplified, making it easier
to manage tasks with different activation periods.

In the next sections, a simulator is described based on
a multi-tasking real-time kernel. Basically, each cyclic
activity, either robot control program or robot model,
is encapsulated into a separate task. These tasks are
activated periodically by the kernel, at the required
rates, transparently to the programmer. This
separation of activities in tasks is very intuitive and
simplifies both the programming and the program
maintenance. The result is a graphical simulator with a
very realistic behaviour and a high level of flexibility.
On the other hand, the status of the robots and their
positions are global. Thus, this approach is not
secure but this is not a negative aspect since this
simulator is not used to support a software
competition but just the teams that build robots for
the Micro-Rato Contest.

3. MICRO-RATO CONTEST: THE RULES

The Micro-Rato Contest has been organised in the
University of Aveiro, Portugal, since 1995 with the
purpose of helping students of electronics and
computer engineering to develop their technical skills
in an informal way. In order to achieve this goal, a set
of rules was made up that allows the participation of
teams of students with very different levels of skills.
On one hand, the technical problem has to allow
simple solutions, possibly inefficient, so that the less
skilled students can deal with it. Simultaneously, the
problem must allow more complex solutions, with

better performance, so that the more skilled students
feel challenged.

The choice fell on a maze-type contest where several
small-sized robots have to achieve a given goal in the
shortest time.

The goal is to find an infrared beacon that is placed at
the centre of a black circle (the finishing area),
somewhere in the maze, without colliding with any of
the obstacles that are placed along the way. The
robots run three at a time and they finish their run
after completely entering the black circle and
stopping there. Each run can take at most 3 minutes.

The dimensions of the robots cannot exceed
30x30x40cm and the maze is 5 by 5 meters wide. The
obstacles are boxes placed inside the maze and they
reflect infrared light as well as the maze walls.

4. MODELLING THE ROBOTS

4.1. Previous considerations

In order to simplify the modelling of the robots used
by the simulator, a few assumptions have been made.
First, all the robots are round; second they have two
independent motors for traction and drive; and third
they have a set of sensors to detect the obstacles, the
beacon and the finishing area. Furthermore, the
obstacle sensors are infrared reflection based.

4.2. Operational parameters

In order to model the robots in the maze the
operational parameters associated to each object in
the system that is to be simulated must be clearly
identified. These objects are the obstacles, beacon
and goal area that form the maze, and the robots with
their sensors and electric motors.

In what concerns the modelling of an obstacle sensor
two parameters are needed: the intensity of the beam
emitted and the angle of the receiver visual field (Fig.
4a). The output is the value read by the sensor and it
is an analogue value.

The beacon sensor is also infrared based and it also
returns an analogue output value similar to the
obstacle sensor. It has only one parameter that is the
angle of the receiver visual field (Fig. 4b). In this case,
the infrared light is emitted by the beacon.

Fig. 3 – A possible approach to simulate N robots.

 a) b)

Fig. 4 - Obstacle (a) and beacon (b) sensors.

World Simulator

World & robot
models

Robot #1
control program

Robot #2
control program

Robot #3
control program

Robot #N
control program

Clients
Server

Movement
commands

Sensor
readings

The beacon is static in the maze and it is in the centre
of a black circle that represents the finishing area (Fig.
5). To model the beacon we need the position where it
is placed in the maze, its intensity and the radius of
the finishing area.

The last of the sensors is the one especially
dedicated to detecting the finishing area. It is also
infrared based and only reacts to the black ground of
that area. In this case, there is no parameter and the
output is digital.

The obstacle sensors are placed on the periphery of
the robot while the beacon sensor is placed in the
centre, on top of the robot, and the finishing area
sensor is placed also in the centre but beneath the
robot. The orientation of the sensors is defined using
polar coordinates relative to the robot orientation.

In what concerns the motors, it is assumed that they
are mounted on the robot according to Fig. 6. For
each one the distance to the robot centre must be
specified.

Finally, the robot itself is modelled by its position in
the maze, direction, external radius, a set of sensors
and a pair of motors.

4.3. Sensor dynamics

The obstacle sensors respond according to the
distance from the robot to the obstacle, it means the
closer they are, the higher the output value is. In sake
of simplicity, it was considered that the output value
varies linearly between a maximum value, obstacle
near the sensor, and a minimal value, no reflection
received which means that there is no obstacle within
a certain range.

Likewise, the beacon sensor responds linearly with
the distance, between a maximum value, near the
beacon, and a minimum one, outside a given range.

The finishing area sensor returns ‘0’outside of that
area and ‘1’ inside it.

All the sensors also obey to a first order model with a
time-constant of 10 ms.

4.4. Robot kinematics and dynamics

The robot kinematics is determined by the rotating
speeds of the motors. The position and orientation of
the robot in the maze is obtained by integration of its
linear and angular velocities.

The movement of the robot can be decomposed into
two components, displacement and rotation. The
equations (1) allow determining the linear velocity (v),
that causes the displacement, as well as the angular
velocity (w), that causes the rotation. These
equations take into account the distance between the
motors (b) as well as the rotating speeds of both
motors, v0 and v1 for the left and right one,
respectively.

v=(v0-v1)/2 w=(v0-v1)/b (1)

In what concerns the dynamics of the robot a
simplified linear motor model is considered where the
rotating speed is proportional to the control signal,
i.e. the voltage applied to the DC motor. To take into
account the robot inertia, we used a first order model
with a time constant of approximately 100ms. This
value is coherent with the external behaviour of our
robot but varies according to several aspects, like the
weight of the robot, its moment of inertia, the torque
of the motors.

When a signal (ui) is applied to motor i, a torque is
generated and then converted into velocity (vi) by the
respective wheel. The proportional relationship is
expressed below.

vi=K.ui (2)

To take into account the first order model, the result
of (2) is passed through an equivalent discrete low-
pass filter which parameters are the time-constant of
100ms (τ) and the sampling period of 2ms (h). The
filter is of the IIR type (i.e. recursive) that allows a
very compact implementation. Its transfer function in
the Z domain is given by (3).

Vi’ (Z) / Vi (Z) = (b1 + b2.Z
-1) / (a1 + a2.Z

-1) (3)

This transfer function can easily be converted to the
time domain as in (4) where k is the sample index.

vi’(k) = 1/a1*(b1.vi (k) + b2.vi(k-1) – a2.vi’(k-1)) (4)

By using Matlab, the parameters ai and bi can be
readily obtained for the given values of τ and h. The

Fig. 5 – Beacon and finishing area

Fig. 6 – Motors layout

Fig. 7 – Obstacle detection.

final expression is given in (5).

vi’(k) = 0.1813 vi(k-1) + 0.8187 vi’(k-1) (5)

The values vi’(k) are those used in expressions (1) to
update the robot’s angular and linear velocities (w
and v respectively). The entry values are the control
signals ui in (2) which are determined by the control
algorithm implemented by the robot’s programmer.

4.5. The guiding algorithm

The main purpose of this simulator is to allow the
testing of different guiding algorithms before the
robot actual construction. Just to test the simulator, a
basic algorithm was used which already allows to
solve simple mazes although it may fail in face of more
complex obstacle patterns. Basically, the robot
follows the walls of the obstacles, or of the maze, and
when the beacon is detected in the front of the robot,
it goes straight to it.

5. THE SIMULATOR IMPLEMENTATION

The simulator has been developed under the
framework of the HARTIK kernel (Buttazzo, 1993),
using the C language and the GNU compiler. The
HARTIK kernel schedules real-time tasks according
to the Earliest Deadline First (EDF) criterion which
allows for a high processor utilisation with
guaranteed timely behaviour. The kernel also allows
for the coexistence of hard real-time tasks, i.e. those
which schedulability is guaranteed (given certain
assump tions of worst-case execution time), soft real-
time tasks, i.e. those for which there are no
guarantees but are scheduled according to a best-
effort approach with respect to their timing
requirements, and non-real-time tasks, which
execution is carried out in priority order and if the
processor has no hard or soft real-time tasks to
execute, only. The tasks can also be periodic, i.e.
activated automatically by the kernel, or sporadic, i.e.
activated asynchronously by external events. In the
case of this simulator, all tasks are periodic.
Furthermore, those with tighter time constraints have
deadlines equal to their periods.

5.1. Defining the tasks

Taking into account that the robots are micropro-
cessor based, the respective software and hardware
parts have been separated. These parts, for each
robot, are simulated by two independent periodic
tasks. The first one, named Mousetask , is a hard real
time task that implements the control algorithm. It
reads the values of the sensors, does the necessary
computations according to the robot-guiding
algorithm and acts over the motors, i.e. it generates
motor voltages. The second one, named Calculate-
_Position, is also a hard real time task that handles

the physical motion of the robot. It reads the motors
voltages generated by Mousetask, and updates the
robot position and direction according to the model
explained in section 4.4.

The graphical environment is maintained by two other
tasks. The Redraw_Mouse_Task , which is a soft real
time task that takes care of all the required drawing
and redrawing of each robot, and the
Redraw_Maze_Task, which is a non real time task
that handles the redrawing of the maze.

The last task, named Referee, monitors the paths of
the robots in the maze, like the referee does in the real
contest. It is a hard real time task that counts the
number of collisions of each robot against the
obstacles or other robots. The tasking structure of
the simulator is represented in Fig. 8.

5.2. Time constraints

As explained in the previous section, each robot is
simulated by two tasks: Mousetask and Calculate-
_position. The latter takes into account the physical
aspects of the robot to update its position. This
calculation is achieved by simultaneously integrating
the linear and angular velocities of the robot. This
integration contains an intrinsic error that is smaller
when the integration steps are shorter. Therefore, the
faster the task runs the smaller will be the errors of
path calculation.

Furthermore, for every new position of the robots the
Referee must verify whether new collisions occurred.
This implies that the Referee task must run faster than
the Calculate_position task, which updates the
position of the robot.

With a system tick of 1ms, the Referee and

Fig. 8 – The simulator tasking structure.

Robot #N

Referee
HRT task,

T=1ms

Redraw_maze_task
NRT task, T=100ms

Redraw_mouse_task
SRT task, T=25ms

Mousetask
HRT task,
T=20ms

Calculate_position
HRT task, T=2ms

Robot #1

Robot #2

Calculate_Position tasks have been given periods of
1 and 2ms respectively.

The Mousetask is not so constrained in terms of
period specification. In fact, its period represents the
rate of execution of the robot control algorithm. In
this case, we have considered a value so that, for a
maximum speed of about 50cm per second and each
pixel representing 1cm, the control algorithm would
run at least once for each position increment of one
pixel. Therefore, its period was set to 1/50s or 20ms.

Both Redraw_Mouse_Task and Redraw_Maze_Task
just handle the graphical representation of the
competition and thus have no hard time constraints.
Notice that, even if they miss a few activations, the
correct position of the robots is still properly updated
by the hard real-time tasks. Thus, the impact of such
miss is minimal and confined to the display, causing
no error in the underlying simulation. Nevertheless, to
obtain a smooth displacement of the robot, the period
of Redraw_Mouse_Task was set to 25ms. In what
concerns the Redraw_Maze_Task, its action is seen
only when the robots collide with the obstacles. Its
period was set to 100ms.

5.3. User interface

According to its main function, the simulator output
is a 2-D dynamic graphical representation of the
contest where the virtual robots evolve in a similar
fashion to reality. Fig. 9 shows an example of the
simulator graphical output. Apart from the graphical
representation, the simulator also informs the user, in
a textual form, about the current number of collisions
of each robot as detected by the Referee. Notice that,
in the competition, these collisions are considered
undesired and cause extra penalty time to be added to
the actual time taken by the robot in its run.

The input to the simulator is carried out by means of a
text file which contains either the maze description,
i.e. position of the beacon and number, position, size

and type of the obstacles, as well as number of robots
to run simultaneously and their starting positions.

6. CONCLUSION

The purpose of this work was to develop a tool that
allowed the simulation of the Micro-Rato contest in a
simple but efficient way. With such a tool it is
possible to easily test different robot control
algorithms that can be used to enhance their
performance in the real contest.

This paper describes such a simulator built on top of
a real-time kernel. The advantages of using such
software infrastructure are also discussed, namely the
simplicity of managing multiple cyclic activities with
different periods as well as the enforcement of the
specified temporal behaviour of each activity. These
aspects contribute to a more robust and realistic
simulation.

In this first version of the simulator, a simplified first
order model was used for the behaviour of both
robots and sensors. Although somehow simplistic,
this approach already yields reasonably realistic
results. The number of sensors available in each
robot is parameterised and can be easily changed. In
the current implementation, the robots have three
obstacle sensors, two beacon sensors, one finishing
area sensor and two motors, placed like described in
section 4.2.

Two tasks were implemented to simulate each robot,
one for all the physical aspects, i.e. the robot model,
and another for the control algorithm. A third task per
robot was also used to handle its graphical
representation in the maze.

Moreover, two other tasks were used, one to monitor
all the movements of the robots, counting also their
collisions, and another for redrawing the maze upon
collisions.

The simulator was tested with several different robot
control algorithms, in several different mazes, and it
worked as expected with a realistic look. Future work
will be carried out in order to establish and improve
the accuracy of the robot and sensor models used in
the simulator.

7. REFERENCES

Almeida, L., P. Fonseca and J.L. Azevedo. (2000). The
Micro-Rato Contest: a popular approach to
improve self-study in electronics and computer
science. Proc of SMC'2000 (IEEE Conf. on
Systems, Man and Cybernetics) , Nashville,
USA, October 2000.

Fig. 9 – Simulator graphical output

Buttazzo, G. (1993). HARTIK: A real-time kernel for
robotics applications. Proc of RTSS’93 (IEEE
Real-Time Systems Symposium) , Raleigh-
Durham, USA, December 1993.

Almeida, L. (1997). Modelização de pequenos robots
autónomos: um exemplo. Revista do DETUA,
Vol. 2, Nr. 1, pp. 133-140, Setembro de 1997.

ROBOCUP (2000). The ROBOCUP simulation league.
http://www.robocup.org

CR (2000). Regras da modalidade Ciber-Rato -
Concurso Micro-Rato 2000. Arquivo técnico
Ciber-Rato.http://microrato.ua.pt/docs/
documentos.html

