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Abstract. In real-time computing systems, timing constraints imposed on application tasks are typically
guaranteed off line using schedulability tests based on fixed parameters and worst-case execution times.
However, a precise estimation of tasks’ computation times is very hard to achieve, due to the non-deterministic
behavior of several low-level processor mechanisms, such as caching, prefetching, and DMA data transfer.

The disadvantage of relying the guarantee test on a priori estimates is that an underestimation of computation
times may jeopardize the correct behavior of the system, whereas an overestimation will certainly waste system
resources and causes a performance degradation.

In this paper, we propose a new methodology for automatically adapting the rates of a periodic task set
without forcing the programmer to provide a priori estimates of tasks’ computation times. Actual executions are
monitored by a runtime mechanism and used as feedback signals for predicting the actual load and achieving
rate adaptation. Load balancing is performed using an elastic task model, according to which tasks utilizations
are treated as springs with given elastic coefficients.
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1. Introduction

Most of real-time applications require the execution of periodic activities, whose rate can
usually be defined within a certain range. The higher the frequency, the better the
performance. Depending on the application domain, some task rates are rigidly imposed
by the environment (e.g., a PAL frame grabber produces a new half frame every 20 ms),
whereas other activities can be more flexible, producing significant results when their
rates are within a certain range. For example, in multimedia systems, activities such a
voice sampling, image acquisition, sound generation, data compression, and video
playing, are performed periodically, but their execution rates are not so rigid. Missing a
deadline while displaying an MPEG video may decrease the quality of service (QoS), but
does not cause critical system faults. Depending on the requested QoS, tasks may
increase or decrease their execution rate to accommodate the requirements of other
concurrent activities.

Even in some control application, there are situations in which periodic tasks could be
executed at different rates in different operating conditions. For example, in a flight
control system, the sampling rate of the altimeters is a function of the current altitude of
the aircraft: the lower the altitude, the higher the sampling frequency. A similar need
arises in robotic applications in which robots have to work in unknown environments
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where trajectories are planned based on the current sensory information. If a robot is
equipped with proximity sensors, in order to maintain a desired performance, the
acquisition rate of the sensors must increase whenever the robot is approaching an
obstacle.

In other situations, the possibility of varying tasks’ rates increases the flexibility of the
system in handling overload conditions, providing a more general admission control
mechanism. For example, whenever a new task cannot be guaranteed by the system to
meet its timing constraints, instead of rejecting the task, the system can try to reduce the
utilizations of the other tasks (by increasing their periods in a controlled fashion) to
decrease the total load and accommodate the new request.

In the literature related to real-time systems there is no uniform approach for dealing
with these situations. For example, Kuo and Mok (1991) propose a load scaling
technique to gracefully degrade the workload of a system by adjusting the periods of
processes. In this work, tasks are assumed to be equally important and the objective is
to minimize the number of fundamental frequencies to improve schedulability under
static priority assignments. Nakajima and Tezuka (1994) show how a real-time system
can be used to support an adaptive application: whenever a deadline miss is detected,
the period of the failed task is increased. Seto et al. (1997) describe a method for
computing tasks’ periods to minimize a performance index defined over the task set.
This approach is effective at a design stage to optimize the performance of a discrete
control system, but it cannot be used for on-line load adjustment. Lee et al. (1996)
propose a number of policies to dynamically adjust the tasks’ rates in overload
conditions. Abdelzaher et al. (1997) present a model for QoS negotiation to meet both
predictability and graceful degradation requirements in cases of overload. In this model,
the QoS is specified as a set of negotiation options, in terms of rewards and rejection
penalties.

Nakajima (1998) shows how a multimedia activity can adapt its requirements during
transient overloads by scaling down its rate or its computational demand. However, it is
not clear how the QoS can be increased when the system is underloaded. Recently, in
Stankovic et al. (1998) and Lu et al. (1999), a feedback control mechanism has been
considered for observing and adjusting the system workload to reduce the number of
deadline misses when tasks’ execution times are not precisely known. However, this
approach does not permit to control each task’s utilization individually. In Lu et al.
(2000), the previous approach has been extended to enable system designers to specify a
desired behavior in terms of a set of performance metrics and apply existing control
methods to design an adaptive real-time system to achieve the specified requirements.

Beccari et al. (1999) propose several policies for handling overload through period
adjustment. The authors, however, do not address the problem of increasing the task rates
when the processor is not fully utilized. Moreover, all the proposed techniques are based
on the knowledge of worst-case computation times.

Although these approaches may lead to interesting results in specific applications, we
believe that a more general framework can be used to avoid a proliferation of policies and
treat different applications in a uniform fashion. Moreover, most of the approaches
proposed in the literature are based on the knowledge of task computation times.
Unfortunately, a precise estimation of tasks’ computation times is very hard to achieve,
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due to the non deterministic behavior of several low-level processor mechanisms, such as
caching, prefetching, and DMA data transfer.

The disadvantage of relying the guarantee test on a priori estimates is that an
underestimation of computation times may jeopardize the correct behavior of the system,
whereas an overestimation will certainly waste system resources and causes a
performance degradation.

In this paper, we present a novel approach in which task periods can be dynamically
adjusted based on the current load. Load is estimated not by detecting the number of
deadline miss, but by monitoring the actual computation time of each job, which is
assumed to be unknown a priori. When the estimated load is found to be greater than a
certain predefined threshold (it can be 1 under EDF), the elastic scheduling method
proposed in Buttazzo et al. (1998) is used to enlarge the task periods to find a feasible
configuration. We use the elastic approach to automatically find a feasible period
configuration based on the actual tasks’ demand, relieving the programmer of estimating
the tasks’ computation times. The paper integrates and consolidates a preliminary work
described in Buttazzo and Abeni (2000).

The rest of the paper is organized as follows. Section 2 presents the task model and the
basic assumptions. Section 3 briefly recalls the elastic approach. Section 4 illustrates the
adaptive method for setting the task periods. Section 5 illustrates some experimental
results achieved on the HARTIK kernel. Finally, Section 6 contains our conclusions and
future work.

2. Task Model

In our framework, each task is considered as flexible as a spring with a given rigidity
coefficient and length constraints. In particular, the utilization of a task is treated as an
elastic parameter, whose value can be modified by changing the period within a specified
range. To provide a minimum level of guarantee off line, we assume that for each task an
upper bound of the worst-case execution time (WCET) is known in advance. Note,
however, that overestimating this value does not degrade the actual system performance,
since the upper bound is just used to guarantee the feasibility of the schedule when all the
tasks run with their maximum period. At run time, an on-line estimate of the actual task
computation time is used to perform period adaptation.

Each task is characterized by four parameters: an upper bound of the worst-case
computation time C j-‘b , @ minimum period T,~U (considered as a nominal period), a
maximum period 7; , and an elastic coefficient E; > 0, which specifies the flexibility of
the task to vary its utilization for adapting the system to a new feasible rate configuration.
The greater E;, the more elastic the task. Thus, an elastic task is denoted as

7, (C¥. T, T,

io? zmM:Ei)
From a design perspective, elastic coefficients can be set equal to values which are
inversely proportional to tasks’ importance. For example, in a real-time application, those

tasks whose activation rate is imposed by peripheral devices (e.g., image acquisition from
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a frame grabber) should have E; = 0. Other periodic computations whose rate is not
rigidly determined by the hardware could have some elasticity. For instance, in a robot
control application, trajectory planning would have a higher elasticity than obstacle
avoidance, which in turn would be more elastic than force control. We recall that the
elastic coefficient only determines how the task period is varied within its range.

Also notice that the elastic task model automatically solves an optimal task frequency
assignment for tasks whose control performance can be described by a quadratic cost
function with respect to the sampling frequency (a spring system naturally minimizes the
elastic potential energy, which is proportional to the square of the displacements).
According to this approach, the elastic coefficients can be used to express a proper cost
function.

In the following, T; will denote the actual period of task t;, which is constrained to be
in the range [Tiu, T,-max], whereas C; will denote its actual exectution time (considered to be
unknown a priori). In the case of tasks with variable computation times, C; will denote
the actual worst-case execution time. Any period variation, is always subject to an elastic
guarantee and is accepted only if there exists a feasible schedule in which all the other
periods are within their range. In our framework, tasks are scheduled by the Earliest
Deadline First algorithm [13]. Hence, if }(C”/T; ) < 1, all tasks can be created at the
minimum period T; , otherwise the elastic algorithm is used to adapt the tasks’ periods to
T; such that Y (C,;/T;) = U; < 1, where C; is the actual on-line execution estimate and
U, is some desired utilization factor. It can easily been shown (see Section 3.2) that a
solution can always be found if Y- (C/*/T, ) < 1.

With respect to the classical elastic approaich described in Buttazzo et al. (1998), in this
paper we assume that tasks’ actual computation times are not known a priori, but are
estimated at run time by a monitoring mechanism built in the kernel, able to record the
actual execution time of each task instance. Such a monitoring mechanism is available on
the HARTIK kernel, where the adaptive elastic approach has been implemented and
tested Abeni and Buttazzo (2000). As demonstrated in Section 5, the on-line estimation
mechanism can effectively be applied to tasks with fixed computation times which are not
known a priori, as well as to tasks whose computation times vary significantly from
instance to instance.

Since the estimated values of the execution times can change during program
execution, the rate adaptation algorithm is periodically executed. The estimated
execution times can be considered as a feedback to adapt the system load. In overload
conditions, they are used to keep the number of missed deadlines as low as possible,
whereas in underload conditions (> (C;/T;) < 1) the efficiency of the system is
increased to utilize the processor up to a desired value U,,.

3. Task Compression Algorithm

For the sake of completeness, in this section, we will briefly recall the compression
algorithm presented in Buttazzo et al. (1998). For a more general description of the elastic
approach see Buttazzo et al. (2002), where the algorithm has also been extended to be
used in the presence of resource constraints. In the next section we will use the
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compression algorithm to automatically find a feasible period configuration based on the
actual tasks’ demand, relieving the programmer of estimating the tasks’ computation
times.

To understand how an elastic guarantee is performed in this model, it is convenient to
compare an elastic task t; with a linear spring S; characterized by an elastic coefficient E;,
a nominal length ; , and a minimum length x; . In the following, x; will denote the
actual length of spring S;, which is constrained to be in the range [ximin,xio]. In this
comparison, the length x; of the spring is equivalent to the task’s utilization factor
U; = C;/T;, hence, a set of n tasks with total utilization factor U, = 7| U; can be
viewed as a sequence of n springs with total length L = >"7_, x;.

Using the same notation introduced by Liu and Layland (1973), let U}, be the least
upper bound of the total utilization factor for a given scheduling algorithm A. We recall
that for n tasks URY =n(2'/" — 1) and UFDF = 1. Moreover, we define U, =
>i—1Ci/T;, and Uy, = 377 C;/T; . Hence, a task set can be schedulable by A at
the nommal rates if Uy < Up,. Under EDF, such a schedulability condition becomes
necessary and sufficient.

Under the elastic model, given a scheduling algorithm A and a set of n periodic tasks
with U, > U}, , the objective of the guarantee is to compress tasks’ utilization factors in
order to achieve a desired utilization U, < Ui, such that all the periods are within their
ranges. In a linear spring system of total length L, = Z;':lxin, this is equivalent to
compressing the springs by a force F, so that the new total length becomes L; < L. This
concept is illustrated in Figure 1.

In the absence of length constraints (i.e., if x,,;, = 0) the length x; of each compressed
spring can be computed as follows:

. K,
Vi Xi = X, _(LO_Ld)? (1)
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Figure 1. A linear spring system: the total length is L, when springs are uncompressed (a); and L; < L, when
springs are compressed (b).
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where

1
K, == (2)
vl

If each spring has a length constraint, in the sense that its length cannot be less than a
minimum value x; , then the problem of finding the values x; requires an iterative
solution. In fact, if during compression one or more springs reach their minimum length,
the additional compression force will only deform the remaining springs. Thus, at each
instant, the set I' of springs can be divided into two subsets: a set I'; of fixed springs
having minimum length, and a set I', of variable springs that can still be compressed.
Applying Equation (1) to the set I', of variable springs, we have

K,
vS;iel, x; =x, — (L, —Ls+ L) T 3)
where

L,=) x (4)

S;el’,
Lff = Kirnin (5)

S;ely

1
K, = (6)

Whenever there exists some spring for which Equation (3) gives x; <x; , the length of
that spring has to be fixed at its minimum value, sets I'; and I';, must be updated, and
Equations (3)—(6) recomputed for the new set I',. If there exists a feasible solution, that
is, if the desired final length L is greater than or equal to the minimum possible length of
the array L, = Z:’_lx the iterative process ends when each value computed by
Equation (3) is greater than or equal to its corresponding minimum x; .

When dealing with a set of elastic tasks, Equations (3), (5) and (6) can be rewritten by
substituting all length parameters with the corresponding utilization factors, and the
rigidity coefficients k; and K, with the corresponding elastic coefficients E; and E,.
Similarly, at each instant, the set I" of periodic tasks can be divided into two subsets: a set
I'; of fixed tasks having minimum utilization, and a set I, of variable tasks that can still
be compressed. If U; = C;/T; is the nominal utilization of task ;, U, is the sum of all
the nominal utilizations in I, and Uy is the total utilization factor of tasks in Ff, then to
achieve a desired utilization U, < U, each task has to be compressed up to the following
utilization:

E.
Vi,el, U, = U, — (UVO—Ud—i—Uf)E—:} (7)
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where
Uy = Z Ui (8)
Tiel,,
Uf = Z Uimin (9)
Tiel'f
E, = Y E (10)
Tiel,,

If there exist tasks for which U; <U; , then the period of those tasks has to be fixed at its
maximum value T; (so that U; = U; ), sets I'; and I';, must be updated (hence, Uy and
E, recomputed), and Equation (7) applied again to the tasks in I',. If there exists a
feasible solution, that is, if the desired utilization U, is greater than or equal to the
minimum possible utilization Uy, = >/, (C;/T; ), the iterative process ends when
each value computed by Equation (7) is greater than or equal to its corresponding
minimum U, . The algorithm' for compressing a set I" of 7 elastic tasks up to a desired

utilization U, is shown in Figure 2.

3.1. Decompression

All tasks’ utilizations that have been compressed to cope with an overload situation can
return toward their nominal values when the overload is over. Let I'. be the subset of
compressed tasks (that is, the set of tasks with 7; > T; ), let I, be the set of remaining
tasks in I' (that is, the set of tasks with T; < T,»O), and let U, be the current processor
utilization of I'. Whenever a task in I', decreases its rate or returns to its nominal period,
all tasks in I'. can expand their utilizations according to their elastic coefficients, so that
the processor utilization is kept at the value of U,,.

Now, let U, be the total utilization of I',, let U, be the total utilization of I',,, and let
U, be the total utilization of tasks in I'. at their nominal periods. It can easily be seen that
ifU., +U, < Uy, all tasks in I, can return to their nominal periods. On the other hand,
it U, +U, > Uy, then the release operation of the tasks in I'. can be viewed as a
compression, where I'; =T', and I', = I'.. Hence, it can still be performed by using
Equations (7), (9) and (10) and the algorithm presented in Figure 2.

3.2. Theoretical Results

The following theorem states the convergence and the complexity of the elastic approach,
and provides a condition under which a feasible solution is always found.
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Figure 2. Algorithm for compressing a set of elastic tasks.

THEOREM 1 Given a set I’ = {t,(C* T, T;

)

i=1,...,n} of elastic tasks, if

max

n ub

<1 (11)

i=1 " Tmax

the compression algorithm converges to a feasible solution in O(n?) time, in the worst
case.

Proof: If inequality (11) holds, the feasibility of the solution is guaranteed because, in
the worst case, task periods can be extended up to their maximum value 7; = T; , and
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since C" is an upper bound of the actual worst-case computation time (C; < C**) we
have

n n b
C; c
S sy e
i=1 Timax i=1 Timax
Moreover, if condition (11) is verified, the convergence of the iterative compression
algorithm can be proved as follows. After each compression step, two situations may

occur:
1. Ti < Ti‘“ux V‘Ci € F‘,.

2. There exists some k, such that 7, €I’ and T}, =T} .

If condition 1 is true, a feasible solution has been found and the algorithm stops. If
condition 2 is true, set I',, is updated by removing those tasks that reached their maximum
period and another iteration is performed on the remaining tasks in I',. Every time
condition 2 holds, the set I', is reduced at least by one task. Since I', initially contains n
tasks, it follows that the compression algorithm will iterate at most for n times. Since,
each compression step has an O(n) complexity, the complexity of the overall
compression algorithm is O(n?) in the worst case. |

In Buttazzo et al. (2000) it is shown that, in order to keep the task set schedulable during
compression, periods must be changed at opportune instants. In particular, the following
theorem states a property of compression: if at time ¢ tasks increase their periods from 7T;
to T/, then from a certain time 7* on, the total utilization factor is decreased from U, to

Up =321 (C/T)).

THEOREM 2 Let I' be a task set with utilization U, and let T', be the subset of tasks that
at time t increase their period, so that the total processor utilization U, is compressed
to U, <U,. Let t* = max, . (d; — c;(t)/U;), where ¢(t) is the remaining computation
time of task t;. Then, from time t* on, the bandwidth used by the task set is not greater
than U,,.

The reason why the saved bandwidth U, — Uy, is not available immediately at time ¢ is
that some of the compressed tasks already executed with the previous period, thus
consuming the processor bandwidth originally allocated to them. As a consequence,
interval [z, #¥] is needed for estinguishing the transient.

It is worth noting that in case of decompression (that is, when utilizations are increased
by period reduction), a task cannot reduce its period immediately, but has to wait until its
next activation.

Consider the example shown in Figure 3, where two tasks, with computation times
C, =3 and C, =2 and periods T} = 10 and T, = 3, start at time 0. The processor
utilization is U, = (29/30), thus the task set is schedulable by EDF. Suppose that, at time
t=14, 1, wants to change its period from T, = 10 to T} = 5, so that the compression
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Figure 3. A task can miss its deadline if a period is decreased at arbitrary time.

algorithm increases the period of 7, from 7, =3 to T, =6 to keep the system
schedulable. The new processor utilization is U, = (28/30), so the task set is still
schedulable; however, if periods are changed immediately (i.e., at time ¢ = 14), task T,
misses its deadline at time = 15.

In general, although the periods of the tasks that decrease their rate can be changed
immediately, the periods of the tasks that increase their rate can be changed only at their
next release time. Thus, when the system receives a request of period variation, it
calculates the new periods according to the elastic model: if the new configuration is
found to be feasible (i.e., Ul’, < 1), then it increases the periods of the decompressed tasks
immediately, but decreases the periods of the compressed tasks only at their next release
time. Theorem 2 ensures that the total processor demand in any interval [¢, 7+ L] will
never exceed LU, and no deadline will be missed.

4. Online Adaptation Algorithm

The elastic approach provides a powerful and flexible methodology for adapting the
periodic tasks’ rates to different workload conditions. The effectiveness of the approach,
however, strongly relies on the knowledge of the WCETs. If WCETs are not precisely
estimated, the compression algorithm will lead to wrong period assignment. In particular,
if WCETs are underestimated the compressed tasks may start missing deadlines, whereas
if WCETs are overestimated, the algorithm will cause a waste of resources, as well as a
performance degradation.

This problem has been addressed in Fujita et al. (1995) and Nakajima (1998) by using
a CPU reservation technique to enforce the maximum execution time per period, to each
task. With this technique, however, the amount of time reserved to each task in each
period must still be defined based on some off-line estimation. If the reserved budget is
too small, the task will experience large overruns which cause the algorithm to increase
its period too much. On the other hand, if the estimation is too big, the periods are not
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Figure 4. Feedback-based architecture for elastic rate adaptation.

optimized, the reserved budget is never used completely, and the system is
underutilized.

The solution proposed in this paper uses on-line estimates of tasks’ execution times as
feedback for achieving load adaptation. Such estimates are derived by a runtime
monitoring mechanism embedded in the kernel. When a task starts its execution, it is
created at its minimum rate, and, at the end of each period, a runtime monitoring
mechanism updates the mean execution time ¢; and the maximum execution time C’,—.
Figure 4 shows the architecture used to perform the rate adaptation. The two values C ;
and ¢; derived by the monitoring kernel mechanism are used to compute an execution
time estimate Q;, used by the load estimator to compute the actual load U, = >(Q,/T;).
Such a value is then used by the elastic algorithm (periodically invoked with a period P)
to adapt tasks’ rates. Thus, the objective of the global control loop is to maintain the
estimated actual load U, close to a desired value U,,.

The advantage of using the elastic compression algorithm is that rate variations can be
controlled individually for each task by means of elastic coefficients, whose values can be
set to be inversely proportional to tasks’ importance.

Using this approach, the application is adapted to the actual computational power of
the hardware platform without any a priori knowledge on task computation times. The
effectiveness of the adaptation depends on whether tasks’ utilizations are computed based
on worst-case or average-case estimates. If the (:’i estimate is used to compute tasks’
utilizations for the elastic algorithm, tasks are assigned larger periods and the number of
deadline misses quickly reduces to zero. However, this solution can cause a waste of
resources, since tasks seldom experience their worst case simultaneously.

To increase efficiency, a more optimistic estimation can be used in order to exploit
system resources: the resulting approach is a trade off between ‘‘rigid’’ reservation
systems (in which each task is assigned a fixed amount of resources and cannot demand
more, also if the other tasks are requiring less than the reserved amount) and completely
unprotected system, such as bare EDF or RM. In this sense this approach is similar to
the ‘‘bandwidth sharing server’” (BSS) (Lipari et al., 1998), where tasks belonging to
the same application can share the same resources. In the BSS case, however, the
fraction of CPU bandwidth that can be exchanged among tasks belonging to a particular
application cannot be controlled, whereas in the elastic model it depends on the elastic
coefficients.
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In order to avoid that the number of deadline misses per time unit increases indefinitely
to infinite, the execution time estimate used to perform the elastic compression must be
greater than the task’s mean execution time, so a value between ¢; and C’,- is considered
acceptable. In our model, the elastic compression algorithm is invoked using a value

Q;=¢+k(C—¢)

where ke [0, 1] is the guarantee factor. Then, the utilization factor U; is computed as

and the actual load U, is estimated as

U,=> .0,
The guarantee factor k£ is used to balance predictability versus efficiency. If k=1, the
elastic algorithm results to be based on WCET estimations, so only a few deadlines can
be missed when the estimated WCET (:’,» is smaller than the real one. In general, if no
information about execution times is provided, the first c ; values will likely be
underestimated and may cause some deadline miss during task’s startup time.

Smaller values of k allow increasing the actual system utilization at the cost of a larger
number of possible deadline misses (we recall that a deadline is missed when many tasks
require a long execution at the same time). A value of k=0 allows maximum efficiency
but is the limit under which the system overload becomes permanent.

It is worth noting that the proposed approach can be used both when no a priori
information about execution times is provided, and when an approximated estimation of
the mean or maximum execution time is know. The method can also be successfully
applied to task sets characterized by variable computation times, allowing task periods to
vary according to execution times variations. In fact, at run time, the mean execution time
estimation is computed iteratively (that is, ¢; is periodically updated based on the last
execution time experienced by the task) starting from an initial value ¢?. If nothing is
known about the task parameters, an arbitrary value is assumed for ¢?. On the other hand,
if an approximate estimation of the execution time is known in advance, it can be used as
¢, so reducing the initial transient during which ¢; converges to a reasonable estimation
and increasing the speed at which periods converge towards a ‘‘stable value’’.

When the proposed mechanism is applied to tasks characterized by unknown but fixed
execution times, if a feasible solution exists, the stable period configuration can be
reached without any deadline miss. In this case, since the mean execution time is equal to
the WCET, the guarantee factor must be set to k= 1.

5. Experimental Results

To test the effectiveness of the adaptation algorithm, the elastic task model has been
implemented on top of the HARTIK kernel (Buttazzo, 1993; Lamastra et al., 1997), as a
middleware layer. In particular, the elastic guarantee mechanism has been implemented
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as a high priority task, the elastic manager (EM), activated by the other tasks when they
are created or when they want to change their period. Whenever activated, the EM
calculates the new periods and changes them atomically. According to the result of
Theorem 2, periods are changed at the next release time of the task whose period is
decreased. If more tasks ask to decrease their period, the EM will change them, if
possible, at their next release time.

In a first experiment, we tested the behavior of the elastic compression mechanism
(without the on-line estimation mechanism) using the task set shown in Table 1. In this
case, tasks’ parameters are assumed to be known a priori, and each task is characterized
by a constant execution time, reported in the C; column. At time ¢ =0, the first three tasks
start executing at their nominal period, whereas the fourth task starts at time
t; = 10seconds, so creating a dynamic workload variation.

When 1, is started, the task set is not schedulable with the current periods, thus the EM
tries to accommodate the request of 7, by increasing the periods of the other tasks
according to the elastic model. The actual execution rates of the tasks are shown in Figure
5. Notice that, although the first three tasks have the same elastic coefficients and the
same initial utilization, their periods are changed by a different amount, because 753
reaches its maximum period.

In a second experiment, we tested the on-line estimation mechanism on a set of tasks
characterized by fixed execution times, where each task instance was implemented as a
simple dummy loop. As previously discussed, by setting k=1, we verified that the
estimation mechanism was able to reach a stable period configuration in one step, without
causing any deadline miss.

In the next experiment, we tested the adaptive algorithm in the case of variable
execution times, using four tasks started at time ¢ =0. Tasks’ periods and elastic factors
are the same as the ones used in the first experiment, shown in Table 1, whereas execution
time varies randomly with uniform distribution between 5 and 55ms. During this
experiment, we monitored tasks’ execution times and measured how the estimated values
and the number of deadline misses changed as the guarantee factor k varied from O to 1.
We note that tasks’ execution times are assumed to be unknown and a value ¢ = 5ms
has been used as an initial estimate for ¢;.

Figure 6 shows the estimated execution time Q; (from the jobs of task t,) for different
values of the guarantee factor k. We can see that the value of the guarantee factor
influences the stability, the conservativeness and the precision of the estimation. In fact,
small values of k cause the estimate to converge around a stationary value after a long

Table 1. Task set parameters used for the first experiment. Periods and computation times are expressed in
milliseconds.

Task C; T;, fmax E;
T, 30 100 500 1
T, 60 200 500 1
T3 90 300 500 1
7 24 50 500 0




20 BUTTAZZO AND ABENI

Sevand expuriment

200 - ' ' ! /4-mmL

Tesk | —

Tesk X v

Tkl veore

Tiekd == =177 m&
150+ E
IS E

miber o @Al iilamii

=301 ms
el
Ti=500m3
50 e ]
u i
I I ELLLE
Figure 5. Dynamic task activation.
Estimated Execution Time
w0 : : : : : i

Execution Time Estinstion {us)
!1.
v
e
{
=
)

= i i i i
0 5 10 15 My L] X0 1 40
Job numibser

Figure 6. Estimated execution time of task 7, as a function of the guarantee factor k.
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Figure 7. Missed deadlines per second as a function of the guarantee factor

transient. On the other hand, a high guarantee factor causes the system to be
underutilized.

The influence of the guarantee factor on the number of missed deadlines is illustrated
in Figure 7, which shows the evolution of the number of missed deadlines as a function of
time for different values of k. From the figure, we can see that the number of missed
deadlines per second always converges to 0, after an initial transient (even in the worst
case, where k =0, the system overload is not permanent). However, the duration of that
transient depends on the value of k: for small values of the guarantee factor, the overload
is recovered after a long time, while for larger values the transient is shorter. It is worth

noting that, since the execution time is not constant, during the first task instances the
WCET can be underestimated; for this reason, during the initial transient the deadline
miss ratio is greater than O even for k= 1.

In order to speed up the transient adaptation phase without incurring in a system under
utilization, a trade off on the values of the guarantee factor is required. Experimental
results show that a value k= 0.4 gives a reasonable trade off.

Another way to reduce the number of deadline misses in the transient adaptation phase
is to provide a more accurate ¢! value. To show how the performance of the algorithm is
affected by the initial ¢ estimate, we repeated the previous experiment with different ¢!
values. For example, we observed that with ¢ = 25ms (which is still not very accurate)

no task missed its deadline. The estimated execution times obtained in this experiment
are reported in Figure 8.

21
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Figure 8. Estimated execution time of task 7, obtained using an initial estimate ¢! = 25ms.

6. Conclusions

In this paper we presented a method for automatically adapting the computational
demand of a periodic task set to the actual processor capacity. Tasks are treated as elastic
springs whose utilizations can be adjusted (through proper period variations) to create a
desired workload. Task execution times are estimated by an on-line monitoring
mechanism embedded in the kernel, so avoiding an explicit measurement and
specification of worst-case execution times.

Using this approach, periodic tasks enter the system executing at their maximum
period, and increase their execution rate in order to control the system workload to a
desired value U,.

The proposed model can also be used to handle overload situations in a more flexible
way. In fact, whenever a new task cannot be guaranteed by the system, instead of
rejecting the task, the system can try to reduce the utilizations of the other tasks (by
increasing their periods in a controlled fashion) to decrease the total load and
accommodate the new request. As soon as a transient overload condition is over
(because a task terminates or voluntarily increases its period) all the compressed tasks
may expand up to their original utilization, eventually recovering their nominal periods.

The major advantage of the proposed method is that the policy for selecting a solution
is implicitly encoded in the elastic coefficients provided by the user. A simple way to set
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the elastic coefficients is to make them inversely proportional to task importance. Then,
each task is varied based on its current elastic status and a feasible configuration is found,
if there exists one.

The presented approach has been implemented on the HARTIK kernel (Buttazzo,
1993; Lamastra et al., 1997), where some experiments have been performed to show how
the on line estimation can reduce the number of missed deadlines and allow to achieve a
better system utilization.

Notes

1. The actual implementation of the algorithm contains more checks on tasks’ variables, which are not shown
here to simplify its description.
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