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Abstract

The use of real-time techniques in new application fields,
such as multimedia computing, has extended classical algo-
rithms to more dynamic environments, introducing the prob-
lem of controlling and adapting the quality of service pro-
vided by an application.

In this paper, we investigate the possibility of integrating
application-dependent adaptation strategies with reserva-
tion techniques for handling multimedia real-time applica-
tions. We show how a global adaptive reservation mecha-
nism can be combined with a local application-level adap-
tation, obtaining a hierarchical management scheme.

The need for the two forms of adaptation (application
dependent and global) and the effectiveness of the proposed
hierarchical scheme are shown by a set of experiments on
multimedia applications. All the experiments have been
performed by running the real applications on a real-time
kernel.

1. Introduction

In the last years, a lot of work has been done to show
that Quality of Service (QoS) adaptation can be useful to
support time sensitive applications (like multimedia ones)
in a general purpose workstation.

The basic idea behind QoS adaptation (borrowed from
the network community) is to avoid overload situations by
scaling down the applications’ resource requirements. This
can be done using two different approaches:

e in a first approach, the adaptation strategy is embedded
in the application, so that each task is locally respon-
sible for changing its computational demand based on
the experienced service;

e in a second approach, the QoS adaptation is usually
performed by a global QoS manager, which “suggests”
the application tasks to change their computational de-
mand based on the current system workload.
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Both the two approaches can be implemented without
any specific support from the system. However, if the sys-
tem is not able to bound the resource requirements of each
application, both solutions might not be very effective. In
fact, the overall system performance can hardly be opti-
mized using local information only, and a misbehaved task
requiring too much processor time could significantly de-
grade the other activities. On the other hand, a global ap-
proach alone can also fail in the presence of applications
that do not properly respond to the QoS manager “sugges-
tions”. For example, a non adaptive task requiring too much
resources could force the other tasks to adapt their QoS to
the minimum value.

The problems mentioned above can be solved by bound-
ing the resource requirements of each application through a
scheduling mechanism providing temporal protection, such
as resource reservations or proportional share scheduling.
However, integrating such a reservation mechanism with
the application-level QoS adaptation is still an open issue.

In this paper, we propose a hybrid method for integrat-
ing a reservation mechanism with an application level QoS
adaptation strategy. The method controls the CPU band-
width reserved to a task, but allows each task to change its
QoS requirements if the amount of reserved resources is not
sufficient to accomplish the goal within a desired deadline.
Using such an integrated approach, the QoS adaptation is
performed in an application-specific fashion: each applica-
tion can react to overloads in a different way and use differ-
ent techniques to scale down its resource requirements. On
the other hand, if an application does not adequately react
to a resource lack, the scheduler will slow it down in order
not to influence the other applications.

Two possible strategies can be used to allocate resources
to an application: the first one is based on a fixed reserva-
tion, where resources are statically assigned to tasks at sys-
tem initialization; the second is based on a dynamic adap-
tation of the reserved resources. Both techniques can be
combined with the proposed QoS adaptation methodology.
In the second case, the scheduler (or a QoS manager) auto-
matically adapts the amount of reserved resources to the ap-
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plication requests, independently from application seman-
tics, whereas the application scales its QoS requirements
(and consequently, its requests) in response to the assigned
amount of resources.

1.1. Related work

A lot of research has been done to extend classical real-
time results [12] to time sensitive applications with timing
characteristics that are different from the ones found in typ-
ical control systems, for which such techniques were origi-
nally developed. To apply such techniques in more dynamic
environments, where arrival times and computation times
may have significant variations, a resource reservation (RR)
approach [15, 11, 6, 1] has been proposed, based on the
concept of temporal protection.

Temporal protection (also known as temporal isolation)
requires that the temporal behavior of a task is not influ-
enced by the other tasks in the system and each task runs as
if it is executing alone on a slower processor. Using this ap-
proach, each task can be guaranteed independently from the
others: it is possible to check a-priori if a task will respect
its temporal requirements, independently from the amount
of resources required by all the other tasks.

A different approach to achieve similar results is repre-
sented by Proportional Share (PS) scheduling [8, 18]. In [3]
it is shown that the RR and the PS approaches provide dif-
ferent interfaces for similar services (although RR enforces
more control on the provided QoS). Some work, like [19],
propose a trade-off between RR and PS techniques.

In the last years, the need for some form of adapta-
tion in the QoS provided by an application has emerged.
Some researcher [7] claims that such an adaptation can be
achieved without any specific support from the operating
system, while others tend to provide an explicit support in
the scheduler, through an active entity (the QoS manager)
[14, 4, 6], developed on top of the kernel.

In [6], the scheduler implements a form a resource reser-
vation based on the Earliest Deadline First (EDF) algorithm
[12], and can detect variations in the application require-
ments in order to adapt the reservations to the new system
workload. However, this adaptation is performed in a global
context and does not consider the application behavior.

In [4], each application QoS can be scaled by a global
QoS manager in order to better respond to the user needs.
The adaptation is based on specific modes of operation pro-
vided by each application, but it is still performed on a
global base.

In [16], a formal definition of QoS is presented, and an
algorithm to allocate system’s resources for maximizing the
total QoS is described. This work is extended in [10], con-
sidering multiple QoS dimensions: each application is char-
acterized by multiple QoS dimensions (such as frame rate,

format, depth, compression type, and so on) and requires
multiple resources (RAM, CPU time, disk, and so on) to
reach each specified QoS level. The user is allowed to spec-
ify the utility obtained by the application on each QoS di-
mension through a proper utility function, while the QoS
requirements can be mapped to resource usage using a set
of profiles. In this way, using some dynamic programming
and mixed integer programming techniques, it is possible to
compute an optimal resource assignment which maximizes
the total utility. The problem with this approach is that it
cannot be applied when the QoS mapping profiles (used to
map the QoS specification to resource usage) are unknown.
In this case, we believe that the only way to control the
QoS experienced by each task is to use some form of feed-
back (implicitly reconstructing the QoS mapping profiles
on-line).

In [5], the authors present a feedback-based QoS man-
ager, DQM, which does not require any support from the
operating system. DQM is a middleware solution aimed
at supporting soft real-time applications in a conventional
OS (Linux). The DQM middleware can change some appli-
cations’ execution level based on resource usage and ben-
efit provided by the application and based on the system
load estimated by the middleware itself. A similar ap-
proach, based on a resource allocator that monitors the re-
source usage and coordinates the adaptation, is presented
in [17]. This solution addresses the problem of integrating
QoS adaptation with real-time techniques, but depends on
the a-priori knowledge of the resources required by each
application in each operating mode.

In [14], a solution based on resource reservations and
on a global QoS manager is presented. In particular, the
QoS manager detects reservation overruns and adapts the
tasks’ periods and computation times in order to reduce the
overruns. However, it is not clear how the QoS manager can
control the behavior of each single application.

The use of feedback schemes in real-time scheduling is
emerging in recent research: for example, in [13], the num-
ber of missed deadlines is used as a feedback to control
the system workload by a proper admission control policy.
The proposed method, however, does not provide isolation
among tasks, thus computational demands can hardly be
controlled individually.

A feedback mechanism for adapting the scheduler pa-
rameters is presented in [2]. In this paper, a reservation ap-
proach is used, and the feedback is used to adapt the fraction
of CPU bandwidth reserved to each task. The bandwidth
adaptation mechanism is global and weights are used to as-
sign a different importance to each task, independently from
its demanded resources. However, the QoS of each task, ex-
pressed by its period (or its desired activation frequency) is
not changed by a QoS manager, but is adapted by the task
itself.
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The main contribution of this work is to show how a
static or adaptive resource reservation scheme can be com-
bined with application level QoS management, in order
to obtain a QoS adaptation mechanism which protects the
adaptive applications from the misbehaved ones (as dis-
cussed in the introduction, most of the previously proposed
QoS adaptation schemes fail in achieving this last goal).

2. QoS adaptation model

For some application, it is important to have the possi-
bility to control its QoS locally, without any global QoS
manager, since each activity may react to system overloads
in different ways.

On the other hand, although some authors present a form
of QoS control that does not require any support from the
OS, we believe that such a support is required to avoid in-
stability in the adaptation, and to avoid that misbehaved ap-
plications affect well-behaving ones.

The goal of this paper is to integrate resource reserva-
tion with application-level QoS management. Moreover,
we introduce a two-level (hierarchical) adaptation architec-
ture: a local (application-level) QoS adaptation and a global
(system-level) adaptation of the amount of resources re-
served to each task. One of our design goals is to decouple
as much as possible these two adaptation loops.

In the next section we briefly recall the resource reserva-
tion approach and show when QoS adaptation needs to be
performed.

2.1. Definitions

A task T; is a stream of requests, or jobs, J;;, (j =
1,...,n), each characterized by an arrival time r; ;, an exe-
cution time ¢; j, a finishing time f; ;, and a deadline d; ;.
Tasks can be hard or soft: a task 7; is said to be hard
if all its instances have to complete within their deadline
(Vj fi,; < d;j), otherwise a critical failure may occur in
the system. A task is said to be soft if a deadline miss in one
or more instances is tolerated by the system.

The sequence of the execution times ¢; ; of task 7; can be
seen as a sequence of values distributed according to a Prob-
ability Distribution Function (PDF) V' (¢) = P{c¢;; = c},
or as a stochastic process. Since V'(¢) does not depend on
Jj, the stochastic process is stationary and time-invariant,
so it is ergodic. Hence, the execution times expectation
Elc] =3 ¢V(c) is equal to the mean execution time, com-

k

_ .. o, Cii
puted as ¢ = limy_, oo =45—.

A task is said to be periodic if r; j = (j —1)T;, where T;
is the task period. Although QoS adaptation can be applied
to every kind of task, for the sake of simplicity in this work
we will consider only periodic tasks. We also consider tasks

characterized by soft deadlines, and with a relative deadline
equal to the task period: d; ; = r; ; + T}, hence d; ; = jT;.
We define the bandwidth required by a task 7; as

Bj*! = lim BJ*(0,k) )
with .
2 j=1 Civj
Bt ===

In this work, tasks are handled by dedicated servers and
scheduled by EDFE. When J; ; is released at time 7; ;, the
job is assigned a scheduling deadline and it is inserted in a
queue ordered by scheduling deadlines. Then, the first job
of the queue (the one with the shortest scheduling deadline)
is scheduled to execute. As we will see in the next section,
the server can change the scheduling deadline during the job
execution: in this case the EDF queue has to be reordered.

2.2. Resource reservation

Resource reservation techniques have been developed to
isolate the temporal behavior of an application from the de-
mand of the others. Using this approach a task is reserved
QQ; time units each T7: in this way, if the guarantee condition

; % < U ()

is verified (where Up,, is the utilization bound of the
scheduling algorithm), each task is guaranteed to execute
at least for its reserved amount of time, independently from
all the other tasks. If a task requires too much execution
time, it will not steal the time reserved to the other tasks in
the system.

Resource reservation can be enforced either in static pri-
orities schedulers (such as Rate Monotonic), as in Real-
Time Mach, or in dynamic schedulers (such as EDF). In this
work we will assume that each task is served by a dedicated
Constant Bandwidth Server (CBS) [1], a particular reserva-
tion technique based on EDF, which assigns each task a suit-
able scheduling deadline so that the requested bandwidth is
never exceeded.

A CBS is described by two parameters: (s, the server
maximum budget, and T, the server period. The server
bandwidth B; = %—5 is the fraction of the CPU bandwidth
reserved to the task served by the CBS. When a job of the
served task arrives, the server checks whether the last as-
signed scheduling deadline ds can be used: in this case, that
deadline is assigned to the job, otherwise a new scheduling
deadline d; = r; ; + T is generated and assigned to the job.
Each time a job executes for ()5 time units, the deadline is
postponed by Ts time units. A more complete description
of the CBS, with properties and performance results, can be
found in [1].
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As shown in [2], the CBS provides a simple parameter
that can be used as a feedback to check whether the server
task is requiring more than the reserved bandwidth. This
value is the CBS scheduling error ¢; = ds — (7"1'73' + 1),
defined as the difference between the last scheduling dead-
line assigned by the server to the task and the soft deadline.
Since the scheduling deadline d; is postponed when the task
requires more than the reserved bandwidth, the scheduling
error €; is greater than O if and only if the task is requiring
more than the reserved bandwidth (¢; > 0 < B!‘? >
B;).

2.3. Need for QoS adaptation

As stated above, the CBS ensures that a served task will
never demand more than the reserved bandwidth, and if
- Qi < 1 each task will execute for the reserved band-
w1dth If a task requests more than its reserved bandwidth,
it will slow down in order not to jeopardize the others.

In [3] it is shown that, if Qs > E[¢;] the task schedule
is predictable, and it is possible to guarantee that each job
J;; will finish within a probabilistic deadline r; ; + ¢ with
a probability X (J). On the contrary, if Qs < E[¢;], the
scheduling deadlines assigned to 7; will diverge to infinity
(in order to preserve the bandwidths allocated to the other
tasks’) and nothing can be guaranteed about f; ;.

We now show that the Q5 > E][c¢;] constraint can be
expressed in terms of reserved and requested bandwidth:

_ Qs _ T
Qs > Elci] = Qs>& = ?:>ITZ
If we select T, = 15, we obtain
> limge0 351 5 =
k2 T,L
k
Z, 1Cij

= B;> lim

—>ooz

Hence, if a task “requests too much bandwidth” (i.e., if
the requested bandwidth is greater than the reserved band-
width) it has to decrease its computational demand in order
to achieve predictability in its schedule. We define a task
requiring too much bandwidth as an overloaded task. Task
7; is said to be overloaded if

= B> B

B! > B;. 3)

When a task is overloaded, the application can scale down
its QoS (and consequently its resource requests), in order to
make B;“? < B, thus removing the overload condition.

3. Performing the QoS adaptation

When a task requires more than the reserved bandwidth,
it has to scale down its resource usage. Numerous solu-
tions have been proposed in literature and are well known
in the multimedia community; as an example, in this paper
we consider two of them: enlarging the task’s period, and
skipping some tasks’ instances.

3.1. Scaling tasks’ periods

The first solution consists in scaling the QoS by changing
the task period. In fact, Equation (1) shows that the band-
width requested by a task decreases as its period increases.
Using this solution, when a task detects that its reserved
bandwidth is not sufficient to guarantee the current QoS, it
can decrease the requested bandwidth by enlarging its pe-
riod. When the task detects that the reserved bandwidth is
enough, it can try to increase its QoS to a nominal desired
value in order to attempt a better exploitation of the reserved
resources.

The QoS adaptation scheme can work as follows: when
the CBS scheduling error €; is greater than a specified
threshold, the period is increased; whereas, when ¢; = 0
for an interval of time larger than a specified amount, the
period can be decreased. A lot of different and application-
dependent strategies can be used for this purpose, so we
identified a general period scaling algorithm that can be
tuned to fit a lot of particular cases. If we define T; as the
desired activation period, and 7,.; as the actual period, a
task can calculate its new period as

Tr;m‘ - (1 - )\1 )\2) act T )\1 (51 + Tact) + )\QTu (4)
where A; and A; are two forgetting factors € [0, 1] such that
A+ A < 1.

The two factors A; and A, influence the speed with
which the application decreases or increases its QoS. In par-
ticular, A controls the speed with which the application re-
acts to an increment in the scheduling error: when the task
requests a bandwidth B,.., bigger than the reserved band-
width B;, the application tries to change the task period to
T] = 5%, using ¢; as an estimate of 7. If the period is
1ncreased too much, the factor A>T} tries to decrease it in
order to better use the reserved bandwidth.

It is worth noting that if €¢; = 0, the actual period T,
tends to the desired activation period T;. In fact, ¢; = 0 =

Ti . = (1 = Aa)Tyet + A2 Ty since
Ti <Toer = Ti< Tz;ct < Taet
Tl > Tact = Tact < Tn(’f < Tl

this succession is limited and monotonic, then converges to
a stationary value 7. In this case, T = (1 — X2)T + AT},
hence A2 7 = AT, and the succession converges to 7.
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For some applications (such as video or audio players),
it can be useful to select a discrete QoS model, in which not
all period values can be selected for T}, but only periods in
Ti ={Ts,,Ti,, - .., T;, }. Inthis case, the period adaptation
algorithm can work as follows:

1. calculate T, ., as in Equation (4);

2. if T

act

max{T' €T :T <T;,};

> Thyet, the new period is set at the value T, =

3. ifT)

act

min{T €T :T>T!.,}.

< Tact, the new period is set at the value T, =

act —

In this way the application also introduces an hysteresis in
the period adaptation function, achieving a better stability.

3.2. Job skipping

Some applications may prefer to scale down their re-
quired bandwidth by not executing (skipping) some in-
stances. In this case, Equation (1) becomes

k
B _ i 21 Ciihi
req _ Zoj=1 G

where
b — 0 ifjob J; ; is skipped
»J 71 1 otherwise

In this case, the requested bandwidth is decreased by skip-
ping instances when a task “is late”. However, in some
cases not all the frames can be skipped, and some tasks can
be characterized by particular constraints on skipped jobs.
For this reason, the decision of skipping or executing a job
is left to the application.

The QoS adaptation can work as follows: when a job
starts, the application checks whether the scheduling error
€; is greater than a specified limit, and whether the job can
be skipped. If these two conditions are verified, the job fin-
ishes immediately (with a virtually O execution time). Note
that in this way an application does not reacts to overloads
immediately, but skips jobs only after the overload has oc-
curred.

Each application can define a different policy to decide
whether a specified job J; ; can be skipped: in particu-
lar, if all the jobs can potentially be skipped the applica-
tion can work properly also with a small reserved band-
width. Otherwise, the application must define a function
si(j) indicating if J; ; can be skipped: in this case, the
application needs at least a reserved bandwidth B =

k .
ZJ-=1 ci,jsi(d)

1imk—>oo kT:

4. Hierarchical QoS feedback control

In the previous section, we discussed how an application
can adjust its QoS requirements to provide the best QoS
under a fixed reserved bandwidth B;. In this section, we
show how such an approach can be nicely integrated with a
bandwidth adaptation mechanism, such as the one presented
in [2], to achieve a better performance.

Using an integrated solution, there are two orthogonal
forms of adaptation:

e the reserved bandwidth adaptation realized by an ac-
tive entity having a global system visibility, such as a
QoS manager or the scheduler itself;

e the application dependent QoS adaptation, as pre-
sented in the previous section.

The integrated (hierarchical) approach presents the ad-
vantages of both methods, allowing the applications to scale
their QoS when the bandwidth adaptation is not able to
serve them properly. In fact, we will show that adaptive
reservation can suffer when all the tasks require too much
resources, and the QoS adaptation mechanism can solve
this problem. On the other hand, the bandwidth adaptation
mechanism allows applications to obtain the desired QoS
without requiring any a-priori knowledge on their resource
requirements.

4.1. Global bandwidth adaptation

As mentioned in the introduction, a global bandwidth
adaptation mechanism is useful to prevent a misbehaved
task from allocating too much resources for itself, so pe-
nalizing all the others.

In our previous work [2], we proposed a QoS manager
having the visibility of all the tasks 7; and their scheduling
errors €;, that can use such a feedback information to allo-
cate resources to minimize the scheduling errors according
to some user-defined task importance values w;.

The proposed adaptive bandwidth reservation mecha-
nism is illustrated in Figure 1. It adjusts the reserved band-
width B;(j + 1) of the next job according to a feedback
function Bi(j + 1) = fi(Bi(j),€i(j)), where B;(j) is the
bandwidth reserved to the current (j¢*) job, and ¢;(j) is the
scheduling error measured when J; ; finishes. If all tasks
need to increase their reserved bandwidths “too much”, vio-
lating Equation (2), the reserved bandwidths must be scaled
down using a compression equation B} = ¢g(B,w), where
B = (B4, Bs, ..., By,) is the vector of the reserved band-
widths, and w = (wy,ws,...,w,) is the vector of the
tasks’ weights.

The compression algorithm is the part of the bandwidth
adaptation algorithm which requires global information: if
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Figure 1. Bandwidth Adaptation Scheme.

>, Bi < B™ (where B™" is some desired maximum
value such that B™%* < 1), the bandwidth compression
is not necessary and the adaptation is performed on a per-
task basis. In this case, the tasks weights are not used. If
Zi B; > B™ the assigned bandwidths have to be re-
duced (compressed) to maintain the system schedulable. In
this case, it may happen that the bandwidth assigned to less
important tasks is reduced too much, causing them to be in
an overload condition, as expressed by Equation (3). In this
situation, the local QoS adaptation mechanism may help to
decrease the computational demand of the overloaded tasks,
to achieve a graceful performance degradation.

4.2. Local QoS adaptation

We have shown that when the sum of the adapted band-
widths is greater than B™®*, the less important tasks can
suffer from local overloads. Indeed, the goal of the global
adaptive reservation mechanism is to isolate task overruns
in the less important tasks, independently from their re-
quirements and periods. In this aspect, our approach differs
from classical real-time techniques, in which task impor-
tance is inversely proportional to its period.

In this case, an overloaded task can try to scale down
its requirements (by decreasing its QoS) as shown in Sec-
tion 2. If such an adaptation is performed, the task may
exit the overload condition, reaching a lower QoS level in
a controlled fashion, otherwise the QoS degradation can be
unpredictable.

If a task 7; does not implement the local QoS adaptation,
the less important tasks (the tasks 7; with w; < w;) will
be more penalized in terms of bandwidth, since the global
reservation mechanism performs compression based on the
importance values. Hence, the bandwidth of the less impor-
tant tasks will be used to satisfy the QoS requirements of the
most important tasks. Such a system behavior is consistent
with our QoS model (avoiding overloads in the most impor-
tant tasks). A possible concern can be that a misbehaved
task having a high importance can compromise the QoS ex-
perienced by all the applications in the system. However,
the importance w; is assigned by the user, and can be used
as a mechanism to penalize misbehaved tasks or applica-
tions that do not adapt their QoS properly.

Since the amount of resource requested by a task to pro-
vide a specified level of QoS is not always known (and only
a feedback mechanism can be used to control the QoS) the
global adaptive reservation mechanism alone may not be
able to guarantee a minimum QoS to each task.

If an application dependent QoS adaptation is imple-
mented, the task can scale down its resource requirements in
order to provide a minimum QoS, if the task is guaranteed
to receive a minimum amount of resources. For this rea-
son, we modified the original adaptive reservations scheme
in order to guarantee a minimum fraction of the CPU band-
width to each task (note that if this minimum value is 0, the
modified approach is equivalent to the original one).

4.3. Integrated Approach

To use our integrated QoS management approach, a new
level of feedback has to be added to the feedback scheme of
Figure 1, as shown in Figure 2. The inner loop controls the
bandwidth B; reserved by the global adaptive reservation,
while the outer loop controls the bandwidth B;“? requested
by the application, using the local method. As explained
above, the goal of the control loops is to obtain B; > B;“?.
One of the major problems with this kind of hierarchy is that
it can easily reach unstable conditions. For example, con-
sider two tasks 7; and 7». By reacting to a transient over-
load, the global adaptive reservation mechanism can de-
crease By; if 7y reacts immediately by decreasing its QoS,
when the transient overload finishes the bandwidth adapta-
tion mechanism can increase Bs. In this way, 7 increases
its QoS level, stealing bandwidth from 7y, preventing it to
recover its initial QoS level.

In order to solve this problem, we made the QoS adap-
tation action slower than the bandwidth adaptation one, so
that QoS is changed only when the overload condition is
long (in most cases, the QoS is not scaled in response to
transient overloads).

S. Experimental results

In this section we report some significant experiments
we performed on the HARTIK kernel [9] to show the advan-
tages of QoS adaptation and the effectiveness of the method
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Figure 2. Two-Level Feedback.

proposed in this paper. In particular, we show that local (ap-
plication dependent) QoS control and global (system wide)
bandwidth adaptation can individually solve some problem,
but only their integration can achieve better results without
requiring any a-priori information on the task set.

5.1. Importance of local QoS adaptation

We start by showing that some form of QoS adaptation is
needed for avoiding unpredictable behavior in the schedule.

In a first experiment, we ran four MPEG players decod-
ing and visualizing movies concurrently. Each player ex-
ecutes as a task 7; served by a CBS. In particular, we fo-
cus our attention on task 71, served by a CBS with param-
eters (Q1 = 8,71 = 30) and decoding a Variable Bit Rate
(VBR) MPEG movie. The other tasks are used to create
variations in the system workload. On a Cyrix P166+, the
mean job execution time of 7 (that is, the mean frame de-
coding time) is ¢; = 10ms. Since the required bandwidth
is B{*! = 2 = 10 = 0.333 > B, = 3, the CBS serving
T is clearly overloaded. As a consequence, if no adaptation
mechanism is applied, task 7, will experience long unpre-
dictable delays and its scheduling error €; diverges towards
infinity. Since the system workload is not stable (due to
the variations in MPEG decoding times), 71 continuously
increases (when some background time is idle and can be
used by the task) and decreases its playback speed in an un-
controllable manner.

If 7, implements a skip strategy (skipping P and B
frames when ¢; > 0), the mean job execution time de-
creases to 5ms and the required bandwidth is reduced to
Bmin = 35—0 < Bj. The scheduling error experienced by
the task is shown in Figure 3. Using this technique, some
frames are skipped (decreasing the QoS), but the movie is
played at the correct rate (the requested one). Figure 4
shows the number of frames decoded by 71 as a function
of time, with and without the skip strategy. From the fig-
ure it is possible to see that, using the skip strategy, the task
can play frames at the correct rate, whereas if no adaptation
strategy is implemented the task throughput is not constant,

generating an unpleasant effect.

Skil
180 T P

Task 1 ——

160
140
120 |-

100

Scheduling Error (ms)

0 5000 10000 15000 20000 25000 30000
Time (ms)

Figure 3. Scheduling error experienced by a
task implementing a skip strategy.

When the server overload is higher, period adaptation
can be more effective than skip for controlling the schedul-
ing error. This fact has been verified in a second exper-
iment, in which we ran three concurrent MPEG players.
Each player executes as a task 7; (i € {1,2,3}) served
by a CBS with parameters (B; = 0.3,7; = 15), and 73
blocks for one second before restarting the entire sequence,
to create a higher load variation.

In this experiment we also focus our attention on task 7,
which decodes a VBR MPEG movie (different from the one
used in the previous experiment) with mean job execution
time ¢ = 15ms. Since the required bandwidth is B{“? =
% = % =1 > By = 0.3, the server is clearly overloaded.
As in the previous experiment, if no adaptation mechanism
is applied, task 7, experiences unpredictable delays and its
scheduling error €; diverges towards infinity.

The effects of the uncontrolled scheduling error is shown
in Figure 5, which plots the completion jitter (i.e., the in-
terframe times f; j+1 — fi;) as a function of time. The
plot reveals some very high peaks (near to 1 second), corre-
sponding to 73 re-activations.
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Figure 4. Comparison between skip and no
skip.
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Figure 5. InterFrame times for a task not im-
plementing QoS adaptation.

When a QoS adaptation scheme is implemented by the
player task, the scheduling error can be controlled, and the
interframe times are more stable. In particular, we imple-
mented the period adaptation rule expressed in Equation (4).
The scheduling error achieved with this method is shown in
Figure 6, whereas the interframe times are shown in Figure
7. The reader can see that some jitter is still present (since
the frame decoding times are not constant), but it is much
smaller than that shown in Figure 5. Period adaptation re-
duces the completion jitter from 1sec to 250ms.

5.2. Importance of global bandwidth adaptation

The local (application-dependent) QoS adaptation mech-
anism (performed through period adaptation or by job skip-
ping) allows each task to control its QoS within the allo-
cated bandwidth. However, if the bandwidths are not prop-

Period Adaptation
1400 T T

Task 1 ——

1200 +

1000

800

600

Scheduling Error (ms)

Ul hubusddubulud

0 20000 40000 60000 80000 100000 120000 140000
Time (ms)

Figure 6. Scheduling error experienced by a
task implementing period adaptation.
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0 20000 40000 60000 80000 100000 120000 140000
Time (ms)

Figure 7. InterFrame times for a task imple-
menting period adaptation.

erly assigned to tasks, the method may not achieve the ex-
pected results. For example, if two tasks 7, and 7 are as-
signed bandwidths By and Bs such that B; > B{“? and
By < B3, 15 would scale down its QoS, but 71 would
use less than its reserved bandwidth. This example suggests
that, if 7> uses the bandwidth (B; — B{?) unused by 7, it
would obtain a better QoS.

In order to show this fact, we ran an experiment with
two tasks 71 and 7, served by two CBSs with parameters
(B = 0.5,T7 = 30) and (B = 04,7 = 30), decod-
ing two different MPEG streams and implementing a period
adaptation strategy. Figure 8 shows the interframe times of
the two tasks. We can see that 7, increases its period, while
To Mmaintains it constant. This happens because the first
MPEG video requires more than the reserved bandwidth to
be played at the nominal rate, while the second movie re-
quires less execution time. If we use an adaptive bandwidth
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reservation mechanism (see Section 4.1) to serve the two
tasks (without any form of local QoS adaptation), both tasks
can be served at their nominal rates, as shown in Figure 9.
In this case, the adaptive bandwidth reservation mechanism
provides better performance than the application dependent
adaptation.

InterFrame Times
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Figure 8. InterFrame times for two tasks
implementing period adaptation with fixed
reservations.
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Figure 9. InterFrame times for two tasks
served by adaptive bandwidth reservations.

However, adaptive bandwidth reservations can suffer if
the sum of the required bandwidths is greater than 1 (and the
compression mechanism is consequently used), and tasks
do not implement any form of QoS adaptation. This is
clearly illustrated in Figure 10, which plots the scheduling
errors experienced by two MPEG players running on two
tasks, 7 and 7, served under the global adaptive band-
width reservation mechanism, where the sum of the re-
quested bandwidths is greater than 1. In this case, since
the system is overloaded, both scheduling errors increase to

infinity. In the next section, we will see that a hierarchical
QoS adaptation mechanism can solve this problem.

Adaptive Bandwidth Reservations
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Figure 10. Scheduling errors of two tasks
served by adaptive bandwidth reservation in
an overloaded system.

3000 Adaptive Bandwidth Reservations and Period Adaptation
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Figure 11. Scheduling errors of two tasks exe-
cuting under a hierarchical QoS management.

5.3. Hierarchical QoS management

In the previous experiments we showed that, in some
cases, an application dependent adaptation mechanism
alone may be able to achieve the desired QoS level. In other
cases, a fixed bandwidth reservation can penalize the system
performance and the adaptive bandwidth reservation mech-
anism permits to increase the QoS experienced by a task.
However, there are cases in which the bandwidth adapta-
tion mechanism alone cannot succeed (for example, when
the sum of the required bandwidths is greater than 1). In
this cases, the two mechanisms can be combined, as shown
in Section 4.3, to obtain a hierarchical QoS management.
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To prove the effectiveness of the hierarchical control
mechanism we ran an experiment in which the global band-
width adaptation acts together with the application depen-
dent mechanism (performed through period adaptation).
Two tasks 71 and 7» (served by adaptive reservations),
decode two MPEG videos and implement period adapta-
tion. The results are reported in Figure 11, which plots the
scheduling errors experienced by the tasks. As the reader
can see, the combination of the two adaptation mechanisms
is more effective and allows to reduce the scheduling error
to zero. Moreover, it worth noting that no a priori knowl-
edge is required from the task set to apply the proposed
methodology.

6. Conclusions

In this paper we motivated the importance of implement-
ing an application dependent QoS management scheme in
time sensitive applications. We showed that when adapta-
tion techniques are not used the resulting QoS can be highly
unpredictable, and we proposed some simple techniques to
be used together with a resource reservation strategy. In
particular, we proposed and tested some solutions based on
period adaptation and job skipping. Solutions based on im-
precise computation can also be used to vary the computa-
tional demand of application tasks.

After motivating the importance of application depen-
dent QoS management, we showed how this method can be
integrated with adaptive resource reservations [2] to realize
a hierarchical QoS management scheme which combines
the advantages of the two approaches.
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