
Smooth Rate Adaptation through Impedance Control

Giorgio Buttazzo
Dept. of Computer Science

University of Pavia
buttazzo@unipv.it

Luca Abeni
RETIS Lab

Scuola Superiore S. Anna, Pisa
luca@sssup.it

Abstract

In many real-time applications involving human-
computer interactions, the quality of service also
depends on the way performance is changed dur-
ing workload variations. When human factors affect
performance measurements, smooth rate transitions
are always preferred with respect to abrupt parame-
ter changes.

In this paper, we propose a new methodology for
automatically achieving smooth rate adaptation of
a periodic task set during workload variations due
to abrupt environmental or systems changes. Load
balancing is performed using an elastic task model,
according to which tasks utilizations are treated as
damped springs with given elastic and damping co-
efficients. The model has been implemented on top
a real-time kernel and experimental results are re-
ported to show the effectiveness of the proposed ap-
proach.

1 Introduction

In real-time applications that involve human-
computer interactions, the quality of a delivered
service depends not only on the absolute level of
performance, but also on the way performance is
changed during workload variations. For exam-
ple, while watching a movie, a continuous transition
between color and black/white mode is considered
much more annoying than watching the entire movie
in black and white. In multimedia applications (e.g.,
sound reproduction, video playing, or graphical ani-
mations), transient degradations of the quality due to
overload conditions are accepted much better when
they occur gradually. In general, when human fac-
tors are involved in measuring the quality of a com-
puting system, smooth rate transitions in periodic ac-
tivities are always preferred with respect to abrupt
period changes.

Typically, a rate change in a periodic activity may
be caused either by the task itself, as a response to
a variation occurred in the environment, or by the
system, as a way to cope with an overload condition.
For example, in a visual tracking system, the sam-

pling rate of a tracking task can be changed on line
based on the target velocity. Also, in automotive ap-
plications, engine control tasks run with a rate pro-
portional to the motor angular velocity.
In other situations, the possibility of varying

tasks’ rates increases the flexibility of the system
in handling overload conditions, providing a more
general admission control mechanism. For exam-
ple, whenever a new task cannot be guaranteed by
the system to meet its timing constraints, instead of
rejecting the task, the system can try to reduce the
utilizations of the other tasks (by increasing their pe-
riods in a controlled fashion) to decrease the total
load and accommodate the new request.
The problem of rate adaptation during overload

conditions has been widely considered in the real-
time literature, although most of the proposed solu-
tions do not address the issue of achieving smooth
period adaptation.
For example, Kuo and Mok [10] propose a load

scaling technique to degrade the workload of a sys-
tem by adjusting the periods of processes. In this
work, tasks are assumed to be equally important and
the objective is to minimize the number of funda-
mental frequencies to improve schedulability under
static priority assignments. In [16], Nakajima and
Tezuka show how a real-time system can be used to
support an adaptive application: whenever a dead-
line miss is detected, the period of the failed task is
increased. In [18], Seto et al. describe a method for
computing tasks’ periods to minimize a performance
index defined over the task set. This approach is ef-
fective at a design stage to optimize the performance
of a discrete control system, but it cannot be used
for on-line load adjustment. In [12], Lee, Rajkumar
and Mercer propose a number of policies to dynam-

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

ically adjust the tasks’ rates in overload conditions.
In [1], Abdelzaher, Atkins, and Shin present a model
for QoS negotiation to meet both predictability and
graceful degradation requirements in cases of over-
load. In this model, the QoS is specified as a set
of negotiation options, in terms of rewards and re-
jection penalties. In [17], Nakajima shows how a
multimedia activity can adapt its requirements dur-
ing transient overloads by scaling down its rate or
its computational demand. However, it is not clear
how the QoS can be increased when the system is un-
derloaded. Recently, in [19, 20], a feedback control
mechanism has been considered for observing and
adjusting the system workload to reduce the number
of deadline misses when tasks’ execution times are
not precisely known. However, this approach does
not permit to control each task’s utilization individ-
ually. In [15], the previous approach has been ex-
tended to enable system designers to specify a de-
sired behavior in terms of a set of performance met-
rics and apply existing control methods to design an
adaptive real-time system to achieve the specified re-
quirements. In [4], Beccari et al. propose several
policies for handling overload through period adjust-
ment. The authors, however, do not address the prob-
lem of increasing the task rates when the processor
is not fully utilized.
Although these approaches provide solutions for

changing task rates during overload conditions, they
do not address the problem of controlling the quality
of service during transitions.
In this paper, we propose a new methodology for

automatically achieving smooth rate adaptation of
a periodic task set during workload variations due
to abrupt environmental or systems changes. Load
balancing is performed using the elastic task model
presented in [6], according to which tasks utiliza-
tions are treated as springs with given elastic coef-
ficients. To achieve smooth rate transitions, how-
ever, the model is extended by coupling each spring
with a damping device which prevents abrupt period
changes. The model has been implemented on top
a real-time kernel and experimental results are re-
ported to show the effectiveness of the proposed ap-
proach.
The rest of the paper is organized as follows. Sec-

tion 2 presents the task model and the basic assump-
tions. Section 3 briefly recalls the elastic approach.
Section 4 presents the impedance control method
and illustrates the approach used to achieve smooth
rate transitions. Section 5 illustrates some experi-
mental results achieved on the HARTIK kernel. Fi-
nally, Section 6 contains our conclusions and future
work.

2 Task model

In our framework, each task is considered as flex-
ible as a spring with a given rigidity coefficient and
length constraints. In particular, the utilization of a
task is treated as an elastic parameter, whose value
can be modified by changing the period within a
specified range. To achieve smooth rate transitions,
however, the spring operates together with a damp-
ing device, characterized by a given damping coeffi-
cient.
Each task is characterized by five parameters: a

worst-case computation time Ci, a minimum period
Ti0 (considered as a nominal period), a maximum
period Timax

, an elastic coefficient Ei, and a damp-
ing coefficient Bi. The elastic coefficient specifies
the flexibility of the task to vary its utilization for
adapting the system to a new feasible rate configura-
tion: the greater Ei, the more elastic the task. The
coefficientBi specifies the damping with which task
�i performs a period transition: the greater Bi, the
higher the damping effect, and hence the smoother
the transition. Thus, an elastic task is denoted as:

�i(Ci; Ti0 ; Timax
; Ei; Bi):

From a design perspective, elastic coefficients can be
set equal to values which are inversely proportional
to tasks’ importance, whereas damping coefficients
can be set equal to values which are directly propor-
tional to the level of quality specified by the user dur-
ing transients phases.
In the following, Ti will denote the actual pe-

riod of task �i, which is constrained to be in the
range [Ti0 ; Timax

]. Moreover, we define U0 =Pn
i=1 Ci=Ti0 and Umin =

Pn
i=1 Ci=Timax

.
Any period variation is always subject to an elas-

tic guarantee and is accepted only if there exists
a feasible schedule in which all the other periods
are within their range. In our framework, tasks are
scheduled by the Earliest Deadline First algorithm
[14]. Hence, if U0 � 1, all tasks can be created at
the minimum period Ti0 , otherwise the elastic algo-
rithm is used to adapt the tasks’ periods to Ti such
that

P
Ci
Ti

= Ud � 1, where Ud is some desired
utilization factor. It can easily been shown (see [8]
for details) that a solution can always be found if
Umin � 1.

3 Task compression algorithm

In this section we will briefly recall the compres-
sion algorithm originally presented in [6]. For a
more general description of the elastic approach see

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

(a)

(b)

d L0

L0

F

L

L

L

L

Lmax

max

1 2 3 4k k k k

1 2 3 4k k k k

1 2 3 4x x x x

10 20 30 40x x x x

Figure 1. Compression of a linear
spring system: the total length is L0 >
Lmax when springs are uncompressed
(a); and Ld < Lmax when springs are
compressed (b).

[8], where the algorithm has also been extended to
be used in the presence of resource constraints.

3.1 The elastic model

The basic idea behind the elastic approach is
to consider the utilizations of tasks as flexible as
springs, which can be compressed and expanded (by
acting on the periods) to conform to a desired work-
load. In particular, given a set of n periodic tasks
with U0 > Umax, the objective of the guarantee is to
compress tasks’ utilization factors in order to achieve
a desired utilization Ud � Umax such that all the
periods are within their ranges. In a linear spring
system of total length L0, this is equivalent to com-
pressing the springs by a force F , so that the new
total length becomesLd < L0. This concept is illus-
trated in Figure 1.

As proved in [8], if each period cannot exceed
a maximum value Tmax, the problem of finding a
feasible period configuration requires an iterative so-
lution. In fact, if while compressing tasks’ utiliza-
tions one or more tasks reach their minimum uti-
lization (i.e., their maximum period), the additional
compression force must only deform the remaining
tasks. Thus, at each instant, the set � of tasks can be
divided into two subsets: a set �f of fixed tasks hav-
ing maximum period, and a set �v of variable tasks
that can still be compressed.

If Ui0 = Ci=Ti0 is the nominal utilization of task
�i, and U0 is the sum of all the nominal utilizations,
then to achieve a desired utilization Ud < U0 each
task has to be compressed up to the following uti-

lization:

8�i 2 �v Ui = Ui0 � (Uv0 � Ud + Uf)
Ei
Ev

(1)

where
Uv0 =

X
�i2�v

Ui0 (2)

Uf =
X
�i2�f

Uimin
(3)

Ev =
X
�i2�v

Ei: (4)

If there exist tasks for which Ui < Uimin
, then the

period of those tasks has to be fixed at its maximum
value Timax

(so that Ui = Uimin
), sets �f and �v

must be updated (hence, Uf and Ev recomputed),
and equation (1) applied again to the tasks in �v.
If there exists a feasible solution, that is, if the de-
sired utilization Ud is greater than or equal to the
minimum possible utilization Umin =

Pn
i=1

Ci
Timax

,
the iterative process ends when each value computed
by equation (1) is greater than or equal to its corre-
sponding minimum Uimin

.
All tasks’ utilizations that have been compressed

to cope with an overload situation can return toward
their nominal values when the overload is over. Let
�c be the subset of compressed tasks (that is, the set
of tasks with Ti > Ti0), let �a be the set of remain-
ing tasks in � (that is, the set of tasks with Ti � Ti0),
and let Ud be the current processor utilization of �.
Whenever a task in �a decreases its rate, all tasks
in �c can expand their utilizations according to their
elastic coefficients, so that the processor utilization
is kept at the value of Ud.
Now, let Uc be the total utilization of �c, let Ua

be the total utilization of �a, and let Uc0 be the to-
tal utilization of tasks in �c at their nominal periods.
It can easily be seen that if Uc0 + Ua � Umax all
tasks in �c can return to their nominal periods. On
the other hand, if Uc0 + Ua > Umax, then the re-
lease operation of the tasks in �c can be viewed as a
compression, where �f = �a and �v = �c. Hence,
it can still be performed by using equations (1), (2),
(3) and (4).

4 Impedance control

When dealing with damped springs, each elastic
element can be modeled as shown in Figure 2.
For the sake of completeness, a damped spring

is a special case of a system which behaves as a me-
chanical impedance, with stiffness k, damping b, and
massm, as shown in Figure 3.

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

b

k

Figure 2. A damped elastic element.

k

b

m F

Figure 3. A generic mechanical
impedance.

Such a system responds to an external force F
as a second-order system according to the following
equation:

F = m�x+ b _x+ kx:

For linear, time-invariant continuous systems, the
impedance Z is defined as the ratio of the Laplace
transform of the effort (F) to the Laplace transform
of the flow (� = _x), hence

Z(s) =
F (s)

�(s)
=

F (s)

sX(s)
= ms+ b+ k=s:

From a system point of view, the input/output behav-
ior of a linear system like this is described by the ra-
tio of two variables: the effort and the flow [3]. For a
mechanical system, effort is represented by force and
torque, and flow is represented by linear and angular
velocity. Motors and batteries are equivalent from a
system point of view, both being effort sources. Sim-
ilarly, a current generator or a rotating shaft are both
flow sources.
Hence, using an electrical comparison, a mass

(inertial element) is equivalent to an inductive ele-
ment, a damper (dissipative element) is equivalent to
a resistor, whereas a spring (conservative element)
is equivalent to a capacitor. In this comparison, a
force corresponds to a voltage generator, whereas
the speed corresponds to a current. The equiva-
lent electrical circuit is depicted in Figure 4 and the
impedance Z(s) is expressed as

Z(s) = Ls+R+
1

Cs
:

L

R C

V

I

Figure 4. An electrical impedance.

Thus, a damped spring is equivalent to an RC cir-
cuit, for which we can write:

I(s) =
V (s)

Z(s)
=

V (s)

R+ 1=Cs
=

Cs

RCs+ 1
V (s):

Hence, the position of the damping device can be
computed as

X(s) =
RI(s)

s
=

RC

RCs+ 1
V (s):

Therefore, the transfer function of our system can be
rewritten as

G(s) =
X(s)

V (s)
=

a

s+ a

where a = 1
RC

is the system’s pole for the RC cir-
cuit, and a = k

b
in the case of a damped spring.

Using Z-transform, the transfer function can be ex-
pressed in a discrete time domain, as follows:

G(z) = Z

��
1� e�sT

s

�
a

s+ a

�

= (1� z�1)Z

�
a

s(s+ a)

�

=
z � 1

z
Z

�
1

s
�

1

s+ a

�

=
z � 1

z

�
z

z � 1
�

z

z � p

�

=
1� p

z � p
=

(1� p)z�1

1� pz�1
:

where T is the sampling period and p = e�aT .
FromG(z), the discrete time equation expressing

the position x(t) of the damped spring as a function
of the force F (t) becomes:

x(t) = (1� p)F (t� 1) + px(t� 1): (5)

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

We observe that any transient law can be used to
perform a transition from a period to another. The
one expressed by equation (5) is just the one which
describes the change occurring in a damped spring,
which is exponential. In the experiments we per-
formed on the kernel, we also evaluated the effects
caused by a linear period transition.

4.1 Implementation notes

To test the effectiveness of the adaptation algo-
rithm, the proposed approach has been implemented
on top of the HARTIK kernel [5, 11, 2], as a middle-
ware layer. In particular, the elastic guarantee mech-
anism has been implemented as an aperiodic task,
the Elastic Manager (EM), activated by the
other tasks when they are created or when they want
to change their period. Whenever activated, the EM
calculates the new periods and changes them atomi-
cally. The overhead caused by the elastic mechanism
can easily be taken into account since the EM is han-
dled using a CBS server with a bounded utilization
(UEM = 0:05).
The graceful rate adaptation mechanism has been

implemented on top of the EM, as a periodic task,
the Damping Manager (DM). The purpose of the
DM is to perform the rate transition according to the
transition law set by the user. To bound the transition
time, the DM runs with a period TDM and performs
a full transition in N steps, requiring an interval of
NTDM time units.
The DM task can be in two states: active or idle;

when the system is started, the DM is idle, and it be-
comes active when some other task wants to change
its period. When the DM task becomes active at time
t0, instead of changing the periods immediately it
gracefully changes them during a transient of size
T = NTDM .
After N activations, the periods arrive to their fi-

nal values and the period adapter returns to its idle
state, waiting for the next request. More specifi-
cally, the gracefull adaptation mechanism works as
follows:

� When a task �i wants to change its period from
Ti to Tnewi , it posts a request to the DM.

� When the DM is idle and receives a new re-
quest, it becomes active and computes the next
period value Ti(k) according to the transition
law set by the user. We note that Ti(0) = Ti,
and after N steps Ti(N) = Tnewi .

� At each period TDM , the DM updates the pe-
riod Ti to the next value Ti(k) and invokes the
EM to achieve a feasible configuration.

� After N activations, the periods are adjusted to
their final values, and the period adapter returns
to its idle state.

There are some details to be considered in the imple-
mentation of the Damping Manager.

1. Transient values can be generated using a
generic law Ti(k) = f(k; Ti(k � 1); Tnewi).
In this paper, we considered a linear func-
tion Ti(k) = Ti(k � 1) +

Tnewi �Ti(0)
N

and
an exponential function derived from a typical
RC circuit as the one shown by equation (5):
Ti(k) = (1 � p)Tnewi + pTi(k � 1), where
p = exp(�aTDM), and a = 1

EiBi
.

2. The periods converge to their final values in a
transient time T = NTDM that can be speci-
fied by the user. If T = 0 (N = 0), the period
change is immediate and the system is equiv-
alent to the classical spring system presented
in [6]. Hence, the original elastic model is a
special case of the generalized model presented
here.

3. If a task requests a period change while the
adapter is still active, the request is enqueued,
and will be served only when all the periods
will be stabilized. This has been done in order
to simplify the adapter, but we are planning to
remove this constraint in a future work.

5 Experimental Results

To verify the behavior of the Damping Manager,
we performed an experiment with 4 tasks having
the parameters shown in Table 1. To avoid dead-
line misses during transitions, periods are changed
at the next release time of the task whose period is
decreased. If more tasks ask to decrease their pe-
riod, the EM will change them, if possible, at their
next release time. See [8] for a theoretical validation
of the compression algorithm.
Considering the utilization reserved for the EM,

the DM and other device handlers in the system, the
effective total utilization Umax available for the task
set is 0:782. Since 23=100 + 23=100 + 23=100 +
23=100 > 0:782, the periods are initially expanded
by the elastic law, and the tasks start with current
periods different from their nominal periods: T1 =
107, T2 = 107, T3 = 122, and T4 = 143. At time
t = 5, �1 issues a request to change its period to
Tnew1 = 50, and the DM starts to gracefully adapts
the periods. At time t = 15, �1 issue a request to
change its period to 250, and all the other periods

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

Task Ci Ti0 Timax
Ei Bi

�1 23 100 500 1 1
�2 23 100 500 1 1
�3 23 100 500 3 1
�4 23 100 500 5 1

Table 1. Task set parameters used for
the second experiment. Times are ex-
pressed in milliseconds.

can gracefully go to their nominal values. In this
experiment, the transient periods Ti(k) for �1 were
generated using a linear law.
The result of this test is illustrated in Figure 5,

which shows how task periods evolve during the
transition. It is worth observing that, although T1 is
modified using a linear transition law, the other pe-
riods vary according to a non-linear function. This
happens because, when T1 is decreased, the total
processor utilization increases, so the elastic man-
ager performs a compression of the other tasks (en-
larging their periods) to keep the total load constant.
Given the non linear relation between total utiliza-
tion and periods (U = C1=T1 + : : : + Cn=Tn), the
other periods change in a non-linear fashion. Figure
6 shows the period evolution when an exponential
law is used for �1 to modify its period.

0

100

200

300

400

500

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

P
er

io
d

(m
se

c)

Time (usec)

Tasks’ Periods

task 1
task 2
task 3
task 4

Figure 5. Periods evolution as a func-
tion of time when �1 changes its period
with a linear law.

A different experiment has been performed using
the task set shown in Table 2 to test the behavior
of the DM in the presence of dynamic task activa-
tions. In this case, when a new task �h needs to
enter the system with period T �h and there exists a

0

100

200

300

400

500

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

P
er

io
d

(m
se

c)

Time (usec)

Tasks’ Periods

task 1
task 2
task 3
task 4

Figure 6. Periods evolution as a func-
tion of time when �1 changes its period
with an exponential law.

feasible elastic schedule for it (see [8] for details on
the elastic guarantee), it cannot be immediately acti-
vated with that period. In fact, the other tasks have to
gradually reduce their utilizations (according to the
damping law) to decrease the load and create space
for the new task. As a consequence, the new task is
activated with a large period (theoretically infinite,
practically equal to MAXINT), which is gradually
reduced to the final T �h value by applying the damp-
ing law. We note that the time required to the tran-
sition is always bound to NTDM , where N is the
number of steps fixed for the transition and TDM is
the period of the Damping Manager.

In the specific experiment we performed, task �2
was added at time t = 5sec, and the DM started
to decrease its period towards the final value T20 =
100ms. Figure 7 shows the result of this experi-
ment when a linear transition law was used. It is
worth noticing that, as a consequence of �2 arrival,
all the task periods begin to gracefully expand to cre-
ate space for �2, thus �2 effectively begins to execute
only when T2(k) < Tmax2 . From Figure 7 it is also
interesting to observe that, as T2 is decreased lin-
early, the other periods increase exponentially, based
on their elastic coefficients, for the same reason ex-
plained in the previous experiment.

Figure 8 shows the result achieved on the same
task set using an exponential transient law. In
this case, the activation delay experienced by �2 is
smaller with respect to the linear case. Moreover,
the other periods reach their final values with a much
smoother transition.

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

Task Ci Ti0 Timax
Ei Bi

�1 40 100 500 1 1
�2 40 100 500 1 1
�3 40 100 500 1.5 1
�4 40 100 500 2 1

Table 2. Task set parameters used for
the third experiment. Times are ex-
pressed in milliseconds.

0

100

200

300

400

500

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

P
er

io
d

(m
se

c)

Time (usec)

Tasks’ Periods

task 1
task 2
task 3
task 4

Figure 7. Periods evolution as a func-
tion of time when task �2 is dynamically
activated and its period is changed us-
ing a linear transition law.

0

100

200

300

400

500

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

P
er

io
d

(m
se

c)

Time (usec)

Tasks’ Periods

task 1
task 2
task 3
task 4

Figure 8. Periods as a function of time
when T2 is changed using an exponen-
tial transition law.

6 Conclusions

In this paper we presented a method to gracefully
perform rate adaptation during transient overload

conditions. Tasks are treated as elastic springs whose
utilizations can be adjusted (through proper period
variations) to create a desired workload. Smooth rate
change is achieved by adding a damping device to
each spring. The proposed approach has been imple-
mented on the HARTIK kernel [5, 11], where some
experiments have been performed to test the effec-
tiveness of damping for different period transition
laws.
From the experiments performed on the kernel,

we observed that when an active task wants to
change its period (either lower or higher than the
current one), a linear transition law is able to achieve
smoother periods variation on the other tasks. On the
other hand, when a new task needs to be activated in
the system, an exponential law (for reducing its pe-
riod to the required final value) is able to vary the
other periods more gracefully and it also allows to
reduce the activation delay of the newly arrived task.
As a future work, we plan to implement this

methodology on top of different kernels (e.g., Real-
Time Linux or Linux-RK) and develop a multimedia
application to verify the influence of the elastic and
damping coefficients on the quality perceived by the
users.

References

[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin,
“QoS Negotiation in Real-Time Systems and
Its Applications to Automated Flight Control,”
Proc. of the IEEE Real-Time Technology and
Applications Symposium, June 1997.

[2] L. Abeni and G. Buttazzo, “Support for Dy-
namic QoS in the HARTIK Kernel,” Proc. of
the 7th IEEE Real-Time Computing Systems
and Applications, December 2000.

[3] R. J. Anderson and M. W. Spong, “Hybrid
Impedance Control of Robotic Manipulators,”
IEEE Journal of Robotics and Automation, Vol.
4, No. 5, October 1988.

[4] G. Beccari, S. Caselli, M. Reggiani, F.
Zanichelli, “Rate Modulation of Soft Real-
Time Tasks in AutonomousRobot Control Sys-
tems,” IEEE Proc. of the 11th Euromicro Con-
ference on Real-Time Systems, June 1999.

[5] G. Buttazzo, “HARTIK: A Real-Time Kernel
for Robotics Applications”, Proc. of the 14th
IEEE Real-Time Systems Symposium, Raleigh-
Durham, pp. 201–205, December 1993.

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

[6] G. Buttazzo, G. Lipari, and L. Abeni, “Elas-
tic Task Model for Adaptive Rate Control”,
Proc. of the IEEE Real-Time Systems Sympo-
sium, December 1998.

[7] G. Buttazzo and L. Abeni, “Adaptive Rate Con-
trol through Elastic Scheduling,” Proc. of the
39th IEEE Conference on Decision and Con-
trol, December 2000.

[8] G. Buttazzo, G. Lipari, M. Caccamo, and
L. Abeni, “Elastic Scheduling for Flexible
Workload Management”, IEEE Transactions
on Computers, Vol. 51, No. 3, March 2002.

[9] H. Fujita, T. Nakajima, and H. Tezuka, “A
Processor Reservation System supporting Dy-
namic QOS control,” Proc. of the 2nd Interna-
tional Workshop on Real-Time Computing Sys-
tems and Applications, October 1995.

[10] T.-W. Kuo and A. K, Mok, “Load Adjustment
in Adaptive Real-Time Systems,” Proc. of the
12th IEEE Real-Time Systems Symposium, De-
cember 1991.

[11] G. Lamastra, G. Lipari, G. Buttazzo, A. Casile,
and F. Conticelli, “HARTIK 3.0: A Portable
System for Developing Real-Time Applica-
tions,” Proc. of the IEEE Real-Time Computing
Systems and Applications, October 1997.

[12] C. Lee, R. Rajkumar, and C. Mercer, “Experi-
ences with Processor Reservation and Dynamic
QOS in Real-TimeMach,” Proc. of Multimedia
Japan 96, April 1996.

[13] G. Lipari, G. Buttazzo, and L. Abeni, “A
Bandwidth Reservation Algorithm for Multi-
Application Systems”, Proc. of IEEE Real
Time Computing Systems and Applications,
October 1998.

[14] C.L. Liu and J.W. Layland, “Scheduling Algo-
rithms for Multiprogramming in a Hard real-
Time Environment,” Journal of the ACM 20(1),
1973, pp. 40–61.

[15] C. Lu, J. Stankovic, T. Abdelzaher, G. Tao, S.
Son, and M. Marley,“Performance Specifica-
tions and Metrics for Adaptive Real-Time Sys-
tems,” Proceedings of the IEEE Real-Time Sys-
tems Symposium, December 2000.

[16] T. Nakajima and H. Tezuka, “A Continuous
Media Application supporting Dynamic QOS
Control on Real-Time Mach,” Proceedings of
the ACM Multimedia ’94, 1994.

[17] T. Nakajima, “Resource Reservation for Adap-
tive QOS Mapping in Real-Time Mach,” Sixth
International Workshop on Parallel and Dis-
tributed Real-Time Systems, April 1998.

[18] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin,
“On Task Schedulability in Real-Time Control
Systems,” Proc. of the IEEE Real-Time Systems
Symposium, December 1997.

[19] J. A. Stankovic, C. Lu, and S. H. Son,
“The Case for Feedback Control in Real-Time
Scheduling”, IEEE Proc. of the Euromicro
Conference on Real-Time Systems, June 1998.

[20] C. Lu, J. A. Stankovic, G. Tao, and S.H. Son,
“Design and Evaluation of a Feedback Control
EDF Scheduling Algorithm”, Proc. of the 20th
IEEE Real-Time Systems Symposium, Decem-
ber 1999.

Proceedings of the 14 th Euromicro Conference on Real-Time Systems (ECRTS�02)
1068-3070/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

