
Multiprocessor DSP Scheduling in System-on-a-chip Architectures

Paolo Gai, Luca Abeni
RETIS Lab

Scuola Superiore S. Anna, Pisa
{pj,luca}@gandalf.sssup.it

Giorgio Buttazzo
University of Pavia (Italy)
INFM - Pavia research unit

buttazzo@unipv.it

Abstract

Next generation embedded systems will demand ap-
plications with increasing complexity, that a standard
uniprocessor microcontroller architecture will likely be
unsuited to support. A possible solution to cope with
embedded applications with high computational require-
ments is to adopt multiple-processor-on-a-chip architec-
tures. This paper discusses the problem of multiproces-
sor scheduling for asymmetric architectures composed
by a general purpose CPU and a DSP. The challenging
issue addressed in this work is to verify whether the use
of a dedicated processor can effectively enhance the per-
formance of an embedded system still maintaining some
kind of real-time guarantee. In particular, we provide
a method for increasing the schedulability bound in the
considered architecture, allowing a more efficient use of
the computational resources.

1 Introduction

The rapid development of the embedded system mar-
ket is demanding applications with increasing complex-
ity in terms of functionality to be supported, as well as
timing constraints to be met. For example, in the con-
text of automotive systems, a standard uniprocessor mi-
crocontroller architecture will not be able to provide the
computing power required by future applications, even
considering the IC technology advances. The same con-
siderations will also apply in the context of embedded
multimedia systems, where the power required to handle
audio and video streams increases as the technology pro-
vides fast networks interfaces capable of managing data
flows with a huge bit-rate.

A greater computational power in real-time control
and multimedia systems can be achieved in two possible
ways: increasing the processor speed or increasing the
parallelism of the architecture. The first solution requires
the use of caching or deep pipelining, which suffer from
serious drawbacks in the context of real-time embedded
systems: caching makes very hard to estimate the worst-

case execution times of programs (needed to perform
an off-line guarantee of real-time constraints), whereas
deep pipelining would not be very effective because of
the large number of pipeline flushes caused by reactions
to asynchronous events. In addition, increasing the pro-
cessor speed would cause a higher power consumption
of the whole architecture, which is often not affordable
for some mobile applications. Parallelism at the instruc-
tion level (VLIW architectures) requires large silicon ar-
eas and drastically increases code size. Therefore, the
best option for many future embedded applications de-
manding high computational power seems to rely on the
adoption of multiple-processor-on-a-chip architectures.

This conclusion is also supported by some hardware
architectures that will be produced in the near future.
The Janus system, developed by ST Microelectronics in
cooperation with Parades [6], is an example of a dual-
processor platform for power train applications, featur-
ing two 32-bit ARM processors connected by a crossbar
switch to four memory banks and two peripheral buses
for I/O processing.

Although Janus implements a symmetric multipro-
cessor, some other architectures promise the availabil-
ity of asymmetric multiprocessors composed by a RISC
processor (or a microcontroller) and one or more DSPs
[11, 7]. For example, the Texas Instruments SMJ320C80
is a single-chip MIMD parallel processor that consists
of a 32-bit RISC master processor, four 32-bit parallel
DSPs, a transfer controller, and a video controller. All
the processors are tightly coupled through an on-chip
crossbar switch that provides access to a shared on-chip
RAM.

These architectures are expressly mentioned because
multimedia streams can be efficiently handled using ded-
icated units for signal processing, reducing the computa-
tional power needed on the main CPU. Moreover, DSP
architectures are designed to have predictable execution
times, so they offer a viable alternative to the implemen-
tation of fast general purpose multiprocessors.

This paper discusses the problem of multiprocessor
scheduling for asymmetric architectures composed by a
general purpose CPU and a DSP. The challenging issue
addressed in this work is to verify whether the use of

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

a dedicated processor can effectively enhance the per-
formance of an embedded system still maintaining some
kind of real-time guarantee.

In our opinion, this issue did not receive sufficient at-
tention in the real-time literature. Although many results
have been derived for multiprocessor and distributed ar-
chitectures, very few of them considered the peculiar-
ities of such an architectural scenario. In particular, a
DSP is usually designed to execute algorithms on a set
of data without interruption. Hence, thenatural way of
scheduling a DSP is typically non-preemptive, whereas
the CPU schedules both the application tasks and the
non-preemptive tasks running on the DSP. In practice,
the DSP can be used as a DSP accelerator responding to
requests of the master (or main) CPU [4].

The problem of DSP scheduling in asymmetric multi-
processor architectures can be viewed as a special case of
scheduling with shared resources in multiprocessor dis-
tributed systems. In [10, 9], Rajkumar addressed this
problem, providing two algorithms called MPCP and
DPCP, that allow resource sharing in generic multipro-
cessors. Although DPCP can be applied to this partic-
ular case, the guarantee test provided in [10, 9] is too
pessimistic, since it relies on a very generic scenario that
does not take in account the characteristics of the con-
sidered architecture.

An interesting approach for coping with tasks requir-
ing multiple processing resources is proposed in [12],
where theCo-Schedulingapproach is presented. Co-
Scheduling can be used when a task is composed by
multiple phases and requires a different resource in each
phase. The basic idea of co-scheduling is to divide each
job into chunks, associating suitable deadlines to each
chunk in order to meet the job deadline (that is, the dead-
line of the last chunk). In the original paper, the CPU and
the disk were considered as the co-scheduled resources,
but we believe that this approach could be also applied
to the DSP.

Our paper provides the following contributions:� It presents an outlook of the problem giving some
examples with counterintuitive behavior.� It proposes an approach that allows to increase the
schedulability bound in the considered architecture.

The paper is organized as follows. Section 2 in-
troduces the system model and the architecture of the
embedded system. Section 3 presents the problem and
provides some examples of non-intuitive scheduling is-
sues. Section 4 describes our method for increasing the
schedulability bound. Section 5 illustrates some simu-
lation results, and Section 6 states our conclusions and
future work.

DSP

I/OROMRAM

Master
processor

bus

Figure 1. Block diagram of the system ar-
chitecture.

2 System model

In this section we shortly describe the reference ar-
chitecture we will use in the following sections.

We consider an abstract architecture composed by a
general purpose CPU and a specialized CPU. The two
computational units share a common bus and can freely
use some RAM memory and some ROM (Flash) mem-
ory, that we suppose is built in the same chip. Other
peripherals can be directly controlled by the general pur-
pose CPU. These assumptions are not far from reality
since a system on a chip architecture, like Janus [6], can
be modeled in a similar way.

At the present stage of the analysis, we assume that
the general purpose CPU and the specialized CPU com-
municate with negligible overhead. This assumption is
justified by the fact that the two processors are supposed
to be built on the same chip, and both processors can
share the full (or part of the) memory address space
of the architecture. However, possible communication
overheads can be accounted to the task that invokes the
service on the specialized CPU. In the following, the
general purpose CPU will be identified as themaster
processor, whereas the specialized CPU as theDSP. A
block diagram of the considered architecture is depicted
in Figure 1.

We assume that all the jobs executing on a DSP are
invoked using a remote procedure call (RPC) paradigm
and are executed in a non-preemptive fashion. Such
RPCs will be calledDSP activities. To simplify the anal-
ysis we also assume that on the master processor the DSP
activities are scheduled one at a time. Hence, it is a re-
sponsibility of the real-time kernel on the master proces-
sor to avoid that a task issues a DSP request while the
DSP is active.

The real-time task model considered in this work is
illustrated in Figure 2: each task��� is a stream of in-
stances, or jobs; each job

� ��� � arrives at time� ��� � , exe-
cutes for 	 � units of time on the master CPU, and may

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

RPC
call DSP activity

C
i

C
i

C DSP

Master
processsor

DSP

time

Task period

Job
arrival

Job
deadline

i

pre post

Figure 2. Structure of a DSP task.

require a DSP activity for
������ units of time. We as-
sume that each job performs at most one DSP request, af-
ter
������� units of time, and then executes for other
������ ��
units, such that
������� �
������ �� �
 � . Job arrivals can be
periodic (if � �! "$# � �� "&%(' �*) � , being) � the task’s period)
or sporadic (if � �� " # � �� "&%(',+.-0/) � , -0/) � being the
minimum interarrival time). If a task requires a DSP ac-
tivity it is denoted as aDSP task, otherwise it is denoted
as aregular task. Note that a regular task is equivalent to
a DSP task with
 �12�� �43 . Whenever a fixed priority
scheduling algorithm is used,5 � denotes the priority of
task 6 � .
3 Problem definition

To present the problem that may occur when dealing
with the task model introduced in Figure 2, let us make
some considerations about the structure of a DSP task.

When executing a DSP task, aholewithin each job is
generated in the schedule of the master processor. Such
holes are created because the DSP task executes a DSP
activity on another processor. The main idea is to exploit
these holes to schedule some other tasks on the master
processor in order to improve the schedulability bound
of the system.

Suppose, for example, to have a task6 ' with a pe-
riod) ' �87 units of time,
������' �
������ �' �:9 , and
�����' �<; . Note that, although6 ' uses the master pro-
cessor only for fifty percent of the time, it must start
exactlywhen it arrives, otherwise it will miss its dead-
line. This constraint is independent from the scheduling
algorithm used in the system. Hence, if a regular task6�= (which does not use the DSP) with period) = �?>
and computation time
@= �A9 is added to the system,
both the Rate Monotonic (RM) algorithm and the Ear-
liest Deadline First (EDF) algorithm fail to generate a
feasible schedule, because if tasks start at the same time,6�= will always have precedence to6 ' . This situation is
shown in Figure 3.

However, the task set can be schedulable using a fixed
priority assignment by simply assigning5 'CB 5D= . Fig-
ure 4 shows the feasible schedule generated using such a
priority assignment.

DSP

Task 1

Task 2

CPU

Task 1

0 4 8 12

1

1

1 2 2

2

3

3

3

Figure 3. A task set that cannot be feasibly
scheduled by RM and EDF (jobs of task 6 '
are numbered to facilitate interpretation):
task 6 ' misses all its deadlines.

DSP

Task 1

Task 2

CPU

Task 1

0 4 8 12

1 1

1

2

2

2 3

3

3

Figure 4. A feasible schedule achieved by
a different priority assignment (5 ' B 5 =).
Note that the system model we introduced can be

viewed as a particular case of a more general model pro-
posed by Rajkumar in [10, 9], where the Distributed Pri-
ority Ceiling Protocol (DPCP) is used to access shared
resources on a distributed system. In particular, the
DPCP protocol can be used for all the tasks allocated
on the main CPU and the DSP activities can be con-
sidered as global critical sections executed on the DSP
(which acts as a synchronization processor). According
to the DPCP approach, the schedulability of the task set
is guaranteed by the following test:EGF �<92H�I�I�I&HKJ L �NMPOG�2Q R MTS RDUWV�XMY M �R Q S RZUWV�XQ S\[QY Q]_^a`cbed�f FTg H
wherê

`cbed f FTg � F f ; '�h�� # 9 g , and i � is a blocking factor
computed as follows:

i � � jkkl kkm npoeq� M&r � QTs
 ����" t �L � M OG� Qvu Y QY Mew
�����" for a DSP task3 for a regular task
(1)

The major problem of this approach is that the exe-
cution time of the DSP activities (
������) is considered
as part of the computation time of every task, including
regular tasks. Such a pessimistic computation, although
correct, drastically reduces the schedulability of the sys-
tem. Indeed, in the papers [10, 9],the authors claim that
the
������ factor can also be removed from the compu-
tation times, but no proof is provided for that claim.

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

In Section 4, we will provide a formal analysis of
the DSP tasks and we will propose a more efficient
method for scheduling DSP tasks and DSP activities.
The method will be compared with the DPCP in Section
5.

The problem of exploiting the holes to improve the
schedulability of the system can be posed in terms of
fixed or dynamic priorities. In this paper we propose a
solution for the case of fixed priorities, and we give some
hint for dealing with dynamic priorities (this case will be
investigated with more detail in a future work).

4 Our scheduling approach

As observed in the previous section, the idle time cre-
ated in the master processor by executing some activi-
ties on the DSP can be used for increasing the system
schedulability to guarantee more real-time tasks.

In this section, we show how to schedule tasks on the
master processor and how to perform an admission test
which exploits the time left by the activities executing on
the DSP. The basic idea is to re-arrange the scheduling
and guarantee algorithms in order to account the DSP
time
������ only to tasks that use the DSP (without in-
fluencing the schedule and the guarantee of the regular
tasks). This can be achieved by modelling the DSP ac-
tivity as a blocking time: when a DSP task6 � requests a
DSP activity, it blocks for a timei � waiting for its com-
pletion (since we are using an RPC protocol). Moreover,
the scheduler has to be modified in such a way that thei � factor affects only6 � in the schedulability analysis.

In the next subsection, we show how to modify the
scheduler and how to compute the blocking factors when
tasks are scheduled using a fixed priority assignment.
The case of dynamic priorities is more difficult to an-
alyze and, at present, we just discuss some issues that
may help to address the problem.

4.1 Enhancing schedulability under fixed pri-
orities

As already said in Section 2, to simplify the analysis
we assume that DSP requests are scheduled by the mas-
ter processor one at a time, so that no DSP activity is
issued while the DSP is active. This can be achieved by
enqueuing regular tasks and DSP tasks in two separate
queues that are ordered by priority as shown in Figure 5.
When the DSP is idle, the scheduler always selects the
task with the highest priority between those at the head
of the two queues. When the DSP is active, the scheduler
selects the task with the highest priority from the head of
the regular queue only.

In this way, a task using the DSP blocks all the other
tasks requiring the DSP, but not the regular tasks, which
can freely execute on the master processor in the holes
created by DSP activities.

DSP
queue

Regular
queue

>

DSP
in use

DSP tasks
(ordered by priority)

Regular tasks
(ordered by priority)

CPU

Pick the highest
priority task

Figure 5. Our scheduling approach. When
the DSP is active, the scheduler selects
tasks from the regular queue only.

A similar result can be achieved by implementing
each DSP request through a blocking primitive which
suspends the calling task in a queue. A waiting task is
then awakened by the DSP as the activity has been com-
pleted. This solution has also the advantage of allowing
other DSP tasks to execute on the master processor while
a DSP request is being served.

Note that this approach is different from using an
inheritance-based protocol [13], which would prevent a
regular task with medium priority to execute while a high
priority DSP task is blocked on the DSP resource. On
the contrary, using our approach, the DSP execution time
contributes to the blocking term of DSP tasks only.

A DSP task, however, can also be delayed by other
tasks which may hold the DSP. In particular, a DSP task6 � can be delayed by a single lower priority job which
is already using the DSP, and by those higher priority
jobs that that may interfere with6 � before it is sched-
uled. Hence, the blocking factori � of a DSP task can be
computed as the sum of three terms:i � �
 ����� � i ` �� � iyx&�� H (2)

where i ` �� denotes the blocking caused by the (single)
lower priority task andi ` �� denotes the blocking due to
the interference of higher priority tasks. Figure 6 illus-
trates an example showing how a task6�z can be blocked
by a task6&{ , with lower priority, and by two tasks,6 '
and 6 = , having higher priority. As also done in [10, 9],
the two blocking terms can be computed as follows:i ` �� � nCo|q� M&r � Q s
 ����" t

iyx&�� �~}� M O$� Q
�) �) "��
 ����" I

Therefore, an upper bound for the blocking timei �
experienced by task6 � is given by

i � � jkkl kkm
��12�� � nCo|q� MPr � Q�s
 ����" t �L � M OG� Q�u Y QY M|w
�����" for a DSP task3 for a regular task
(3)

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

Task 3

Task 2

Task 1

DSP

CPU

DeadlineArrival time

Task 4

Task 1

Task 2

Task 3

Task 4

Idle Time

Blocking time
(low priority tasks)

Blocking time
(high priority tasks) DSP activity

Figure 6. Example of scenario where task6�z is blocked by some high priority (6 ' and6 =) and low priority (6�{) tasks.

This value can be used in the classical admission test for
fixed priority systems [13], that is:

EGF �<9NH�I�I�I&H�J }�NMP�G�2Q
 ") " � i �) �]_^a`cbed�f FTg H (4)

where
^ `cbed f FTg � F f ; '�h�� # 9 g .

It is worth observing that to enhance schedulabil-
ity and accept more tasks in the system, the admission
test can be performed by using the hyperbolic bound
[5] or the response time analysis [8, 1]. For large task
sets where the admission test has to be performed on
line, then the hyperbolic bound is more suited, having
an � f J g complexity, whereas the response time analysis
has a pseudo-polynomial complexity.

Using the hyperbolic bound [5] the admission test be-
comes:E$F �<92H�I�I�I&HKJ �� M O$� Q

�
 ") " ��9�� �
 � � i �) � ��9��] ;�I
In Section 5, we also present some simulation experi-
ments aimed at estimating the advantage of using differ-
ent admission tests.

4.2 Extensions

In this section we consider the possibility of extend-
ing the analysis of the blocking times to more general
scenarios. We first discuss the case of removing the as-
sumption of having one DSP request at a time, and then
we address the problem of using a dynamic priority as-
signment.

DSP

Task 1

Task 2

Deadline miss!

0 4 8

Figure 7. EDF does not work always.

4.2.1 Allowing interleaving DSP requests

If the constraint of having only one DSP activity at a time
is removed and no special protocol is used for accessing
the DSP, the blocking time� � for task ��� is equal to the
response time of the DSP request. In this case, such a
response time must be explicitly computed by perform-
ing a finishing time analysis on the DSP schedule. Since
we are using an RPC protocol, the DSP scheduling is
clearly non-preemptive; hence,if the requests for DSP
activities are ordered according to the RM priority as-
signment, then the problem of computing the blocking
time � � is equivalent to the problem of finding the re-
sponse time of a task� � with computation time	�������
and period�$� when a nonpreeemptive RM scheduler is
used and some release jitter is present.

The exact finishing time of a task under a fixed
priority preemptable scheduler can be computed as
shown in [1], the nonpreemptability of the scheduler
can be accounted by adding a blocking term equal to�p�e� �|���G�N��� 	������� � to each blocking time��� , whereas
the release jitter can be accounted as shown in [14].

4.2.2 Dealing with dynamic priorities

Extending the previous analysis to dynamic priorities un-
fortunately is not trivial. In fact, the admission test pre-
sented in Equation (4) can be applied to dynamic priori-
ties only if the blocking terms are due to resource sharing
[3, 2]. In our case the blocking times are also caused by
the synchronization between the master processor and
the DSP.

To better clarify the problem that can arise in this
case, let us consider a task set�:� � ��������� � , with	� �¡�¢� � 	� �£�¤�¥� �§¦ , 	������� �8¨ , � � �ª© , 	@� �A« ,	������� �*¬ (� � is not accessing the DSP), and�(���©¯®°« .
According to equation (4), the task set should be schedu-
lable: in fact � � �±¨ and � � �<¬ , hence for task��� we
have �� ® ��³² ¦ , and for task��� we have �� ® ´µ�¶ ´ ² ¦ ,so the admission test is passed. Unfortunately, as can
be seen in Figure 7, if��� arrives at time·y�¹¸ , it exe-
cutes before the second instance of��� . As a result,

� �P� �
is not scheduled as soon as it is released and it misses its
deadline.

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

Task 1

Task 2

Task 1

Deadline miss!
Deadline Pseudo

Deadline

0 5 10 15

DSP

CPU

Arrival
time

Figure 8. Also EDF with modified deadlines
does not work always.

To use dynamic priorities in this context, one could
think to split each job in more chunks and assign each
chunk a different relative deadline (for example, a rela-
tive deadline of) � #
������ #
������ �� could be given to
the chunk executed before the DSP activity).

However, we note that, although this assignment
works properly in the scenario of Figure 4, it does not
work in general. For example consider two tasks,6 ' and6�= . 6 ' does not use the DSP and has) ' �º; and
 ' �»9 .6�= has) = �½¼ ,
@= �¿¾ ,
��12�= �¿; and
������ �= �À; .
Figure 8 shows that this task set is not schedulable with
the method suggested above.

A complete formal analysis under dynamic priority
assignments has still to be derived and we plan to inves-
tigate it as a future work.

5 Simulation results

The performance of the scheduling algorithm pre-
sented in Section 4 has been evaluated by simulation on
a large number of task sets (more than 15 million ex-
periments). For each task set we computed the blocking
time of each task and we checked the schedulability us-
ing both our approach and the DPCP protocol.

Task sets were generated using random parameters
with uniform distribution with the following character-
istics:� The number of tasks was chosen as a random vari-

able from 2 to 50.� Task periods were generated from 10 to 1000.� Task worst-case execution times (
�Á� �
 � �
������)

were chosen in such a way thatL � RZÂQY Q varied from
0.01 to 0.99.� DSP tasks were generated to be 80% (in the aver-
age) of the total number of tasks.�
��12�� was generated to be a random variable with
uniform distribution in the range of 10% to 80% of
the
�Á� .

% of schedulable solutions (Equation 5 test)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

5
10

15
20

25
30

35
40

45
50

Number of tasks

0

0.2

0.4

0.6

0.8

1

Figure 9. Schedulability results of our ap-
proach when varying the total utilization
factor and the number of tasks in the task
set (using Equation (4)).

In a first experiment we compared the performance of
our method against the DPCP approach in terms of av-
erage schedulability, using the admission test given by
Equation (4). Figures 9 and 10 show the percentage of
schedulable task sets, for our approach and for the DPCP
method, as a function of the number of tasks and the to-
tal utilization factor (L � R\ÂQY Q). As clear from the graphs,
both methods have a performance degradation as the to-
tal utilization factor increases, whereas they are quite in-
sensitive to the number of tasks in the set.

To better evaluate the enhancement achieved with our
approach, Figure 11 reports the difference between the
two previous graphs. We note that the advantage of our
approach with respect to DPCP is more sensitive for task
sets with total utilization in the range from 0.3 to 0.6.

A second experiment has been carried out to evaluate
the improvement that can be achieved using our method
with the hyperbolic bound in place of Equation (4). Fig-
ure 12 shows that for large task sets with utilizations
around 50% the hyperbolic bound improves the accep-
tance rate up to 30%.

A third experiment has been performed to compare
the two approaches using the response time analysis.
Figure 13 shows the performance differences between
the two methods. We note that the surface has the same
shape as the one in Figure 11, presenting a peak trans-
lated around 0.7 in the utilization axis. Hence, our ap-
proach basically outperforms DPCP when the utilization
factor is near to the RM schedulability bound. Figure 14
reports the performance of the two approaches and their
difference as a function of the utilization factor for task
sets composed by 30 tasks.

Within the same experiment performed with the re-
sponse time test, we evaluated the influence of the DSP
usage (L �
������) on the schedulability results. Figure

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

% of schedulable solutions (Equation 5 test)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

5
10

15
20

25
30

35
40

45
50

Number of tasks

0

0.2

0.4

0.6

0.8

1

Figure 10. Schedulability results of DPCP
when varying the total utilization factor and
the number of tasks in the task set (using
Equation (4)).

% Difference between our approach and DPCP (Liu & Layland test)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

5
10

15
20

25
30

35
40

45
50

Number of tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 11. Difference between the two ap-
proaches (using Equation (4)).

% Difference between Equation 5 and Hyperbolic bound tests

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

5
10

15
20

25
30

35
40

45
50

Number of tasks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 12. Improvement achieved using the
Hyperbolic Bound.

% Difference between our approach and DPCP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

5
10

15
20

25
30

35
40

45
50

Number of tasks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 13. Difference between the two ap-
proaches (using response time analysis).

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f s
ch

ed
ul

ab
le

 s
ol

ut
io

nsÃ

Utilization factor

Our approach
DPCP

Figure 14. Performance of the two ap-
proaches and their difference as a function
of the utilization factor for task sets com-
posed by 30 tasks.

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

% of schedulable solutions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

DSP utilization factor

0

0.2

0.4

0.6

0.8

1

Figure 15. Difference in the percentage of
scheduled tasks set between our approach
and DPCP when considering the influence
of DSP utilization.

% Difference between our approach and DPCP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total utilization factor 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

DSP utilization factor

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 16. Influence of DSP utilization on
the schedulability.

15 shows that the higher the DSP usage, the lower the
average acceptance rate.

Finally, the difference of schedulability percentage
between our approach and the DPCP is reported in Fig-
ure 16, which shows that our algorithm outperforms
DPCP for task sets with high utilization and high DSP
usage.

6 Conclusions

In this paper we addressed the problem of scheduling
a set of tasks in an asymmetric multiprocessor consisting
of a general purpose CPU and a DSP. Although this kind
of architecture can be considered as a special case of a
multiprocessor system, its peculiarity allows to perform
more specific analysis which is less pessimistic than the
one typically used in distributed systems with shared re-
sources.

A method for computing blocking times has been
proposed, which has been showed to be more effective
than the classical method adopted in the Distributed Pri-
ority Ceiling Protocol [10, 9]. Extensive simulations
have shown that our approach always outperforms the
DPCP protocol and achieves a significant improvement
for large task sets with high processor utilization.

As a future work, we plan to extend the analysis also
for dynamic priority assignments.

References

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. Wellings. Applying new scheduling theory to static
priority preemptive scheduling.Software Engineering
Journal, 8(8):284–292, Sep 1993.

[2] T. Baker. Stack-based scheduling of real-time processes.
Journal of Real-Time Systems, 3, 1991.

[3] T. P. Baker. A stack-based allocation policy for realtime
processes. InIEEE Real-Time Systems Symposium, de-
cember 1990.

[4] R. Baumgartl and H. Hartig. Dsps as flexible multime-
dia accelerators. InSecond European DSP Education
and Research Conference (EDRC’98), Paris, September
1998.

[5] E. Bini, G. Buttazzo, and G. Buttazzo. A hyperbolic
bound for the rate monotonic algorithm. InProceedings
of the 13th IEEE Euromicro Conference on Real-Time
Systems, June 2001.

[6] A. Ferrari, S. Garue, M. Peri, S. Pezzini, L.Valsecchi,
F. Andretta, and W. Nesci. The design and implementa-
tion of a dual-core platform for power-train systems. In
Convergence 2000, Detroit (MI), USA, October 2000.

[7] T. Instruments. Military Semiconductor Products
Fact Sheet SM320C80 / SMJ320C80 / 5962-9679101
SGYV006C, August 2000.

[8] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and aver-
age case behavior. InProceedings of the IEEE Real-Time
Systems Symposium, December 1989.

[9] R. Rajkumar. Synchronization in multiple processor sys-
tems. InSynchronization in Real-Time Systems: A Prior-
ity Inheritance Approach. Kluwer Academic Publishers,
1991.

[10] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time
synchronization protocols for multiprocessors. InIn
Proceedings of the 1988 Real Time System Symposium,
1988.

[11] K. K. P. Research. Increasing functionality in set-top
boxes. InProceedings of IIC-Korea, Seoul, 2001.

[12] S. Saewong and R. R. Rajkumar. Cooperative scheduling
of multiple resources. InProceedings of the IEEE Real-
Time Systems Symposium, December 1999.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inher-
itance protocols: An approach to real-time synchroniza-
tion. IEEE transaction on computers, 39(9), September
1990.

[14] K. Tindell. An extendible approach for analysing fixed
priority hard real-time tasks. Technical Report YCS 189,
Department of Computer Science, University of York,
December 1992.

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

