
Handling Execution Overruns in
Hard Real-Time Control Systems

Marco Caccamo, Giorgio Buttazzo, Member, IEEE, and Lui Sha, Fellow, IEEE

AbstractÐIn many real-time control applications, the task periods are typically fixed and worst-case execution times are used in

schedulability analysis. With the advancement of robotics, flexible visual sensing using cameras has become a popular alternative to

the use of embedded sensors. Unfortunately, the execution time of visual tracking varies greatly. In such environments, control tasks

have a normally short computation time, but also an occasional long computation time; therefore, the use of worst-case execution time

is inefficient for control performance optimization. Nevertheless, to maintain the control stability, we still need to guarantee the

schedulability of the task set, even if the worst case arises. In this paper, we propose an integrated approach to control performance

optimization and task scheduling for control applications where the execution time of each task can vary greatly. We present an

innovative approach to overrun management that allows us to fully utilize the processor for optimizing the control performance and yet

guaranteeing the schedulability of all tasks under worst-case conditions.

Index TermsÐOverrun management, rate adaptation, real-time scheduling.

æ

1 INTRODUCTION

1.1 Motivation

IN many real-time control applications, task periods are
typically fixed and worst-case execution times are used in

the schedulability analysis. This model is fine for many
classical control applications where the execution time
variations are small. However, with the advancement of
robotics, flexible visual sensing using cameras has become a
popular alternative to the use of embedded sensors.
Unfortunately, the execution time of visual tracking varies
greatly.

For example, consider a ball and plate control system
based on visual feedback, where a ball has to follow a
specified trajectory on the plate, which can be controlled by
acting on roll and pitch rotations. To speed up the visual
tracking process, predictive techniques are typically used to
search for the ball in a small mobile window centered in the
estimated ball position rather than searching the whole
image. Normally, the ball is found in the small window and
its position can be computed quickly. However, in most
control applications there are occasional disturbances. If the
disturbance makes the ball move outside of the predicted
window, searching has to be extended in a larger area. This
process may continue until, eventually, the entire plate is
scanned.

In this example, the visual tracking task's computation
time can be modeled as having a constant normal execution
time, due to the searching operation in the small window.
In addition, it has a bounded probabilistic execution time

during tracking exceptions. Similar situations can be found
in radar tracking where a search window is centered on the
predicted location of the target.

It is worth noting that the search time is part of the
control loop since the position information is needed in
control computations. With a normally short (control loop)
computation time, but an occasional long computation time,
the use of worst-case computation times is inefficient.
Nevertheless, to guarantee the control stability, we still
need to close the control loop in time, even if the worst case
arises.

If we reserve the processor for the worst-case condition,
then most of the time there is a large amount of reserved but
unused execution time budget. Although such an unused
reserved time can be reclaimed for soft real-time aperiodic
applications [18], [19], [20], such an aperiodic application
may or may not exist in a given application environment.
An alternative solution is to fully utilize the reserved
budget to optimize the control performance in spite of the
variation in computation time.

In digital control, the system performance is a function of
the sampling rate. For a given controller design method,
faster sampling permits, up to a limit, a better control
performance. So, the idea is to increase the control loop
frequency when the loop computation time is short and
slow down the frequency when the worst-case situation
arises. However, there is a lower bound on the frequency
for each task, fmini , the minimum frequency for each task �i,
below which the performance is unacceptable or worse: The
control becomes unstable. In this formulation, 1=fmini

represents the hard deadline that each instance of �i has
to honor.

The frequency adjustment is particularly easy when the
common method of digitized analog design is used since
this method does not require the change of control gains.
The scheduler design method in this paper is also
applicable to other control design methods. In this case, it

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002 835

. M. Caccamo is with Scuola Superiore S. Anna, Pisa, Italy.
E-mail: caccamo@sssup.it.

. G. Buttazzo is with the INFM Research Unit, University of Pavia, Italy.
E-mail: giorgio@sssup.it.

. L. Sha is with the Department of Computer Science, University of Illinois,
Urbana, IL 61801. E-mail: lrs@cs.uiuc.edu.

Manuscript received 7 July 2000; revised 2 July 2001; accepted 27 Nov. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 112417.

0018-9340/02/$17.00 ß 2002 IEEE

involves the design of control gain scheduling in conjunc-
tion with scheduler design. However, application of this
approach requires more work on the analysis of system
stability. Since the focus of this paper is on the scheduler
design, we shall assume that a digitized analog controller
design method is used for the system.

We refer the idea of dynamically adjusting the rates to
optimize the control performance as ªrate adaptation
methodº. Notice that a simple-minded implementation of
this idea would not work. Consider the following example.

Example 1. A simple system is composed of two tasks
whose parameters are shown in Table 1, where WCETi
is the worst-case execution time in msec, cni is the normal
execution time in msec, and fmini is the minimal
frequency in Hz. Suppose that when both tasks execute
normally, the frequency assignment for �1 is assumed to
be f1 � 9:9 Hz, the same as the minimal frequency
(f1 � fmin1). Suppose also that the frequency assignment
for task �2 is f2 � 40 Hz, twice that of the minimal
frequency of 20 Hz. Under this arrangement, these two
tasks use 20 percent and 80 percent of the CPU,
respectively. The idea is that, should the worst case
arise, task �2 could slow down from 40 Hz to 20 Hz to
avoid overload. Unfortunately, this idea would not
work.

As shown in Fig. 1, both tasks start at time t � 0. At time
t � 100, task �1 requests to execute 25 instead of 20 units of
time. Unfortunately, at this point, there is nothing task �2

can do to assist task �1. As a result, �1 will miss its deadline
at tov � 101.

To make the idea of rate adaptation work, the challenge
is to develop a method that will adjust the task frequencies
to produce a near optimal system control performance,
subject to the constraint of guaranteeing that when the
worst case comes, no deadlines will be missed.

1.2 Related Work

The problem of handling execution overruns in real-time
systems has been recently addressed in the literature using
various approaches. In [11], Gardner and Liu compared the
behavior of three classes of scheduling algorithms for
scheduling real-time systems in which jobs may overrun
their allocated processor time, potentially causing the
system to be overloaded. In their work, each task is
characterized by a guaranteed execution time, which is
zero for non-real-time tasks, equal to the worst-case
execution time for hard real-time tasks, and equal to some
intermediate value for soft real-time tasks. They introduced
the Overrun-Server Method (OSM) and the Isolation-Server
Method (ISM) as scheduling algorithms. Under OSM, a job
is released for execution and scheduled in the same manner
as it would be according to Deadline Monotonic (DM) [13]
or Earliest Deadline First (EDF) [14] (in a fixed priority or
dynamic priority environment, respectively). At the time of
exception, the execution of the job is interrupted and its
remaining execution time is released as an aperiodic request
to a server. Using the ISM technique, jobs are submitted as
aperiodic requests to the server assigned to their task at the
time of their release and execute completely under server
control. These scheduling strategies guarantee a feasible
schedule for those jobs which do not generate exceptions,
but they are unable to guarantee a maximum response time
for those which generate exceptions.

In [21], [22], Stankovic et al. described another approach
to increase the performance of a scheduling algorithm in
unpredictable dynamic systems whose workloads cannot be
accurately modeled. In such situations, a design based on
worst-case assumptions would result in a highly under-
utilized system. In these papers, the authors proposed a
new scheduling paradigm, called feedback control real-time
scheduling, which defines error terms for schedules,
monitors the amount of error, and continuously adjusts
the schedules to maintain satisfactory performance. Using
control theory methodology, they defined the percentage of
tasks that miss their deadlines as the controlled variable and
the requested CPU utilization as the manipulated variable.
By doing this, the deadline miss ratio can be controlled by
varying the admission strategy of tasks online. This
technique, however, cannot be used to handle hard real-
time tasks since jobs may be rejected to keep the system not
fully loaded. Moreover, the method is unable to isolate

836 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

TABLE 1
Task Set Parameters

Fig. 1. Example of time-overflow due to an exception.

tasks from reciprocal interference; hence, a task overrun

would affect the performance of all the other tasks.
In [1], Abdelzaher et al. proposed a mechanism for QoS

(re)negotiation as a way to ensure graceful degradation in a
distributed pool of shared computing resources. Although
the method provides flexibility in handling load variations
caused by new task arrivals or hardware failures, transient
execution overruns due to variable computation times
cannot be handled locally without affecting the whole
application.

In [7], Buttazzo et al. presented a novel scheduling
methodology for managing overload conditions in real-time
control applications. According to their elastic approach,
task utilizations are treated as springs that can be
compressed through period variations to conform with a
given workload. A slightly different method was proposed
by Beccari et al. [6] in the context of soft real-time robotic
applications. In both techniques, however, tasks execution
times are assumed to be constant.

In [17], Shin and Meissner described a resource adapta-
tion method in multiprocessor real-time control systems.
Periodic utilization is adapted by changing task periods,
whose values are computed to maximize a performance
index. Their method is able to handle system overloads due
to new task arrivals or application changes; however,
periodic tasks have the restriction that periods must be
harmonically related, that is each task period must be a
multiple of all shorted periods.

Finally, in [15], Ryu and Hong described a design
methodology to synthesizing schedulable timing con-
straints for real-time control systems, however no runtime
mechanisms are described to handle online variations of
tasks' execution times.

The problem of selecting a set of control task frequencies

to optimize the system control performance subject to

schedulability constraints was addressed by Seto et al. [16].

In this formulation, each control task �i is characterized by a

Performance Loss Index (PLI1), which measures the difference

between a digital and a continuous control as a function of

the sampling frequency. In particular, if Jc and Jd�f� are the

performance indices generated by a continuous-time con-

trol and its digital implementation at a sampling frequency

f , the PLI is defined as �J�f� � jJd�f� ÿ Jcj, which is

convex and monotonically decreasing with the frequency.

In [16], for each control task �i, �Ji�fi� is approximated by

the following exponential function:

�Ji�fi� � �ieÿ�ifi

where fi is the frequency of �i, �i is a magnitude coefficient,

and �i is the decay rate. A typical PLI is illustrated in Fig. 2,

where fm is the lower bound on the sampling frequency.
The performance loss index of the overall system

�J�f1; . . . ; fn� is defined in [16] as follows:

�J�f1; . . . ; fn� �
X
i

wi�Ji�fi�; �1�

where wi is a design parameter determined from the

application. For instance, it can be the relative importance

of the task in the control system with respect to the others.
Given the available bandwidth (A), the minimum

permitted frequency (fmini), the worst-case execution time

(WCETi) and the weighed PLI (wi�Ji�fi�) of each task �i as

input parameters, Seto et al. [16] provided an algorithm,

from now on referred to as the SLSS algorithm, to compute

the frequencies fopti which minimize the PLI of the system

while guaranteeing the schedulability constraints (i.e.,

ensuring each task will meet its deadlines). Notice that

each task frequency fopti computed by the SLSS algorithm is

always greater than or equal to the corresponding mini-

mum frequency fmini .
However, in [16], fopti were computed based on WCETs.

If the normal computation times cni are much less than

WCETi, then fopti can be too low.
In this paper, we propose an integrated approach to

control performance optimization and task scheduling for

control applications where tasks' execution times have large

variations. To improve a system's performance in normal

conditions, optimal frequencies are computed using the

SLSS algorithm based on normal computation times;

however, schedulability is guaranteed under worst-case

conditions, by a proper overrun management algorithm.
The rest of the paper is organized as follows: Section 2

introduces some of our terminology and basic assumptions.

Section 3 presents a local approach for handling overruns

and shows an example to illustrate the performance

improvement that can be achieved using the proposed

approach. Section 4 briefly recalls the Constant Bandwidth

Server (CBS) algorithm and introduces an extension of it

(CBShd) to efficiently schedule periodic tasks' overruns.

Section 5 extends the rate adaptation method to work in the

presence of resource constraints. Section 6 illustrates some

experimental results. Section 7 addresses some engineering

issues for reducing the runtime overhead and simplifying

the implementation of the proposed approach. Finally,

Section 8 presents our conclusions and future work.

CACCAMO ET AL.: HANDLING EXECUTION OVERRUNS IN HARD REAL-TIME CONTROL SYSTEMS 837

1. In the original formulation, the performance loss index was simply
called performance index or PI. In the following, it will be called PLI for
more clarity.

Fig. 2. Control system performance index versus sample frequency.

2 TERMINOLOGY AND ASSUMPTIONS

In this section, we introduce the rate adaptation method to
improve the performance of real-time control systems with
large variations of computation times. We will assume that
the task set is scheduled by the Earliest Deadline First (EDF)
algorithm [14], which assigns higher priorities to tasks with
earlier deadlines.

Each periodic task is described by

�i�WCETi; c
n
i ; f

min
i ;�Ji�fi��;

where WCETi is the worst-case execution time, cni is the
normal computation time typically demanded by the task
(cni �WCETi), fmini is the minimum frequency �i can
execute at, and �Ji�fi� is the Performance Loss Index
(PLI) of �i.

Each task �i is considered as a sequence of jobs �i;j
(j � 1; 2; . . .), each characterized by a release time ri;j, an
execution time ci;j, and a dynamic absolute deadline di;j. We
require that each task must complete at or before its hard
deadline Dhd

i � 1=fmini . Notice, however, that task �i will be
normally scheduled using a dynamic deadline Di less than
or equal to Dhd

i .
The computational demand gi�t1; t2� of task �i is defined as

the total computation time requested by those jobs �i;j
whose arrival times and deadlines are within [t1, t2] (that is,
t1 � ri;j � di;j � t2).

A task �i is said to have a bandwidth utilization Ui if, in any
interval of time [t1, t2], its computational demand gi�t1; t2�
never exceeds �t2 ÿ t1�Ui, and there exists an interval [ta, tb]
such that gi�ta; tb� � �tb ÿ ta�Ui.

The goal of this approach is to determine the optimal
frequencies fopti (computed by the SLSS algorithm using cni
rather than WCETi) which minimize the overall PLI, while
guaranteeing that each task will never miss its hard
deadline Dhd

i . To achieve isolation, each task is handled
by a dedicated Constant Bandwidth Server (CBS) [2], which
assigns it a fraction of the processor (bandwidth) and
schedules each job by a suitable dynamic deadline
computed according to the allocated bandwidth and the
actual computational requirements. It will be briefly
recalled in Section 4. The advantage of this approach is
that execution overruns can be handled locally to each task;
that is, whenever an overrun occurs on job �i;j (because
ci;j > cni), its deadline is postponed to delay its execution, so
that the frequencies of the other tasks are not affected.

Thus, to handle overruns, a task can dynamically change
its frequency depending on its actual computational
demand. If dlasti;j is the last deadline used by the server to
schedule job �i;j, the next job �i;j�1 will be released at time

ri;j�1 � dlasti;j : �2�
Hence, each job �i;j has a variable period Ti;j � ri;j�1 ÿ ri;j.
Using this formalism, we need to guarantee that

8 i; j Ti;j � 1

fmini

: �3�

In the next section we will show how to handle overruns
correctly and how to perform an offline guarantee of the
task set. Notice that no restrictions are assumed on the
number of overruns that a task can generate.

3 A LOCAL APPROACH FOR HANDLING OVERRUNS

In this section, we introduce a simple policy which allows
each task to handle its overruns locally, that is, without
affecting the frequencies of the other tasks. Using this
approach, overruns can be handled efficiently, with a very
small overhead.

In the following, we assume that the optimal frequency
fopti for each task �i has already been computed, based on cni ,
using the SLSS algorithm proposed in [16]. Then, each task
�i is reserved a bandwidth

Ui � fopti cni : �4�
To schedule tasks with a given bandwidth Ui we can use the
deadline assignment rule adopted by the Total Bandwidth
Server [20]. According to this rule, a job �i;j with computa-
tion time cni is assigned a deadline

d0
i;j � ri;j � c

n
i

Ui
� ri;j � 1

fopti

:

If �i;j tries to execute more than cni , its deadline can be safely
postponed at

dlasti;j � d1
i;j � ri;j �WCETi

Ui
� d0

i;j �
WCETi ÿ cni

Ui
: �5�

In this way, the requested bandwidth is not exceeded even
though the job will run for its whole WCETi. The ªsafetyº
of the deadline postponement rule relies on the correct
assignment of bandwidth Ui, which will be computed to
satisfy the constraints provided by Theorem 1 below.

Notice that the new job deadline is computed by
assuming a maximum overrun, equal to WCET ÿ cn. In
general, however, the overrun might be less than the
maximum value, so the deadline postponement rule is
pessimistic. This problem will be addressed in Section 4,
where a more efficient scheduling strategy will be described
to better exploit the available bandwidth.

Fig. 3 illustrates how an overrun is handled by the
proposed method. The task set consists of two periodic
tasks, �1 and �2, with minimum frequencies 1=20 and 1=16,
worst-case execution times 5 and 8, and normal execution
times 3 and 2, respectively. Moreover, let us suppose that
the optimal frequencies computed by the SLSS algorithm
are fopt1 � 1=6 and fopt2 � 1=4. Therefore, each task is
assigned a bandwidth U1 � U2 � 0:5.

Initially, job �2;2 is assigned a deadline d0
2;2 � 8. At time

t � 7, an overrun occurs and the job deadline is postponed
at d1

2;2 � d0
2;2 � �WCET2 ÿ cn2 �=U2 � 20. After handling the

overrun, the next job �2;3 of task �2 will be released at time
r2;3 � 20 and it will be executed again at its optimal
frequency.

The following theorem gives a necessary and sufficient
condition to guarantee the worst-case scenario in the
presence of overruns handled with the local approach.

Theorem 1. Let ÿ be a set of periodic tasks

�i�WCETi; c
n
i ; f

min
i ;�Ji�fi��;

such that the bandwidth utilization of each task is bounded byUi,
and

Pn
i�1 Ui � 1. Then, all tasks are schedulable by the

algorithm given above with a frequency fi � fmini if and only if:

838 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

8 �i Ui � fmini WCETi: �6�

Proof. If. Suppose that (6) holds and that the jth job of task
�k has an overrun. We notice that the worst-case
condition for the completion time of task �k occurs when
�k is scheduled with a bandwidth Uk � fmink WCETk and
it raises an overrun at the end of its period, requiring a
computation time equal to its WCETk. Hence, if rk;j is the
release time of the job, the worst case for its completion
time occurs when an overrun equal to WCETk ÿ cnk is
detected at time tov � rk;j � cnk=Uk. To check the feasibility
of �k, we compute the response time Rk and verify that it
is less than or equal to its hard relative deadline
Dhd
k � 1=fmink . Since

Pn
i�1 Ui � 1, the schedule produced

by EDF is feasible and all tasks are guaranteed to
complete within their deadlines, that is

Rk � dlastk;j ÿ rk;j:
Hence, substituting dlastk;j with the expression given in (5)
we have:

Rk � dlastk;j ÿ rk;j �
WCETk
Uk

� WCETk
fmink WCETk

� 1

fmink

:

Only if. By contradiction. Suppose that a task �k exists
such that (6) is false, that is:

9 �k j Uk < fmink WCETk;

but still each job (�k;j) has a period Tk;j � 1=fmink . If �k
requests a computation time equal to its WCETk, then
the actual frequency fk of �k becomes

fk � Uk
WCETk

< fmink ;

which is a contradiction. tu
Using the result of Theorem 1, we can compute the

optimal frequencies fopti and guarantee a minimum fre-

quency fmini for each task �i, even in the presence of
overruns. Like in the classical SLSS algorithm, in this
approach a task set is guaranteed if and only if:X

i

fmini WCETi � 1:

As previously described in Section 1.2, the SLSS algorithm
takes as input parameters the available bandwidth (A), the

minimum permitted frequency (fmini), the worst-case
execution time (WCETi) and the weighed PLI (wi�Ji�fi�)
of each task to compute the optimal frequencies fopti such
that (8i ; fopti � fmini).

To implement the idea of local overrun on the
SLSS algorithm, the additional constraint given in (6) must
be satisfied by each task. Since each task is reserved a
bandwidth Ui � fopti cni , the condition given in (6) can be
expressed as a constraint on the optimal frequency:

8 �i fopti �
fmini WCETi

cni
: �7�

Being WCETi � cni , (7) poses a new lower bound on
the minimum frequency allowed for each task (called
~fmini), which must be used in place of fmini as input in the
SLSS algorithm in order to take overruns into account:

8 �i ~fmini � f
min
i WCETi

cni
: �8�

In summary, overruns can be taken into account in the
SLSS algorithm by computing the optimal frequencies using
cni as computation time (instead of WCETi) and ~fmini as
minimum frequency (instead of fmini).

Note that the SLSS algorithm is optimal among the
algorithms which handle overruns locally (that is, without
affecting the other tasks performance) even though the
value of ~fmini is used as minimum frequency instead of fmini .
This is easy to prove, because the value ~fmini represents the
minimum frequency permitted to each task �i in order to
handle overruns locally. Hence, in this model, each optimal
frequency fopti must be greater than or equal to ~fmini .

The performance cost of local handling provides us with
the opening to consider global handling of overruns; that is,
when an overrun occurs, instantaneously each task could
decrease its frequency in order to free bandwidth for
handling the overrun. However, this different approach is
out of the scope of this paper.

3.1 An Example

We illustrate the effect of the proposed technique on a
bubble control system, which is a simplified model
designed to study diving control in submarines. The same
system was described by Seto et al. in [16]. Here, we
describe a modified version of it, to emphasize the
advantages achievable using our technique.

CACCAMO ET AL.: HANDLING EXECUTION OVERRUNS IN HARD REAL-TIME CONTROL SYSTEMS 839

Fig. 3. Example of overrun handled locally.

The bubble control system considered here consists of a

tank filled with air and immersed in the water. Depth

control of the diver is achieved by adjusting the piston

connected to the air bubble. In this example, a camera

monitors the diver as sensor for getting its position.
Now, suppose that two such systems with different

physical dimensions are installed on an underwater vehicle

to control the depth and orientation of the vehicle, and

assume they are controlled by one on-board processor.

Hence, each control task is characterized by two different

functions; the first one reads the image memory filled by the

camera frame grabber and determines the actual position of

diver, and the second one computes the next value of the

control variable defined as the piston velocity. The first

function of each control task is characterized by a variable

computation time which depends on the current position of

each diver; hence, we can assume that each task is

characterized by a worst-case execution time (WCETi)

and by a normal computation time cni . The task set

parameters are shown in Table 2, where, for each bubble

control system i, WCETi (ms) is the control task worst-case

execution time in each sampling period, fmini (Hz) is the

lower bound on sampling frequency, and wi is the weight

assigned to system i.
The following data are given for the control design and

scheduling problem: �Ji � �ieÿ�ifi , i � 1; 2, where the

frequencies fi must be determined.
A simple computation shows that the total CPU utilization

of the overall bubble system is 75 percent when the

minimum task frequencies are assigned. Supposing the

total CPU utilization available for the bubble systems is

100 percent, Table 3 shows, at different values of cn, the

optimal frequencies computed from the SLSS algorithm and

the resulting performance loss index of the overall system.

Note that system performance increases as the performance

loss index decreases. Moreover, cn � kWCET means that

all normal computation times are reduced by that fraction.

So, for instance, cn � 0:9WCET means that cn1 � 0:9WCET1

and cn2 � 0:9WCET2.
The results reported in Table 3 demonstrate that the

control system performance significantly improves as the
normal computation time is decreased with respect to the
WCET, because tasks can run at higher frequencies. Fig. 4
illustrates the relation between the performance loss index
�J and the value of cn. In the graph, the normal
computation time on the x-axis is expressed as a fraction
of WCET. Note that a little difference between cn and WCET
gives a significant gain in performance; for example, the
performance loss index halves its value when each task has
the normal computation time equal to 80 percent of its
WCET.

3.2 A Problem with Partial Overruns

The simple rule described in Section 3 for handling
overruns can be improved. In fact, assuming that overruns
have always a maximum duration (WCET ÿ cn) is not
efficient since it causes the deadline to be postponed too far
away, even when the overrun has a small duration. To focus
this problem, Fig. 5 shows the same task set of Fig. 3, but
assuming that task �2 has an overrun of four units of time
which is less than the maximum value (WCET2 ÿ cn2 � 6).

The solution given by (5) is quite inefficient since the
next deadline is computed assuming that a maximum
overrun has to be handled. Clearly, this is not always true
and the overrun size is usually variable. This problem is
solved by cutting each overrun in small chunks, each one
characterized by a shorter deadline. In this way, small
overruns are handled as efficiently as large overruns.

The chunks' size can be determined by trading off the
performance against the runtime overhead. In general, a
small chunk size allows a more precise estimation of actual
execution times, so tasks are assigned higher frequencies
and the system is able to achieve a better performance. On
the other hand, however, a small chunk size causes frequent
overruns and deadline postponements, hence a larger
runtime overhead. Experimental results reported in
Section 6 suggest that a good compromise consists in
setting the chunk size equal to the task normal computa-
tion time.

840 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

TABLE 2
Task Parameters for the Bubble Control System

TABLE 3
Optimal Frequencies and Corresponding �J

for Different Values of cn

Fig. 4. �J versus normal computation time cn.

Notice that, the correct value to be assigned to the
normal computation time of a task is its average execution
time, whose value can be derived statistically from previous
measurements of task's execution times.

The proposed solution can be implemented by handling
each task with a dedicated server. In the following section,
we describe how to extend the Constant Bandwidth Server
(CBS) in order to manage hard real-time periodic tasks.

4 HANDLING OVERRUNS WITH A SERVER

In [2], Abeni and Buttazzo proposed a scheduling metho-
dology, the Constant Bandwidth Server (CBS), devised for
handling real-time tasks under a temporal protection mechan-
ism. In order to provide task isolation, each task is assigned
a fraction of the processor (a fixed bandwidth) and it is
scheduled in such a way that it will never exceed its
specified bandwidth, independently of its actual requests.
This is achieved by assigning each task a suitable (dynamic)
deadline, computed as a function of the reserved band-
width and its actual requests. If a task needs to execute
more than its expected computation time, its deadline is
postponed so that its bandwidth is not exceeded. As a
consequence, overruns occurring on task �a will only delay
task �a, but will not steal the bandwidth assigned to the
other tasks, which are then isolated and protected from
reciprocal interference. In [3], the same authors present a
statistical analysis for performing a probabilistic guarantee
of soft tasks handled by the CBS algorithm. The CBS
algorithm and its main properties are briefly recalled in
Appendix A.1.

To show the advantages achievable by using a server
mechanism, like the CBS, Fig. 6 illustrates the same task set
of Fig. 5, where now each task is scheduled by a CBS server.
In particular, task �1 is scheduled by a CBS with Qs1

� 3 and
Ts1
� 6, and �2 by a CBS with Qs2

� 2 and Ts2
� 4. Notice

that, using the CBS scheduling rules, job �2;2 can improve its
response time.

According to this new approach, each hard task �i must
be scheduled with a reserved bandwidth Ui in order to
isolate the effects of task overruns; however, we also require
guaranteeing that each task �i always has a frequency
greater than or equal to fmini . Under these requirements, the
plain CBS server cannot be directly used for scheduling
tasks with hard deadlines. In fact, if the budget is not
properly assigned, the last server deadline assigned to the
task could exceed the hard deadline imposed by the
minimum frequency.

The following example illustrates how, by using a plain
CBS, a task can miss its hard deadline. The task set consists
of two periodic tasks, �1 and �2, with minimum frequencies
1=20 and 1=14, worst-case execution times 5 and 7, normal
execution times 4 and 3, respectively. Moreover, let us
suppose that the optimal frequencies are fopt1 � 1=8 and
fopt2 � 1=6 and the server parameters are Qs1

� 4, Ts1
� 8 for

task �1, and Qs2
� 3 and Ts2

� 6 for �2. Therefore, each
server is assigned a bandwidth U1 � U2 � 0:5.

Fig. 7 shows the task schedule supposing that the first
instance of �2 has an overrun of four units of time. Notice
that task �2 misses its hard deadline at time t � 14 due to the
used server mechanism. To solve this problem, the deadline
assignment rule needs to be modified in order to meet the

CACCAMO ET AL.: HANDLING EXECUTION OVERRUNS IN HARD REAL-TIME CONTROL SYSTEMS 841

Fig. 5. Example of short overrun handled locally.

Fig. 6. Example of short overrun handled by CBS server.

hard timing constraints. In the next section, we propose a
new version of the CBS, called the CBShd.

4.1 The CBShd Algorithm

The CBShd maintains all the CBS properties, but allows us
to compute the dynamic deadline of each task in a more
flexible way. The problem with the plain CBS in handling
overruns is that, each time an overrun occurs, the budget is
recharged to its maximum value and the task deadline is
postponed by a fixed amount, equal to the server period. In
this way, however, if the maximum budget is greater than
the maximum remaining overrun, the current task deadline
would be postponed too far away. In order to bound the
task delay introduced by the overrun, the budget can be re-
charged in a more fit way.

Whenever the server budget is exhausted and the
remaining job computation time2 cri;j is less than the
maximum server budget Qsi , the budget is set equal to
the remaining computation time (csi � cri;j) and the deadline
is postponed accordingly, by cri;j=Ui, to demand the same
bandwidth Ui. Using this simple rule, each job overrun can
be safely handled within the hard deadlines.

Fig. 8 shows how the overrun of task �2 illustrated in
previous example (see Fig. 7) can be safely executed within
the hard deadline of �2;1�dhd2;1 � r2;1 � 1=fmin2 � 14). In fact, at
time t � 10, the budget cs2

is exhausted and the remaining
computation time of �2 (1 unit of time) is less than the
maximum budget Qs2

� 3. Hence, the budget is recharged

to one (cs2
� cr2;1 � 1) and the deadline is postponed

accordingly, by two units of time. As a result, task �2

completes at time t � 11, which is less than its hard
deadline.

More formally, whenever the budget is exhausted, the
following rule must be applied for updating the server
variables:

if �cri;j � Qs� {
cs � Qs;
ds;k�1 � ds;k � Ts;

}
else {

cs � cri;j;
ds;k�1 � ds;k � cri;j=Ui;

}

In the following, we will assume to schedule each task �i
by a dedicated CBShd, with a reserved bandwidth
Ui � fopti cni . The server parameters Qsi and Tsi have to be
assigned according to the reserved bandwidth. In particu-
lar, after setting the maximum budget, the server period
must be set equal to Tsi � Qsi=Ui. A possible solution, which
is a good trade-off between efficiency and complexity,
consists of assigning Qsi equal to cni and Tsi equal to 1=fopti .

4.1.1 Adding Resource Reclaiming

The behavior of the CBShd strictly depends on the runtime
estimate of the remaining computation time cri;j of the
current served job �i;j since each new server deadline is
assigned based on this value. This may be a drawback if the
value is overestimated. In this case, the deadline assigned

842 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

Fig. 7. Example of time-overflow due to the plan CBS server.

Fig. 8. Example of overrun handled by CBShd server.

2. An estimate of the remaining computation time can be computed as a
difference between the job worst-case execution time and the amount of
time the job has already executed.

by the server to the current job will be farther than
necessary, and this may delay the release of the next job
(computed by (2)). This problem can be solved in two
different ways: either increasing the number of chunks a job
is cut in, or introducing a resource reclaiming technique.
Using the first approach, the size of each job chunk becomes
smaller, hence the effect of an overestimation of the
remaining computation time cri;j becomes negligible. Some
considerations about the runtime overhead as well as a
performance evaluation related to chunk size will be
addressed later in Section 6. In this section, we introduce
a resource reclaiming mechanism for advancing the release
of the next job, when the current job completes earlier than
expected. The method is based on that one described by
Spuri et al. in [19].

The main idea of such a reclaiming technique is to keep
track of the actual processor bandwidth taken by the served
task and correct the assigned deadline accordingly. In
particular, the actual execution time is used to compute the
server deadline that could have been assigned to it if its
execution time had been known in advance. This value is
then used to compute the release time of the next job and
the new server deadline.

If di;j is the deadline assigned by the server to the current
job �i;j based on the overrun estimate, and �i;j is the time
saved by the job, the corrected deadline �di;j can be
computed as follows:

�di;j � di;j ÿ�i;j

Ui
;

hence, the release of the next job �i;j�1 can be advanced at time

ri;j�1 � max�ri;j � 1

fopti

; �di;j; fi;j�;

where fi;j is the actual completion time of job �i;j. When the
new job �i;j�1 arrives, the server budget is recharged at the
maximum value Qs and a new server deadline is generated
at time ri;j�1 � Ts.

5 HANDLING RESOURCE CONSTRAINTS

We now extend the rate adaptation method to deal with
resource constraints, thus allowing tasks to interact through
shared memory locations. In order to estimate maximum
blocking times due to mutual exclusion and analyze task
schedulability, we assume that critical sections are accessed
through the Stack Resource Policy (SRP) [4], but any
protocol can be used for the purpose. For the sake of
completeness, the features and the main properties of this
protocol are briefly recalled in Appendix A.2.

5.1 Notes on Resource Sharing

When shared resources are accessed in mutual exclusion by
tasks handled by a capacity-based server, an additional
problem arises if the server exhausts its budget when a
served task is inside a critical section. In order to prevent
long blocking delays due to the budget replenishment rule,
the task which exhausted its budget is allowed to continue
executing with the same deadline (using extra budget) until

it leaves the critical section. At this time, the budget can be
replenished at its full value and the deadline postponed.

Since the server execution can be prolonged by an extra

budget to allow the served task to complete the critical

section, the server utilization has to be computed to take

such a budget overrun into account. The maximum

interference created by the budget overrun mechanism

occurs when the server exhausts its budget immediately

after the task entered its longest critical section. Thus, if �i is

the duration of the longest critical section of task �i handled

by server Si, the bandwidth demanded by the server

becomes
Qsi
��i
Tsi

. Hence, a set of tasks in the presence of

resource constraints can be guaranteed by verifying the

following condition, which directly derives from the

guarantee test proposed by Baker and reported in (16) in

Appendix A.2:

8i; 1 � i � n
Xi
k�1

Qsk � �k
Tmaxsk

� Bi

Tmaxsi

� 1; �9�

where Qsk is the maximum budget of the k-th server, Bi

is the blocking time computed assuming that each task
�i is scheduled with a relative deadline equal to
Tmaxsi

� Qsi=�~fmini cni �, which is the server period com-
puted when each server is assigned the minimum
permitted bandwidth. A similar approach was first pre-
sented by Ghazalie and Baker in [12] for accounting for the
blocking effects of critical sections in a number of dynamic
aperiodic servers.

5.2 Computing Frequencies under Resource
Constraints

In the presence of resource constraints, the SLSS algorithm
must be extended to take blocking terms into account. In the
proposed approach, we will use the following schedul-
ability test:

Xn
k�1

Qsk � �k
Tsk

�max
i

Bi

Tsi

� �
� 1;

which is a simpler, but less tight, sufficient condition
derived from condition (9). Assuming that relative dead-
lines are equal to the server periods, the extended SLSS
algorithm must compute the optimal tasks' frequencies
under the following optimization problem:

min
�f1;...;fn�

�J �
X
i

wi�Ji�fi�; �10�

subject to: X
i

fic
n
i � Ub � A; 0 < A � 1; �11�

fi � ~fmini ; i � 1; . . . ; n;

where Ub �
P

i
fic

n
i �i

Qsi
�max

k

Bk

Tsk
and Bk is the blocking time

computed assuming that each task �i is scheduled with a
relative deadline equal to its server period Tsk � Qsk=�fkcnk�.
Notice that each task �i is assigned a preemption level
inversely proportional to its server period Tsi ; therefore, in

CACCAMO ET AL.: HANDLING EXECUTION OVERRUNS IN HARD REAL-TIME CONTROL SYSTEMS 843

order to assign each job chunk the same preemption level,

the maximum server budget should be a submultiple of the

worst-case execution time of the served task.
It is worth noting that, in the presence of resource

sharing, a recursive constraint appears in the optimization

problem stated above. In particular, (11) has a new term Ub
where blocking times Bk are not constant, but they depend

on the reciprocal period relations. As a consequence, the

SLSS algorithm becomes an iterative algorithm. However,

such an increase in complexity does not affect the runtime

overhead, because the SLSS algorithm is executed offline.
In order to ensure that the SLSS algorithm will converge

to a solution in a finite number of steps, the Ub term can

be overestimated in such a way it becomes a monotonic

nondecreasing function of the available bandwidth

Uav � Aÿ Ub. Let B�k denote the maximum blocking time

of �k, computed as follows:

B�i � max
j;h
fsjh j �Di < Dmax

j � ^ �mini � ceil��jh�g; �12�

where

Dmax
i � Tmaxsi

� Qsi

fmini WCETi
; �mini � 1

Dmax
i

:

Then, we have that:

8i B�i � Bi:

Notice that the maximum blocking time of each task is a

function of the available bandwidth Uav. In fact, if the

available bandwidth increases, the SLSS algorithm will

consequently increase the frequency of each task; hence,

each task is assigned a shorter relative deadline (Di) and

resource ceilings might augment their value. From con-

siderations above, it follows that the B�i term is a monotonic

nondecreasing function of the available bandwidth, that is:

8i B�i �Uav
1 � � B�i �Uav

2 � , Uav
1 < Uav

2 : �13�
Using this approach, the term U�b �

P
i
fic

n
i �i

Qsi
�max

k

B�k
Tsk

has
the following property:

U�b � Ub:
Finally, from (13) and the definition ofU�b term, it follows that:

U�b �Uav
1 � � U�b �Uav

2 � , Uav
1 < Uav

2 :

The property above ensures that in the presence of
resource constraints the extended SLSS algorithm converges
to a solution. The iterative version of the SLSS algorithm
which takes resource constraints into account is shown in
Fig. 9. The proposed algorithm is based on a binary search;
at each step, the available bandwidth Uav is set equal to the
average of the maximum permitted bandwidth Usup and the
actual required bandwidth Uinf . The bandwidth Uav is used
to compute the tasks' frequencies with which the guarantee
test is performed. If the test succeeds, the bandwidth Uav

can be safely assigned to the task set, the actual required
bandwidth Uinf is set equal to Uav and a new step is
performed until the required precision is reached. If the test
fails, the new maximum permitted bandwidth Usup is set

equal to Uav and the algorithm will try to assign less
bandwidth for computing the task frequencies. The algo-
rithm stops when the actual required bandwidth is
maximized (within the feasibility constraint) by returning
the set of frequencies. The algorithm precision depends on
the value of the ERR constant, which must be carefully
chosen to balance precision against computational complex-
ity. The algorithm complexity is:

O max�mn; nlogn�log Usup
s �0� ÿ Uinf

s �0�
ERR

� �� �
;

where n is the number of tasks and m is the number of
resources. The consequence of overestimating the Ub term is
that the extended SLSS algorithm cannot exploit all the
available bandwidth. However, if the feasibility test is
satisfied, the algorithm always gives a solution which, in
the worst case, consists in setting each task period equal to
its maximum value.

6 PERFORMANCE EVALUATION

The proposed algorithm has been implemented in the
SHARK kernel [10] to verify the results predicted by the
theory. In particular, a set of experiments has been
performed to test the effectiveness of our method in
enhancing the PLI in a set of periodic control tasks. Table 4
shows the parameters of the task set selected for this
experiment. Each task �i has a normal computation
time equal to its average computation time such that
8i cni � Cavg

i � 0:7WCETi. The optimal frequency fopti

represents the frequency computed by the Seto et al.
algorithm assuming that each task has the same weight

844 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

Fig. 9. Iterative algorithm for computing each task frequency.

wi � 1, the same magnitude coefficient �i � 1 and the same
decay rate �i � 0:4.

The fmini parameters have been chosen to have the same
value for each task just to simplify the interpretation of the
optimal frequencies computed by the algorithm as a
function of the nominal and worst-case computation times.
Different values do not significantly affect the shape of the
resulting graphs.

The minimum value of the PLI computed by the
optimization algorithm is �Jopt � 0:0432. Such a theoretical
value, however, can be reached only if every instance of
each task �i executes exactly for Cavg

i .
The performance of the algorithm was measured by

computing the PLI of the task set as a function of the
budget assigned to each server. For instance, a value of
0.9 on the x-axis means that each server has a maximum
budget Qsi � 0:9WCETi. Whenever the maximum budget
is changed (on the x-axis), the server period is set according
to the assigned bandwidth. Computation times have a
uniform distribution and each computation time is obtained
by splitting the whole execution time in a fixed part (Cfix)
plus a random part (Crand), where Cfix � 2Cavg ÿWCET
and Crand is obtained by a uniform distribution in the
interval �0;WCET ÿ Cfix�.

Fig. 10 compares the CBShd with the optimal PLI
(theoretical value) which is achieved in the ideal case in
which all jobs execute for their average computation time.
The worst-case PLI is also drawn as a reference value,
which is obtained when every instance executes exactly for
its WCET . The graph shows that no gain is obtained by the
CBShd algorithm when the server budget is set equal to the
task WCET . However, as the server budget decreases, the
CBShd algorithm becomes more effective, improving the
PLI. It is worth noting that the PLI has a peak for
Qsi � 0:5WCETi. This strange behavior is a direct conse-
quence of the CBShd deadline postponement rule and can
be explained as follows:

Whenever a deadline is postponed by the CBShd, the
new deadline is increased by a server period. Let us focus,
for instance, on task �5, when Qs5

� 0:5WCET5 � 5ms and
T5 � 50ms (being U5 � 0:1). Since Cavg

5 � 0:7WCET5 � 7ms,
during overruns the task period is increased up to 100ms.

This value is much greater than the average period of
the task deriving from the allocated bandwidth
(Pavg

5 � Cavg
5 =U5 � 70ms). Such an effect becomes less

significant for smaller values of the server budget. For
example, when Qs5

� 0:4WCET5 � 4ms and T5 � 40ms,
during overruns the task period becomes 80ms, which is
closer to the average period. The same consideration holds
for the other tasks.

In conclusion, this experiment shows that, using the
CBShd algorithm, the PLI can be improved by setting the
server budget as a small fraction of the WCET. However,
the algorithm yields good results also for server budgets
equal to the task average computation times.

6.1 Considerations on Runtime Overhead

A final set of experiments has also been conducted to
estimate the runtime overhead introduced by the CBShd

algorithm. A quantitative analysis of the overhead is useful
to provide a criterion for setting the servers' budgets since,
as shown in Fig. 10, a small budget allows to improve the
PLI, but increases the number of deadline postponements.

Our experiments have been performed on a Pentium 133
MHz using the task set shown in Table 4. Since in the
SHARK kernel the scheduling algorithm executes in the
context of the running task, the scheduling overhead has the
effect of increasing the actual execution time of each task.
Therefore, the overhead due to the CBShd algorithm has
been measured as a difference between the average
computation time c00 computed with a budget equal to a
small fraction of the WCET, so that the server deadline is
postponed n times, in the average, and the average
computation time c0 of the longest task served with a
budget equal to its WCET (so that no deadline is
postponed). Hence, the overhead ! due to a single
deadline postponement performed by the CBShd algo-
rithm, resulted to be

! � c
00 ÿ c0
n
� 42�s:

Notice that ! does not include the overhead due to
preemption. To investigate the effects of the algorithm
overhead on the PLI, the guarantee test has been modified
to take the overhead into account. If Qsi is the budget
assigned to server Si, the net budget used by the task is
Qnet
si
� Qsi ÿ !. Hence, the guarantee test can be rewritten as:

Xn
i�1

Qnet
si

Ti
� 1ÿ !

Xn
i�1

1

Ti
;

CACCAMO ET AL.: HANDLING EXECUTION OVERRUNS IN HARD REAL-TIME CONTROL SYSTEMS 845

Fig. 10. PLI of a task set with Cavg � 0:7WCET .

TABLE 4
Task Set Parameters

where Qnet
si
=Ti is bandwidth that must be assigned to task �i

according to the Seto et al. algorithm to minimize the PLI.
Since the overhead reduces the available bandwidth, the
optimal PLI increases its value as the server budget is
decreased.

Fig. 11 shows the optimal PLI (with overhead included)
as a function of the budget assigned to each server. It is
worth noting that the overhead effect is negligible up to
Qs � 0:1WCET ; therefore, the server budget can be set
equal to 0:2WCET for the task set of Table 4, obtaining a
PLI very close to the optimal one (see Fig. 10).

As a final remark, we note that lower values of the
budget could slightly improve the PLI; however, they
cannot be easily assigned if the server budget becomes
comparable with the time granularity of the kernel.

7 ENGINEERING CONSIDERATIONS

In Section 3, it was explained how an overrun is handled
when it occurs and how local handling can be guaranteed.
The goal of the proposed method is to try to execute each
task at its optimal frequency while avoiding the occurrence
of too many overruns. In order to limit the number of
overruns, it is important to use a good estimation of the
normal computation times cni . The system will be more
flexible if we suppose that the new optimal frequencies are
recomputed if some parameter changes online; in fact, if we
suppose that a lower bound of cni is provided by the user for
each task when the system starts, then the number of
overruns can be monitored online. Therefore, if a task �i has
too many overruns, then its cni can be increased according to
a specific rule until the correct value is reached.

A heuristic approach defines a maximum number of
overruns Nmax permitted on a jobs' window W , and an
increment factor �. Whenever the same task �i generates
more than Nmax overruns in a window of W jobs, its normal
computation time cni is increased by � and new optimal
frequencies are computed by the SLSS algorithm.

In order to maintain task set schedulability during
reconfiguration, the rate of each task has to change
according to specific rules. In [7], Buttazzo et al. proposed
a model where periodic tasks can intentionally change their

execution rate to provide different quality of service and the
other tasks can automatically adapt their periods to keep
the system underloaded. They derived some theoretical
results which permit changing the tasks' rate online. In fact,
if we suppose that the total system utilization will change
from Up to U 0p and both utilization factors are less than or
equal to one, the task set will remain schedulable and no
deadline will be missed if each task will increase its
frequency only at its next release time. They also proved
that a task can decrease its frequency immediately.

Hence, the rate of each task can be changed online
according to the previous rules; that is, each task �i will
change its frequency fopti and its normal computation time
cni at its next release time. By doing this, when the next job is
released, the CBShd parameters �Qs; Ts� will also change.

Another way to increase the system flexibility involves
defining a QoS manager to provide different quality of
service and handle overload situations in a more flexible
way. In a situation where we need to schedule a task set
composed of hard control tasks together with soft tasks (for
instance monitoring tasks), a more general admission
control mechanism can be used whenever a new soft task
cannot be guaranteed by the system. Hence, instead of
rejecting the soft task, the system can try to reduce the
utilization of control tasks (by decreasing their frequencies
in a controlled fashion) to reduce the total load and
accommodate the new request. This approach is analogous
to that one described by Buttazzo et al. in their elastic model
[7]; the major difference is using the SLSS algorithm instead
of their elastic algorithm in order to compute the new
frequency of each task.

7.1 Application Level Implementation

The model described in the previous sections needs a real-
time kernel able to monitor the computation time of each
task in order to supply the information to a server like
CBShd. In fact, whenever an overrun occurs, it must be
detected by the kernel which also will compute a new
deadline according to CBShd rules. However, some
application classes do not need a kernel with such a feature,
and the task itself can monitor its computation time and
change its deadline by using suitable system calls. In order
to use this approach, each task job is divided into chunks,
and each chunk is characterized by a own computation
time. Hence, at the end of each chunk, the task itself can test
whether the computation has finished, or if another chunk
has to execute in order to provide the result. Whenever
another chunk has to start, the previous one computes the
new chunk deadline before ending.

A control system which uses a camera as sensor to
monitor the controlled environment can be implemented in
this way. In fact, the task that reads the image memory
filled by the camera frame grabber and determines the
actual position of controlled object can be divided into
chunks, each one scanning a different portion of the image.
Each task job finishes when the object is found, and the
whole image has to be scanned in the worst case.

More formally, according to this method, a task can be
described by:

846 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

Fig. 11. Optimal PLI taking the scheduling overhead into account.

�i�wceti;1; ::; wceti;Ni
; Ni; f

min
i ;�Ji�fi��;

where wceti;k is the worst-case execution time of kth chunk,
Ni is the number of chunks the task is divided in, fmini is the
minimum frequency �i can execute at, and �Ji�fi� is the PLI
of �i. Note that the worst-case execution time of each task �i
becomes WCETi �

PNi

k�1 wceti;k. In this simplified model,
the guarantee test does not change; hence, the task set is
guaranteed if and only if

P
i f

min
i WCETi � 1. By doing as

described in Section 3, if the task set is feasible, a new
lower-bound ~fmini of frequency can be computed for each
task �i in order to take overruns into account. Now, the
parameter ~fmini is defined as follows:

8 �i ~fmini � f
min
i WCETi
wceti;1

:

Finally, the SLSS algorithm will be used to compute the
optimal frequencies using wceti;1 as computation time
(instead of WCETi) and ~fmini as minimum frequency
(instead of fmini) for each task �i.

Note that each task �i has an utilization factor
Ui � fopti wceti;1. To simplify the notation, we will indicate
all the chunks of a job with an increasing index k (hence,
H 0i;j � H1, H 00i;j � H2 and so on). Supposing that Hk is the kth
chunk of job �i;j, dk is the deadline of Hk and ai;j is the
arrival time of �i;j, the deadline of the first chunk H1 is
d1 � ai;j � 1=fopti . Every time a job �i;j needs more than one
chunk to finishing its computation, each next chunk Hk has
a deadline dk computed as follows:

8 k; i j 2 � k � Ni dk � dkÿ1 � wceti;k
Ui

:

Hence, the previous chunk can compute the new
deadline and notify it to the kernel before ending. The
major difference between this approach and the previous
one described in Section 3, consists in handling the overrun
at user level instead of kernel level.

8 CONCLUSIONS

In this paper, we presented a novel approach for increasing
the efficiency of digital control systems in which the
computation times of periodic activities have significant
variations. The proposed method was proven to be
particularly effective for those control activities, as visual
tracking tasks, in which the worst-case computation time is
much greater than the typical computation time required in
normal operations.

The work presented in the paper integrates and extends
two recent advances in real-time computingÐthe optimiza-
tion of control performance subject to schedulability
analysis and the Constant Bandwidth Server algorithmÐto
create an innovative approach to rate adaptation that allows
us to fully utilize the processor to optimize the control
performance and yet guarantee the schedulability of all
tasks under worst-case conditions.

The rate adaptation method has been implemented in the
SHARK kernel in order to evaluate its performance and
validate our theoretical results. The experiments showed
the effectiveness of the proposed method in enhancing the
performance loss index through an increase of tasks'

frequencies with respect to the classical worst-case design.
It has been shown that using the CBShd algorithm, the PLI
can be improved by setting the server budget as a small
fraction of the WCET. However, the algorithm yields good
results also for server budgets equal to the task average
computation times. Specific tests also showed that the
overhead introduced by the algorithm does not limit its use
in real applications.

As a future work, we plan to investigate a technique for
handling overruns globally, so that, when an overrun
occurs, each task can decrease its frequency in order to
create free bandwidth for handling the overrun.

APPENDIX A

A.1 The CBS Algorithm

A CBS is characterized by an ordered pair �Qs; Ts�, where
Qs is the maximum budget and Ts is the period of the
server. The ratio Us � Qs=Ts is denoted as the server
bandwidth.

At each instant, a fixed deadline ds;k and a budget cs is
associated with the server. Every time a new job Ji;j has to
be served, it is assigned a dynamic deadline di;j equal to the
current server deadline ds;k. The current budget cs repre-
sents the amount of computation time schedulable by the
CBS using the current server deadline. Whenever a served
job executes, the budget cs is decreased by the same amount
and, every time cs � 0, the server budget is recharged to the
maximum value Qs and a new server deadline is generated
as ds;k�1 � ds;k � Ts.

Fig. 12 illustrates an example in which two jobs J1 and J2

are served by a CBS having a budget Qs � 3 and a period
Ts � 6. The first job arrives at time r1 � 0 and it is assigned
a deadline ds;1 � r1 � Ts � 6. Initially, cs is equal to Qs � 3;
at time t � 3, the budget is exhausted, so a new deadline
ds;2 � ds;1 � Ts � 12 is generated and cs is replenished. At
time t � 4, J1 finishes and the server budget cs is equal
to two units; hence, the CBS is still available to schedule
two units of computation time using the same server
deadline ds;2. At time r2 � 5, the second job arrives and
is served with the actual server deadline (ds;2 � 12).

A.2 The Stack Resource Policy

The Stack Resource Policy (SRP) is a concurrency control
protocol proposed by Baker [4] to bound the priority

CACCAMO ET AL.: HANDLING EXECUTION OVERRUNS IN HARD REAL-TIME CONTROL SYSTEMS 847

Fig. 12. Example of a CBS server.

inversion phenomenon in static as well as dynamic priority
systems. Under the EDF scheduling algorithm, each task �i
is assigned a dynamic priority pi inversely proportional to
its absolute deadline di and a static preemption level �i, such
that the following property holds:

Property 1. Task �i is not allowed to preempt task �j,
unless �i > �j.

Under EDF, Property 1 is verified if each periodic task is
assigned a preemption level inversely proportional to its
relative deadline Di. That is,

�i / 1

Di
:

In addition, every resource Rk is assigned a static3 ceiling
defined as

ceil�Rk� � max
i
f�i j �i needs Rkg; �14�

and a dynamic system ceiling is defined as

�s�t� � max�fceil�Rk� j Rk is currently busyg [f0g�:
Then, the SRP scheduling rule states that

A task is not allowed to preempt until its priority is the
highest among those of the active tasks and its preemption
level is greater than the system ceiling.

Such a protocol guarantees that each task can be blocked for
at most the duration of one critical section. Moreover, it
ensures that, once a task is started, it will never block until
completion; it can only be preempted by higher priority
tasks. As a consequence, the blocking time Bi considered in
the schedulability analysis refers to the time in which task �i
is kept in the ready queue by the preemption test, waiting
for tasks with lower preemption levels to free shared
resources. Blocking at preemption time also allows tasks
to share a single stack, so reducing the total stack size
when more tasks have the same preemption level. Finally,
the SRP implementation is straightforward and there is
no need to implement semaphore queues since a task
never blocks during execution, but simply cannot preempt
if its preemption level is not high enough.

Using SRP, the maximum blocking time for a task �i is
bounded by the duration of the longest critical section
among those that can block �i; that is, those with a ceiling
greater than or equal to �i belonging to tasks with a relative
deadline greater than Di:

Bi � max
j;h
fsjh j �Di < Dj� ^ �i � ceil��jh�g; �15�

where sjh is the worst-case execution time of the hth critical
section of task �j and �jh is the resource accessed in the
critical section sjh. Then, the feasibility of a task set with
resource constraints can be tested by the following
sufficient condition [4]:

8i; 1 � i � n
Xi
k�1

Ck
Dk
� Bi

Di
� 1; �16�

where it is assumed that tasks are sorted by decreasing
preemption levels, so that �i � �j only if i < j.

A simpler, but less tight, sufficient condition to verify the
schedulability of a task set in the presence of resource
constraints can be derived from condition (16):

Xn
i�1

Ci
Di
�max

k

Bk

Dk

� �
� 1: �17�

A tighter test can be performed (in pseudopolynomial
time) using a processor demand criterion [5]. However, in
order to keep the overhead low, we decided to perform the
SLSS algorithm using the simplest test given by (17).

REFERENCES

[1] T.F. Abdelzaher, E.M. Atkins, and K.G. Shin, ªQoS Negotiation in
Real-Time Systems and Its Application to Automated Flight
Control,º Proc. IEEE Real-Time Technology and Applications Symp.,
June 1997.

[2] L. Abeni and G. Buttazzo, ªIntegrating Multimedia Applications
in Hard Real-Time Systems,º Proc. IEEE Real-Time Systems Symp.,
Dec. 1998.

[3] L. Abeni and G. Buttazzo, ªQoS Guarantee Using Probabilistic
Deadlines,º IEEE Proc. 11th Euromicro Conf. Real-Time Systems, pp.
242-249, June 1999.

[4] T.P. Baker, ªStack-Based Scheduling of Real-Time Processes,º J.
Real-Time Systems, vol. 3, no. 1, pp. 67-100, 1991.

[5] S.K. Baruah, R.R. Howell, L.E. Rosier, ªAlgorithms and Complex-
ity Concerning the Preemptive Scheduling of Periodic Real-Time
Tasks on One Processor,º J. Real-Time Systems, vol. 2, 1990.

[6] G. Beccari, S. Caselli, M. Reggiani, and F. Zanichelli, ªRate
Modulation of Soft Real-Time Tasks in Autonomous Robot
Control Systems,º IEEE Proc. 11th Euromicro Conf. Real-Time
Systems, June 1999.

[7] G. Buttazzo, G. Lipari, and L. Abeni, ªElastic Task Model for
Adaptive Rate Control,º Proc. IEEE Real-Time Systems Symp., Dec.
1998.

[8] M. Caccamo, G. Lipari, and G. Buttazzo, ªSharing Resources
among Periodic and Aperiodic Tasks With Dynamic Deadlines,º
Proc. IEEE Real-Time Systems Symp., Dec. 1999.

[9] M. Caccamo, G. Buttazzo, and L. Sha, ªElastic Feedback Control,º
IEEE Proc. 12th Euromicro Conf. Real-Time Systems, pp. 121-128,
June 2000.

[10] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, ªA New Kernel
Approach for Modular Real-Time systems Development,º Proc.
13th IEEE Euromicro Conf. Real-Time Systems, June 2001.

[11] M.K. Gardner and J.W.S. Liu, ªPerformance of Algorithms for
Scheduling Real-time Systems with Overrun and Overload,º IEEE
Proc. 11th Euromicro Conf. Real-Time Systems, June 1999.

[12] T.M. Ghazalie and T.P. Baker, ªAperiodic Servers in a Deadline
Scheduling Environment,º J. Real-Time System, vol. 9, 1995.

[13] J. Leung and J. Whitehead, ªOn the Complexity of Fixed-Priority
Scheduling of Periodic, Real-Time Tasks,º Performance Evaluation,
vol. 2, pp 237-250 1982.

[14] C.L. Liu and J.W. Layland, ªScheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,º J. ACM, vol. 20,
no. 1, pp. 40-61, 1973.

[15] M. Ryu and S. Hong, ªToward Automatic Synthesis of Schedul-
able Real-Time Controllers,º J. Integrated Computer Aided Eng.,
vol. 5, no. 3, pp. 261-277, 1998.

[16] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin, ªOn Task
Schedulability in Real-Time Control System,º Proc. IEEE Real-
Time Systems Symp., Dec. 1996.

[17] K.G. Shin and C.L. Meissner, ªAdaptation and Graceful Degrada-
tion of Control System Performance by Task Reallocation and
Period Adjustment,º IEEE Proc. 11th Euromicro Conf. Real-Time
Systems, June 1999.

[18] M. Spuri and G.C. Buttazzo, ªEfficient Aperiodic Service under
Earliest Deadline Scheduling,º Proc. IEEE Real-Time Systems Symp.,
Dec. 1994.

[19] M. Spuri, G. Buttazzo, and F. Sensini, ªRobust Aperiodic
Scheduling Under Dynamic Priority Systems,º Proc. 16th IEEE
Real-Time Systems Symp., Dec. 1995.

848 IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 7, JULY 2002

3. In the case of multiunits resources, the ceiling of each resource is
dynamic as it depends on the number of units actually free.

[20] M. Spuri and G.C. Buttazzo, ªScheduling Aperiodic Tasks in
Dynamic Priority Systems,º J. Real-Time Systems, vol. 10, no. 2,
1996.

[21] J.A. Stankovic, C. Lu, S. Son, and G. Tao, ªThe Case for Feedback
Control Real-Time Scheduling,º IEEE Proc. 11th Euromicro Conf.
Real-Time Systems, June 1999.

[22] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, ªDesign and
Evaluation of a Feedback Control EDF Scheduling Algorithm,º
Proc. IEEE Real-Time Systems Symp., Dec. 1999.

Marco Caccamo is a PhD student in computer
engineering at the Scuola Superiore S. Anna of
Pisa, Italy. In 1997, he graduated with a degree
in computer engineering at the University of
Pisa. During 1999, he was a visiting scholar at
the University of Illinois (UIUC), working with
Professor Lui Sha on novel scheduling algo-
rithms for real-time control applications. His
reasearch activity is focused on the develop-
ment and analysis of flexible scheduling algo-

rithms for real-time systems. His research interests include real-time
operating systems, scheduling algorithms, fault-tolerant systems, quality
of service control, and multimedia applications.

Giorgio C. Buttazzo graduated with a degree in
electronic engineering at the University of Pisa in
1985, received a master's degree in computer
science at the University of Pennsylvania in
1987, and a PhD degree in computer engineer-
ing at the Scuola Superiore S. Anna of Pisa in
1991. He is an associate professor of computer
engineering at the University of Pavia, Italy. His
main research interests include real-time oper-
ating systems, dynamic scheduling algorithms,

quality of service control, multimedia systems, advanced robotics
applications, and neural networks. He is a member of the IEEE.

Lui Sha received the PhD degree from Carne-
gie-Mellon University (CMU) in 1985. He is
professor of computer science at the University
of Illinois at Urbana Champaign. He was the
chair of IEEE Real Time Systems Technical
Committee from 1999 to 2000. He was elected
to be an IEEE Fellow in 1998 ªfor technical
leadership and research contributions, which
enabled the transformation of real-time comput-
ing practice from an ad hoc process to an

engineering process based on analytic methods.º He is interested all
aspects of distributed real time systems.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

CACCAMO ET AL.: HANDLING EXECUTION OVERRUNS IN HARD REAL-TIME CONTROL SYSTEMS 849

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

