
Proceedings of the 2nd International Conference on Embedded Software, Grenoble, France, October 2002. 1

Scalable applications for energy-aware processors

Giorgio C. Buttazzo

University of Pavia, Italy

buttazzo@unipv.it

Abstract

Next generation processors for battery operated
computing systems can work under different voltage
levels to balance speed versus power consumption.
In such a way, the performance of a system can be
degraded to achieve a longer battery duration, or it
can be increased when the battery level is high. Un-
fortunately, however, in the presence of timing and
resource constraints, the performance of a real-time
system does not always improve as the speed of the
processor is increased. Similarly, when reducing the
processor speed, the quality of the delivered service
may not always degrade as expected.

This paper presents the potential problems that
may arise in a voltage-controlled real-time system
and proposes an approach that allows to develop
real-time applications, whose performance can be
scaled in a controlled fashion as a function of the
processor speed.

1 Introduction

Battery operated computing systems are very
common today and will increase in the future to
include cell phones, wearable computers, portable
televisions, GPS-based systems, video games, and
many other multimedia devices. Most of such sys-
tems run under real-time constraints which deter-
mine the quality of service delivered to the user. An
important issue in these systems is the possibility to
control their energy consumption, which directly af-
fects their lifetime, as well as their performance.

In a computer system, the power consumption is
related to the voltage at which the circuits operate
according to an increasing convex function, whose
precise form depends on the specific technology. For
example, in CMOS circuits, the power consumption
due to dynamic switching dominates the power lost
to static leakage [11, 18] and the dynamic portion ��

of power consumption is given by

�� � �� � ����� � �� � � �
��� (1)

where�� is the activity factor expressing the amount
of switching, ����� is the capacitance load, �� is the
clock frequency, and � �

�� is the supply voltage. How-
ever, the voltage also affects the maximum frequency
at which the processor clock can run. In particular,
circuit delay depends on the supply voltage as

� � �
���

���� � ����
� (2)

where � is a constant and �� is the threshold voltage
(i.e., the minimum voltage that can be supplied to
the processor allowing full and correct functionality)
[3].

Equation (1) and (2) express that supply voltage
reduction can achieve a quadratic power saving at
the expense of a roughly linear frequency reduc-
tion. Hence, the amount of energy (power x time)
consumed by a portable system can be controlled
through the speed and voltage at which the processor
operates [13]: we could decide to have a high per-
formace system for a short period, or a lower perfor-
mance for a longer duration. To exploit such a pos-
sibility, next generation processors will be designed
to work under different voltage levels, thus enabling
applications to run at different speeds.

When increasing the speed, we would expect all
the application tasks to finish earlier, in order to im-
prove system’s performance. Unfortunately this is
not always the case. In [16], Graham showed that
several scheduling anomalies may arise when run-
ning real-time applications on multiprocessor sys-
tems. When tasks share mutually exclusive re-
sources, such anomalies may also arise in a unipro-
cessor system, as it will be shown in the next session.

Conversely, when voltage is decreased to save en-
ergy consumption, we would like the application to
run slower in a controlled fashion, where all tasks
increase their response times according to some pre-
defined strategy (e.g., depending on their priority

Proceedings of the 2nd International Conference on Embedded Software, Grenoble, France, October 2002. 2

level). For reasons similar to the ones described
above, this may not always be achieved in the pres-
ence of shared resources.

In addition, when the processor speed is de-
creased, all tasks increase their computation time, so
the processor may experience an overload condition.
If the overload is permanent, then the application be-
havior may be quite unpredictable.

The problem of achieving scalable applications in
processors with variable speed has recently been ad-
dressed by some authors. Al Mok [23] illustrated the
potential problems that can occur in a real-time sys-
tem with variable speed when tasks are non preemp-
tive, but no solution has been proposed to achieve
scalability.

Yao et al. [28] described an optimal off-line
scheduling algorithm to minimize the total energy
consumption while meeting all timing constraints,
but no on-line voltage change is assumed. Non-
preemptive power-aware scheduling is investigated
in [17].

The problem of minimizing the energy consump-
tion in a set of periodic tasks with different power
consumption characteristics has been solved by Ay-
din et al. [3], who proposed an algorithm to find
the optimal processor speed for each task. However,
tasks are assumed to be independent.

Aydin et al. [4] investigated the problem of
scheduling hard real-time tasks using dynamic volt-
age scaling and proposed an algorithm to compute
the optimal processor speed which allows to mini-
mize energy consumption.

In [22], Melhem at al. proposed several schedul-
ing techniques to reduce energy consumption of real-
time applications in power-aware operating systems,
but the scalability problem is not considered.

In this paper, we propose a computational model
which allows to achieve scalability during voltage
changes, in order to run real-time applications whose
performace can be scaled as a function of the proces-
sor speed.

The rest of the paper is organized as follows:
Section 2 introduces the problem to be solved and
presents some scheduling anomalies that may arise
when running real-time applications at different
speeds. Section 3 states our terminology and as-
sumptions. Section 4 presents a kernel communi-
cation mechanism that allows data sharing among
periodic tasks while preserving scalability. Section
5 describes a technique to easily adjust task rates
when the speed reduction causes a permanent over-
load condition. Finally, Section 6 states our conclu-
sions and future work.

2 Problem statement

This section illustrates the problems that may
arise under specific circumstances when executing
a set of real-time tasks in a processor with variable
speed. Such problems prevent controlling the per-
formance of a real-time application as a function of
the voltage, since a task could even increase its re-
sponse time when executed at a higher speed. Typ-
ically, such scheduling anomalies arise when tasks
share mutually exclusive resources or are handled by
non-preemptive scheduling policies.

Figure 1 illustrates a simple example, where two
tasks, 	� and 	�, share a common resource. Task 	�
has a higher priority, arrives at time
 � � and has a
relative deadline �� � �. Task 	�, having lower pri-
ority, arrives at time
 � � and has a relative deadline
�� � ��. When the tasks are executed at the nom-
inal speed ��, 	� has a computation time �� � �,
(where 2 units of time are spent in the critical sec-
tion), whereas 	� has a computation time �� � 	

(where 12 units of time are spent in the critical sec-
tion). As shown in Figure 1a, if 	� arrives just before
	� enters its critical section, it is able to complete be-
fore its deadline, without experiencing any blocking.
However, if the same task set is executed at a double
speed � � ���, 	� misses its deadline, as clearly il-
lustrated in Figure 1b. This happens because, when
	� arrives, 	� already granted its resource, causing an
extra blocking in the execution of 	�, due to mutual
exclusion.

τ 1

τ 2

τ 1

τ 2

����
����
����

����
����
����

����������������
����������������
����������������

����������������
����������������
����������������

���
���
���
���

���
���
���
���

��
��
��

��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���

(a)

(b)

0 181262 4 8 10 14 16 20 22 24

20 22 240 181262 4 8 10 14 16

normal execution

critical section

deadline miss

Figure 1. Scheduling anomaly in the
presence of resource constraints: task
	� meets its deadline when the proces-
sor is executing at its nominal speed
�� (a), but misses its deadline when the
speed is doubled (b).

Proceedings of the 2nd International Conference on Embedded Software, Grenoble, France, October 2002. 3

Figure 2 illustrates another anomalous behavior
occuring in a set of three real-time tasks, 	�, 	� and
	�, running in a non-preemptive mode. Tasks are as-
signed a fixed priority proportional to their relative
deadline, thus 	� is the task with the highest priority
and 	� is the task with the lowest priority. As shown
in Figure 2a, when tasks are executed at the nominal
speed ��, 	� has a computation time �� � � and
completes at time
 � �. Conversely, if the same
task set is executed with double speed � � ���, 	�
misses its deadline, as clearly illustrated in Figure
2b. This happens because, when 	� arrives, 	� al-
ready started its execution and cannot be preempted
(due to the non-preemptive mode).

τ 1

τ 2

τ 3

τ 1

τ 2

τ 3

(b)

(a)

0 186 93 12 15

0 186 93 12 15

deadline miss

Figure 2. Scheduling anomaly in the
presence of non-preemptive tasks:
task 	� meets its deadline when the
processor is executing at its nominal
speed �� (a), but misses its deadline
when the speed is doubled (b).

It is worth observing that a set of non preemp-
tive tasks can be considered as a special case of a
set of tasks sharing a single resource (the processor)
for their entire execution. In this view, each task exe-
cutes as it was inside a big critical section with length
equal to the task computation time. Once a task starts

executing it locks the common semaphore, thus pre-
venting other tasks from taking the processor.

The following example illustrates the negative ef-
fects of a permanent oveload condition caused by a
speed reduction. In this case, decreasing the proces-
sor speed degrades the system’s performance in an
uncontrolled fashion.

Figure 3 illustrates an example with three tasks,
	�, 	�, and 	�, in which the processor speed is de-
creased by a factor of 2. Figure 3a shows a feasi-
ble schedule produced by the Rate Monotonic (RM)
algorithm [21] when the processor runs at its nom-
inal speed ��, so the tasks have computation times
�� � �, �� � �, and �� � �, respectively. Fig-
ure 3b shows the schedule obtained by RM when the
processor speed is reduced by half, � � ����, so
that all computation times are doubled. In this case,
a speed reduction generates a permanent overload,
which causes 	� to miss its deadline and prevents 	�
to execute at all.

0 186 93 12 15

0 186 93 12 15

deadline miss

no execution

τ 1

τ 2

τ 3

τ 1

τ 2

τ 3

(b)

(a)

Figure 3. Effects of a permanent over-
load due to a speed reduction. In case
(b) the processor is running at half
speed with respect to case (a).

3 Terminology and assumptions

From the examples shown in Section 2, it is clear
that, in order to achieve scalability as a function of
speed, tasks have to be fully preemptive and cannot
block on shared resources. In Section 4 we present

Proceedings of the 2nd International Conference on Embedded Software, Grenoble, France, October 2002. 4

a communication mechanism which allows tasks to
exchange data asynchronously, without blocking on
mutually exclusive buffers. Moreover, to avoid the
negative effects of a permanent overload caused by
a speed reduction, tasks periods need to be specified
with some degree of flexibility, so that they can be
resized to handle the overload condition. As an over-
load is detected, period adaptation can be performed
using different methodologies.

In this paper, rate adaptation is performed using
the elastic model [8, 10], according to which task
utilizations are treated like springs that can adapt to
a given workload through period variations. The ad-
vantage of the elastic model with respect to the other
methods proposed in the literature is that a new pe-
riod configuration can easily be determined on line
as a function of the elastic coefficients, which can be
set to reflect tasks’ importance. Once elastic coef-
ficients are defined based on some design criterion,
periods can be quickly computed on line depending
on the current workload and the desired load level.

In summary, the computational model adopted in
this work considers a uniprocessor system whose
speed � can be controlled as a function of the sup-
plied voltage. An application consists of a set of
periodic tasks, each characterized by four parame-
ters: a worst-case computation time �	��� (which is
a function of the speed) a nominal period 	� (con-
sidered as the desired minimum period), a maximum
allowed period 	���

, and an elastic coefficient �	.
The elastic coefficient specifies the flexibility of the
task to vary its utilization for adapting the system to
a new feasible rate configuration: the greater � 	, the
more elastic the task. Thus, an elastic task is denoted
as:

		��	� 	� � 	���
� �	��

From a design perspective, elastic coefficients can
be set equal to values which are inversely propor-
tional to tasks’ importance. In the following, 	 will
denote the actual period of task 		, which is con-
strained to be in the range �	� � 	���

. Any pe-
riod variation is always subject to an elastic guar-
antee and is accepted only if there exists a feasible
schedule in which all the other periods are within
their range. In such a framework, tasks are sched-
uled by the Earliest Deadline First algorithm [21].
Hence, if

� ���
�
���

� 	, all tasks can be created at
the minimum period 	� , otherwise the elastic algo-
rithm is used to adapt the tasks’ periods to 	 such
that
� ���
�

��
� �� � 	, where �� is some desired

utilization factor.
To simplify the analysis we assume that tasks

have a relative deadline equal to their period (� 	 �

).
In general, a set of periodic tasks is denoted by

� � �		��	� 	� �	�� � � 	� � � � � ���

The release time �	�� and the absolute deadline �	��
of the generic �th instance (� � �) can then be com-
puted as

�	�� � �	 � �� � 	�	

�	�� � �	�� ��	�

where �	 is the task phase, that is the activation time
of the first task instance.

4 Avoiding blocking through asyn-
chronous buffers

This section describes how blocking on shared
resources can be avoided through the use of Cycli-
cal Asynchronous Buffers, or CABs, a kind of wait
free mechanism which allows tasks to exchange data
without forcing a synchronization. In a CAB, read
and write operations can be performed simultane-
ously without causing any blocking. Hence, a task
can write a new message in a CAB while another
task is reading the previous message. Mutual exclu-
sion between reader and writer is avoided by means
of memory duplication. In other words, if a task 	
wants to write a new message into a CAB while a
task 	� is reading the current message, a new buffer
is created, so that 	 can write its message with-
out interfering with 	�. As 	 finishes writing, its
message becomes the most recent one in the CAB.
To avoid blocking, the number of buffers that a CAB
must handled has to be equal to the number of tasks
that use the CAB plus one.

CABs were purposely designed for the cooper-
ation among periodic activities running at different
rates, such as control loops and sensory acquisition
tasks. This approach was first proposed by Clark
[12] for implementing a robotic application based on
hierarchical servo-loops, and it is used in the HAR-
TIK kernel [7] and in the SHARK kernel [15] as a
basic communication support among periodic hard
tasks.

In general, a CAB provides a one-to-many com-
munication channel, which at any instant contains
the latest message or data inserted in it. A message
is not consumed by a receiving process, but is main-
tained into the CAB structure until a new message is
overwritten. As a consequence, once the first mes-
sage has been put in a CAB, a task can never be
blocked during a receive operation. Similarly, since

Proceedings of the 2nd International Conference on Embedded Software, Grenoble, France, October 2002. 5

a new message overwrites the old one, a sender can
never be blocked.

Notice that, using such a semantics, a message
can be read more than once if the receiver is faster
than the sender, while messages can be lost if the
sender is faster than the receiver. However, this is
not a problem in many control applications, where
tasks are interested only in fresh sensory data rather
than in the complete message history produced by a
sensory acquisition task.

To insert a message in a CAB, a task must first
reserve a buffer from the CAB memory space, then
copy the message into the buffer, and finally put the
buffer into the CAB structure, where it becomes the
most recent message. This is done according to the
following scheme:

buf pointer = reserve(cab id);
�copy message in *buf pointer�
putmes(buf pointer, cab id);

Similarly, to get a message from a CAB, a task
has to get the pointer to the most recent message,
use the data, and release the pointer. This is done
according to the following scheme:

mes pointer = getmes(cab id);
�use message�
unget(mes pointer, cab id);

4.1 An example

To better illustrate the CAB mechanism, we de-
scribe an example in which a task 	 writes mes-
sages in a CAB, and two tasks, 	��

and 	��
, read

messages from the CAB. As it will be shown below,
to avoid blocking and preserve data consistency, the
CAB must contain 4 buffers. Consider the following
sequence of events:

� At time
�, task 	 writes message �� in the
CAB. When it finishes, it becomes the most re-
cent data (mrd) in the CAB.

� At time
�, task 	��
asks the system to read

the most recent data in the CAB and receives
a pointer to ��.

� At time
�, task 	 asks the system to write an-
other message�� in the CAB, while 	��

is still
reading ��. Hence, a new buffer is reserved to
	 . When it finishes, �� becomes the most
recent data in the CAB.

� At time
�, while 	��
is still reading ��, 	��

asks the system to read the most recent data in
the CAB and receives a pointer to ��.

� At time
�, while 	��
and 	��

are still reading,
	 asks the system to write a new message ��

in the CAB. Hence, a third buffer is reserved
to 	 . When it finishes, �� becomes the most
recent data in the CAB.

� At time
�, while 	��
and 	��

are still reading,
	 asks the system to write a new message ��

in the CAB. Notice that, in this situation, ��

cannot be overwritten (being the most recent
data), hence a fourth buffer must be reserved to
	 . In fact, if �� is overwritten, 	��

could ask
reading the CAB while 	 is writing, thus find-
ing the most recent data in an inconsistent state.
When 	 finishes writing �� into the fourth
buffer, the mrd pointer is updated and the third
buffer can be recycled if no task is accessing it.

� At time
	, 	��
finishes reading �� and re-

leases the first buffer (which can then be recy-
cled).

� At time

, 	��
asks the system to read the most

recent data in the CAB and receives a pointer to
��.

Figure 4 illustrates the situation in the example, at
time
�, when 	 is writing �� in the third buffer.
Notice that at this time, the most recent data (mrd) is
still ��. It will be updated to �� only at the end of
the write operation.

τ R1

τ R2 τ W

M1 M2 M3 empty

mrd

CAB

Figure 4. Buffer configuration in the
CAB, at time
�.

5 Rate adaptation under permanent
overloads

Section 2 illustrated how the performance can be
degraded when a permanent overload occurs due to

Proceedings of the 2nd International Conference on Embedded Software, Grenoble, France, October 2002. 6

a speed reduction. To avoid such a negative ef-
fect, tasks periods need to be adjusted to remove
the overload condition. Rate adaptation can be per-
formed by many ways. For example, Kuo and Mok
[19] proposed a load scaling technique to degrade
the workload of a system by adjusting the task peri-
ods. Tasks are assumed to be equally important and
the objective is to minimize the number of funda-
mental frequencies to improve schedulability under
static priority assignments. In [20], Lee, Rajkumar
and Mercer proposed a number of policies to dy-
namically adjust tasks’ rates in overload conditions.
In [24], Nakajima showed how a multimedia activ-
ity can adapt its requirements during transient over-
loads by scaling down its rate or its computational
demand. However, it is not clear how the QoS can
be increased when the system is underloaded. In [6],
Beccari et al. proposed several policies for handling
overload through period adjustment. The authors,
however, do not address the problem of increasing
the task rates when the processor is not fully utilized.

In this paper, task rate adjustment is performed
through the elastic task model [8, 10], according to
which task utilizations are treated like springs that
can adapt to a given workload through period vari-
ations. The advantage of the elastic model with re-
spect to the other methods proposed in the literature
is that a new period configuration can easily be deter-
mined on line as a function of the elastic coefficients,
which can be set to reflect tasks’ importance. Once
elastic coefficients are defined based on some design
criterion, periods can be quickly computed on line
depending on the current workload and the desired
load level. Moreover, the elastic model can also be
used in combination with a feedback mechanism, as
done in [9], when system parameters are not known
a priori.

5.1 The elastic approach

Whenever the total processor utilization �� ���

	��
��
���

is greater than one (i.e., there is a perma-
nent overload in the system), the utilization of each
task needs to be reduced so that the total utilization
becomes �� �

��

	��
��
��

� 	. This can be done
as in a linear spring system, where springs are com-
pressed by a force � (depending of their elasticity)
up to a desired total length. The concept is illustrated
in Figure 5.

As shown in [10], in the absence of period con-
straints (i.e., if ��� � �), the utilization �	 of
each compressed task can be computed as follows:

�� �	 � �	� � ��� � ���
�	

��

� (3)

U’4U’3U’2U’1

U 1 U 2 U 3 U 4

U d U0

U d U0

(a)

(b)
compression

0

0

Figure 5. Compressing the utilizations
of a set of elastic tasks.

where

�� �

��

	��

�	� (4)

In the presence of period constraints (�
	���

), however, the problem of finding the values
	 requires an iterative solution. In fact, if during
compression one or more tasks reach their maximum
period, the additional compression has to affect only
to the remaining periods. Thus, at each instant, the
set � of tasks can be divided into two subsets: a set
�� of fixed tasks having maximum period, and a set
�� of variable tasks whose period can still be en-
larged. Applying the equations to the set �� of vari-
able springs, we have

�		 	 �� �	 � �	� � ���� � �� � �� �
�	

��

(5)

where

��� �
�

����

�	� (6)

�� �
�

����

�	���
(7)

�� �
�

����

�	� (8)

If there exist tasks for which �	 � �	���
, then

the period of those tasks has to be fixed at its max-
imum value 	���

(so that �	 � �	���
), sets ��

and �� must be updated (hence, �� and �� recom-
puted), and equation (5) applied again to the tasks in
��. If there exists a feasible solution, that is, if the
desired utilization �� is greater than or equal to the
minimum possible utilization ��	� �

��
	��

��
�����

,
the iterative process ends when each value computed
by equation (5) is greater than or equal to its corre-
sponding minimum �	���

. In [10] it is shown that,

Proceedings of the 2nd International Conference on Embedded Software, Grenoble, France, October 2002. 7

in the worst case, the compression algorithm con-
verges to a solution (if there exists one) in �����
steps, where � is the number of tasks.

The same algorithm can be used to reduce the pe-
riods when the overload is over, so adapting task
rates to the current load condition to better exploit
the computational resources.

6 Conclusions

In this paper we presented the problems that can
occur when running a real-time application in a
processor with variable speed. It has been shown
that, when tasks share mutually exclusive resources
or execute in a non-preemptive fashion, response
times could even increase when the processor runs
at higher speeds. In addition, when the speed is
decreased, a permanent overload could degrade the
system’s performance in an uncontrolled fashion.
Such problems, if not properly handled, would pre-
vent controlling the performance of a real-time sys-
tem as a function of the voltage and would limit the
use of algorithms for resource optimization (e.g., for
minimizing energy consumption).

To address these problems, we proposed a set
of mechanisms that can be implemented at the ker-
nel level to develop scalable real-time applications,
whose performance can be adjusted in a controlled
fashion as a function of the processor speed. In
particular, the use of non blocking communication
buffers (like the CABs) has two main advantages: it
avoids the scheduling anomalies that may arise due
to speed variations and allows data exchange among
periodic tasks with non harmonic period relations.

To cope with permanent overloads caused by a
speed reduction, the elastic scheduling approach pro-
vides an efficient method for automatically adjusting
the task rates based on a set of coefficients, that can
be assigned during the design phase based on task
importance. Both methods have been implemented
on top of the HARTIK kernel [7] and have been ex-
perimented in a number of control applications.

In the future we plan to implement these tech-
niques on top of other real-time kernels (e.g., RT-
Linux and Linux-RK) as a middleware layer, to pro-
vide the basic building blocks for supporting for
energy-aware real-time systems.

References

[1] N. AbouGhazaleh, D. Moss, B. Childers and
R. Melhem, “Toward The Placement of Power
Manegement Points in Real Time Applica-

tions”, Proceedings of the Workshop on Com-
pilers and Operating Systems for Low Power
(COLP’01), Barcelona, Spain, 2001.

[2] A. Allavena and D. Moss, “Scheduling
of Frame-based Embedded Systems with
Rechargeable Batteries”, Proceedings of the
Workshop on Power Management for Real-
Time and Embedded Systems, 2001.

[3] H. Aydin, R. Melhem, D.Moss and Pedro
Mejia Alvarez, “Determining Optimal Proces-
sor Speeds for Periodic Real-Time Tasks with
Different Power Characteristics”, Proceedings
of the Euromicro Conference on Real-Time
Systems, Delft, Holland, June 2001.

[4] H. Aydin, R. Melhem, D. Moss, and Pe-
dro Mejia Alvarez, “Dynamic and Aggressive
Scheduling Techniques for Power-Aware Real-
Time Systems”, Proceedings of the IEEE Real-
Time Systems Symposium, December 2001.

[5] S. Baruah, G. Buttazzo, S. Gorinsky, and G.
Lipari, “Scheduling Periodic Task Systems to
Minimize Output Jitter,” Proceedings of the 6th
IEEE International Conference on Real-Time
Computing Systems and Applications, Hong
Kong, December 1999.

[6] G. Beccari, S. Caselli, M. Reggiani, F.
Zanichelli, “Rate Modulation of Soft Real-
Time Tasks in Autonomous Robot Control Sys-
tems,” IEEE Proceedings of the 11th Euromi-
cro Conference on Real-Time Systems, York,
June 1999.

[7] G. C. Buttazzo, ”HARTIK: A Real-Time Ker-
nel for Robotics Applications”, Proceedings of
the 14th IEEE Real-Time Systems Symposium,
Raleigh-Durham, December 1993.

[8] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic
Task Model for Adaptive Rate Control,” Pro-
ceedings of the IEEE Real-Time Systems Sym-
posium, Madrid, Spain, pp. 286-295, Decem-
ber 1998.

[9] G. Buttazzo and L. Abeni, “Adaptive Rate Con-
trol through Elastic Scheduling,” Proceedings
of the 39th IEEE Conference on Decision and
Control, Sydney, Australia, December 2000.

[10] G. Buttazzo, G. Lipari, M. Caccamo, L. Abeni,
“Elastic Scheduling for Flexible Workload
Management,” IEEE Transactions on Comput-
ers, Vol. 51, No. 3, pp. 289-302, March 2002.

Proceedings of the 2nd International Conference on Embedded Software, Grenoble, France, October 2002. 8

[11] A. Chandrakasan and R. Brodersen, Low
Power Digital CMOS Design, Kluwer Aca-
demic Publishers, 1995.

[12] D. Clark, “HIC: An Operating System for Hier-
archies of Servo Loops,” Proceedings of IEEE
International Conference on Robotics and Au-
tomation, 1989.

[13] E. Chan, K. Govil, and H. Wasserman, “Com-
paring Algorithms for Dynamic Speed-setting
of a Low-Power CPU”, Proceedings of the
First ACM International Conference on Mobile
Computing and Networking (MOBICOM 95),
November 1995.

[14] M.L. Dertouzos, “Control Robotics: the Proce-
dural Control of Physical Processes,” Informa-
tion Processing, 74, North-Holland, Publishing
Company, 1974.

[15] P. Gai, L. Abeni, M. Giorgi, G. Buttazzo, “A
New Kernel Approach for Modular Real-Time
Systems Development,” IEEE Proceedings of
the 13th Euromicro Conference on Real-Time
Systems, Delft, The Netherlands, June 2001.

[16] R. L. Graham: “Bounds on the Performance
of Scheduling Algorithms,” Chapter 5 in Com-
puter and Job Scheduling Theory, John Wiley
and Sons, pp. 165-227, 1976.

[17] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and
M. Srivastava, “Power Optimization of Vari-
able Voltage Core-Based Systems”, Proceed-
ings of the 35th Design Automation Confer-
ence, 1998.

[18] I. Hong, G. Qu, M. Potkonjak, and M.B.
Srivastava, “Synthesis Techniques for Low-
Power Hard Real-Time Systems on Variable
Voltage Processors”, Proceedings of the 19th
IEEE Real-Time Systems Symposium, Decem-
ber 1998.

[19] T.-W. Kuo and A. K, Mok, “Load Adjustment
in Adaptive Real-Time Systems,” Proceedings
of the 12th IEEE Real-Time Systems Sympo-
sium, December 1991.

[20] C. Lee, R. Rajkumar, and C. Mercer, “Ex-
periences with Processor Reservation and Dy-
namic QOS in Real-Time Mach,” Proceedings
of Multimedia Japan 96, April 1996.

[21] C.L. Liu and J.W. Layland, “Scheduling Algo-
rithms for Multiprogramming in a Hard real-
Time Environment,” Journal of the ACM 20(1),
1973, pp. 40–61.

[22] R. Melhem, N. AbouGhazaleh, H. Aydin and
D. Mosse, “Power Management Points in
Power-Aware Real-Time Systems”, In Power
Aware Computing, ed. by R. Graybill and R.
Melhem, Plenum/Kluwer Publishers, 2002.

[23] A. Mok, “Scalability of real-time applications,”
keynote address at the 7th International Con-
ference on Real-Time Computing Systems and
Applications, Cheju Island, South Korea, De-
cember 2000.

[24] T. Nakajima, “Resource Reservation for Adap-
tive QOS Mapping in Real-Time Mach,” Sixth
International Workshop on Parallel and Dis-
tributed Real-Time Systems, April 1998.

[25] M. Spuri, and G.C. Buttazzo, “Efficient Aperi-
odic Service under Earliest Deadline Schedul-
ing”, Proceedings of IEEE Real-Time System
Symposium, San Juan, Portorico, December
1994.

[26] M. Spuri, G.C. Buttazzo, and F. Sensini, “Ro-
bust Aperiodic Scheduling under Dynamic Pri-
ority Systems”, Proc. of the IEEE Real-Time
Systems Symposium, Pisa, Italy, December
1995.

[27] M. Spuri and G.C. Buttazzo, “Scheduling Ape-
riodic Tasks in Dynamic Priority Systems,”
Real-Time Systems, 10(2), 1996.

[28] F. Yao, A. Demers, and S. Shenker, “A
Scheduling Model for Reduced CPU Energy,”
IEEE Annual Foundations of Computer Sci-
ence, pp. 374-382, 1995.

[29] D. Zhu, R. Melhem, and B. Childers, “Schedul-
ing with Dynamic Voltage/Speed Adjustment
Using Slack Reclamation in Multi-Processor
Real-Time Systems”, Proceedings of the IEEE
Real-Time Systems Symposium, December
2001.

