
FTT-Ethernet: a platform to implement the Elastic Task Model over message
streams

Paulo Pedreiras
�

, Luis Almeida
pedreiras@alunos.det.ua.pt, lda@det.ua.pt

DET / IEETA - Universidade de Aveiro
Aveiro, Portugal

Paolo Gai
pj@sssup.it

Retis Lab - Scuola Superiori Sant’Anna
Pisa, Italy

Giorgio Buttazzo
buttazzo@unipv.it

DIS - Università di Pavia
Pavia, Italy

Abstract

Real-time distributed systems are becoming more perva-
sive, supporting a broad range of applications such as au-
tomotive, adaptive control, robotics, computer vision, and
multimedia. Furthermore, in all such applications there is
a growing demand for flexibility in order to support dynamic
configuration changes such as those arising from evolving re-
quirements and on-line Quality-of-Service management. The
elastic task model, proposed previously, is well suited to sup-
port that level of flexibility in multitasking systems running
on single processors. This paper presents the extension of
such model to the network, which runs the FTT-Ethernet pro-
tocol. The paper includes a brief presentation of this proto-
col and of the elastic task model, discusses the referred ex-
tension and presents a set of experimental results involving
the dynamic adjustment of the quality of service delivered to
several message streams, with guaranteed timeliness.

1. Introduction

Real-time distributed systems are becoming more and
more pervasive in many different domains of modern soci-
eties, from industry to business, health, leisure and others.
They are used to support a broad range of applications such
as process control, factory automation, automotive, robotics,
computer vision, and multimedia. Furthermore, in all such
applications there is a growing demand for flexibility in or-
der to support dynamic configuration changes such as those
arising from evolving requirements and on-line Quality-of-
Service (QoS) management. However, reconciling flexibil-
ity and timeliness is not always an easy task. Most existing
systems privilege either one or the other but not both [1].

One of the aspects of flexibility that has received recent
attention from the research community is the capability of

�

This work was partially supported by the Portuguese Gov-
ernment through grant PRAXIS XXI/BD/21679/99, project CIDER
POSI/1999/CHS/33139 and by the European Comission through accompa-
nying measure ARTIST IST-2001-34820.

changing on-line the computing and communication require-
ments of the system under guaranteed timeliness. For ex-
ample, [6] proposed a load scaling technique to degrade the
workload of a system by adjusting the task periods. Tasks
are assumed to be equally important and the objective is to
minimize the number of fundamental frequencies to improve
schedulability under static priority assignments. In [7], Lee,
Rajkumar and Mercer proposed a number of policies to dy-
namically adjust tasks’ rates in overload conditions. In [9],
Nakajima showed how a multimedia activity can adapt its
requirements during transient overloads by scaling down its
rate or its computational demand. However, it is not clear
how the QoS can be increased when the system is under-
loaded. In [2], Beccari et al. proposed several policies for
handling overload through period adjustment. The authors,
however, do not address the problem of increasing the task
rates when the processor is not fully utilized. In [3] and [5],
Buttazzo et al. propose the elastic task model according to
which task utilizations are treated like springs that can adapt
to a given workload through period variations. The advan-
tage of the elastic model with respect to the other methods
proposed in the literature is that a new period configuration
can easily be determined on line as a function of the elas-
tic coefficients, which can be set to reflect tasks’ importance.
Once elastic coefficients are defined based on some design
criterion, periods can be quickly computed on line depend-
ing on the current workload and the desired load level. More-
over, the elastic model can also be used in combination with
a feedback mechanism, as done in [4], when system param-
eters are not known a priori.

In this paper, the elastic task model is extended to mes-
sage scheduling over FTT-Ethernet (Flexible Time-Triggered
communication over Ethernet) [10]. This extension allows
varying the QoS delivered to different periodic message
streams by controlling their transmission periods. The varia-
tion in QoS is achieved in a way that improves the efficiency
in network bandwidth utilization. Furthermore, the paper
also shows experiments with a distributed multimedia appli-
cation. The respective results confirm the interest in using
FTT-Ethernet instead of plain Ethernet or Switched-Ethernet

in what concerns message losses and network-induced jitter.
The paper is organized as follows. Section2 introduces the

elastic task model. Section 3 presents a brief description of
FTT-Ethernet. Section 4 discusses the extension of the elastic
task model to message scheduling in FTT-Ethernet. Section
5 presents the experimental results and Section 6 concludes
the paper.

2. Elastic task model

According to the classical elastic model proposed in [3],
the utilization of a task is treated as an elastic parameter,
whose value can be modified by changing the period within
a specified range. Each task is characterized by five param-
eters: a worst-case computation time

���
, a nominal period� ���

, a minimum period
� ���	��

, a maximum period
� ���	��

, and
an elastic coefficient � � .

The elastic coefficient specifies the flexibility of the task
to vary its utilization for adapting the system to a new fea-
sible rate configuration: the greater � � , the more elastic the
task.

Thus, an elastic task is denoted as:

� ��� � ��� � � � � � � ����
 � � � �	�� � � �����
From a design perspective, elastic coefficients can be set

equal to values which are inversely proportional to tasks’ im-
portance. In the following,

� �
will denote the actual period of

task � � , which is constrained to be in the range � � ������
 � � ���	���� .
Any period variation is always subject to an elastic guaran-
tee and is accepted only if there exists a feasible schedule in
which all the other periods are within their range. In such
a framework, tasks are scheduled by the Earliest Deadline
First algorithm [8]. Hence, if � �

�� � �	��
 �"! , all tasks can
be created at the minimum period

� � �	��

, otherwise the elas-

tic algorithm is used to adapt each task � � period to some
� �

such that � �
�� �$#&%(' �)! , where

� �
is the actual on-line

execution estimate and %*' is some desired utilization factor.
In the absence of period constraints (i.e., if

�	+�,.- #0/)
the period

� �
of each compressed task can be computed as

follows:

132 � � # � � ����
54 � %76 4 %(' � � ��98
�

(1)

where % 6 is the sum of tasks nominal utilizations and

� 8 # :; ��<>= � � � (2)

In the presence of period constraints (
� � � � � �	�?), how-

ever, the problem of finding the values
� �

requires an iterative
solution. In fact, if during compression one or more tasks
reach their maximum period, the additional compression has
to affect only to the remaining tasks. Thus, at each instant,
the set @ of tasks can be divided into two subsets: a set @7A
of fixed tasks having maximum period, and a set @ 8 of vari-
able tasks whose period can still be enlarged. Applying the
equations to the set @B8 of variable springs, we have

1 � �DC @ 8 % � #E% ����4 � % 8 ��4 % 'GF % A � �
�
�98 (3)

where

% 8 � # ;H �JILKNM
% ��� (4)

% A # ;H � ILKPO
% � ����
 (5)

�Q8 # ;H �JILKNM �
���

(6)

If there exist tasks for which % �SR % ������
 , then the period
of those tasks has to be fixed at its maximum value

� ���	�?
(so

that % � #T% ������
), sets @BA and @ 8 must be updated (hence,% A and �Q8 recomputed), and equation (3) applied again to
the tasks in @>8 . If there exists a feasible solution, that is, if
the desired utilization %(' is greater than or equal to the min-
imum possible utilization % + � :

� :��<>= �
�� � �>�? , the iterative

process ends when each value computed by equation (3) is
greater than or equal to its corresponding minimum % � ����
 .
In[5] it is shown that, in the worst case, the compression al-
gorithm converges to a solution (if there exists one) in U �WV>XY�
steps, where

V
is the number of tasks.

The same algorithm can be used to reduce the periods
when the overload is over, so adapting task rates to the cur-
rent load condition to better exploit the computational re-
sources.

3. FTT-Ethernet protocol brief presentation

The FTT-Ethernet protocol has been firstly presented in
[10]. However, it is an implementation on Ethernet of the
same paradigm that lead previously to the creation of the
FTT-CAN protocol (Flexible Time-Triggered communica-
tion on Controller Area Network) [13]. The rationale be-
hind these protocols is the combination of scalability, com-
posability, flexibility, timeliness and efficiency. To achieve
these goals the protocols rely on two main features: cen-
tralized scheduling and master/multi-slave transmission con-
trol. The former feature allows having both the communi-
cation requirements as well as the message scheduling and
dispatching policy localized in one single node called Mas-
ter, facilitating on-line changes to both. As a result, a high
level of flexibility is achieved. On the other hand, such cen-
tralization also facilitates the implementation of on-line ad-
mission control in the Master node to guarantee the traffic
timeliness upon requests for changes in the communication
requirements. In particular, master/multi-slave transmission
control, allows to enforce the traffic timeliness in the bus and
to achieve a high efficiency in bandwidth utilization. The first
aspect is typical of master-slave transmission control since
the master explicitly tells each slave when to transmit, thus
enforcing the traffic timeliness. The second aspect results
from the fact that, instead of using a master-slave transmis-
sion control in a per message basis, the same master message
is used to trigger several messages in several slaves, thus re-
ducing the number of control messages and consequently im-
proving the bandwidth utilization.

3.1. The Elementary Cycle

A key concept in the protocol is that of the Elementary
Cycle (EC). This is a fixed duration (LEC) time-slot, used
to allocate traffic on the bus. The bus time is then orga-
nized as an infinite succession of ECs. Within each EC
there can exist several windows reserved to different types
of messages. Particularly, two windows are considered, syn-
chronous and asynchronous, dedicated to time-triggered and
event-triggered traffic respectively (Figure 1). The former
type of traffic, synchronous, is subject to admission con-
trol and thus its timeliness is guaranteed, i.e. real-time traf-
fic. The latter type, asynchronous, is based on a best effort
paradigm and aims at supporting event-triggered traffic. If
required, it is possible to pre-analyze its requirements and
support real-time event-triggered communication.

The traffic in both windows is managed by two com-
plementary subsystems, the SMS (Synchronous Messaging
System) and AMS (Asynchronous Messaging System). The
bandwidth used by the SMS can be upper bounded by lim-
iting the maximum duration of the respective window to a
value (LSW) shorter than the EC duration. However, in
each EC, the synchronous window only takes the duration
required to convey the synchronous messages that are sched-
uled for that EC. The remaining time is absorbed by the
asynchronous window. Consequently, limiting the maximum
bandwidth available for the SMS implicitly causes a min-
imum bandwidth that is guaranteed to be available for the
AMS.

Each EC begins with the transmission, by the Master
node, of a Trigger Message (TM). This is a control message
that synchronizes the network and conveys in its data field
the identification of the synchronous messages that must be
transmitted by the remaining nodes within the respective EC
(EC schedule). Moreover, the TM also conveys the informa-
tion required to allow each node to calculate the time instants
within the EC (

��� �
in figure 1) at which the synchronous

messages should be transmitted. All the remaining nodes in
the network decode the TM and scan a local table to identify
whether they are the senders of any of the scheduled mes-
sages. If so, they transmit those messages in the specified
instants.

As far as the asynchronous traffic is concerned, a polling
mechanism is used to question the nodes for the presence
of event-triggered messages waiting for transmission. This
traffic is divided in two types according to the addressing
scheme used, source addressing or direct addressing. The
former is used for messages that may have time constraints,
(e.g., alarm messages, sporadic data, change requests for the
synchronous messages). The latter is unconstrained traffic,
consequently non-real-time, that may be associated to com-
mon applications using higher-level communication proto-
col,s such as TCP/IP (e.g., web server, ftp). The master
node polls the real-time asynchronous traffic first and then, if
there is time available within the EC, the non-real-time. The
polling order of these types of traffic is defined by appropri-
ate scheduling policies, according to the respective commu-
nication requirements.

The transmission instants of all messages within the EC

are specified in a way that no collisions occur and that no
message transmission crosses the boundary of the respective
window. Hence, both traffic timeliness within the EC and
temporal isolation between all types of traffic are enforced.

3.2. The System Requirements Database (SRDB)

In order to facilitate the management of the communica-
tion system, all the relevant operational information is stored
locally in an appropriate data structure in the master node
called System Requirements Database (SRDB). The SRDB
contains the properties of the message streams to be con-
veyed as well as all other operational parameters, e.g., EC
duration, maximum width of the synchronous window, max-
imum number of synchronous message streams, current fig-
ures from on-going traffic such as network-induced jitter and
deadline misses.

Specifically, the SRDB contains three components: Syn-
chronous Requirements, Asynchronous Requirements and
System Configuration and Status. The Synchronous Require-
ments component is formed by the Synchronous Require-
ments Table (SRT) that includes the description of the syn-
chronous message streams to be conveyed by the communi-
cation system. The structure of this table depends on the par-
ticular scheduling policy that is implemented. For the case
of the Elastic Task Model, its structure is as follows (7):

�������
	������������������������ � ���� ����
 ���� �	�� ���� �!�
"�#%$'&(&)+*�,

(7)

Each synchronous message stream is characterized by
the following parameters: a data length in bytes -/. � � , its
respective maximum transmission time (including all over-
heads)

� �
, a nominal period

� � �
, a minimum period

� � ����

, a

maximum period
� � �	�?

and an elastic coefficient � � .
The Asynchronous Requirements component if formed

by the reunion of two tables, the Asynchronous Require-
ments Table (ART) and the Non-Real-Time Table (NRT).
The former one contains the description of message streams
that, despite being transmitted as asynchronous messages,
may have time constraints (e.g. alarm messages) (8).

0 �1�2�3	 0 �4��5������!�6����87 "59 !�6�:��8;=<>?��� "�#%$'&(&)A@�,
(8)

As in (7), -/. �G� and
�G�

are the data length and maximum
transmission time of the message, respectively. B 2�C � speci-
fies the minimum inter-arrival time, - � the message deadline
and DFE � a static priority.

The NRT (equation 9) contains the information required
to guarantee that the transmission of these non-real-time
messages fits within the asynchronous window, as required
to enforce temporal isolation. Thus, the Master only needs
to keep track of the length of the longest non-real-time mes-
sage that is transmitted by each node. A priority field is still
used in order to allow an asymmetrical distribution of the bus
bandwidth among nodes, if desired.

) ���2�
) �4����6GH�I��6�KJMLN������!�6�KJMLN�����;=<OP���
"�#%$'&(&):QI,

(9)

TM TM

Elementary Cycle (EC) [i]

Async. WindowSynchronous Window

CM3 NRTM4SM1 SM3 SM8 SM9

{SM1,Tx
1
}

{SM3,Tx 3}
{SM8,Tx

8
}

{SM9,Tx 9}

NRT11

Elementary Cycle (EC) [i + 1]

CM7 NRT21SM1 SM4 SM11

{SM1,Tx 1}
{SM4,Tx

4
}

{SM11,Tx 11}

Figure 1. The Elementary Cycle structure.

In this case, ����- � is the node’s identifier, ��� � -/. � � is
the data length, in bytes, of the longest non-real-time mes-
sage transmitted by that node, ��� � � � is the respective max-
imum transmission time (including all overheads) and DFE �
is the node’s non-real-time priority. ��� is the number of
stations producing non-real-time messages.

The last component of the SRDB is the System Configu-
ration and Status Record (SCSR), which contains all system
configuration data, like the bus transmission speed, duration
of the elementary cycle, minimum amount of bandwidth al-
located to non-real-time traffic, protocol overheads depen-
dent on the network topology (network length and number
of hubs/repeaters), etc.

3.3. FTT-Ethernet schedulability constraints

The FTT-Ethernet protocol allows dynamic changes to the
message streams that are exchanged on the network. How-
ever, to preserve the timeliness of the system, all the change
requests are subject to admission control. Only changes that
result in schedulable sets, and therefore do not jeopardize the
system timeliness, are accepted.

The properties of the FTT-Ethernet protocol have impact
on the schedulability analysis performed by the online ad-
mission control. Relevant factors are: time granularity, the
transmission of a trigger message at the beginning of each
EC and the enforcement of temporal isolation between syn-
chronous and asynchronous traffic. All the time-related prop-
erties of the message streams, like period, deadline and initial
phase, are expressed in multiples of the EC duration. There-
fore, messages become ready synchronously, at the begin-
ning of each EC, resulting in the absence of preemption in-
stants.

The transmission of a trigger message at the beginning
of each EC represents a protocol overhead, since it does not
carry application related data. The length of this message
depends on the maximum number of messages that are sup-
ported on a single EC. This parameter is fixed and set at pre-
runtime. The length of the trigger message (LTM) is given
by the following expression:

. � � # B	� � � � ��
� 8�������� , ' F�� �Q� ��� , ' ��� F����
��� � � � B��������! �� 2 V � C#" � E$��B�� �
where: � �%
� 8��&����� , ' is the Ethernet frame overhead;� �9� �'� , ' ��� is the FTT-Ethernet frame header

contents;
��� � � � B	�$���(� is the maximum number of
messages allowed in each EC;
� 2 V � C#" � E$��B�� is the minimum length of an
Ethernet frame.

The enforcement of temporal isolation between synchronous
and asynchronous traffic is achieved by preventing the trans-
mission of messages that do not fit within the respective win-
dow. Since the length of the messages is not correlated to the
duration of the respective window, some idle time can appear
at the end of each window, even when messages are waiting
for transmission (inserted idle-time). The maximum amount
of idle time in each window is given by:
�)� �+* ,�- # B�� � � �*� �.� 2 # ! ��� �
where

� �
is the transmission time of message

2
and � is

the number of messages belonging to the window in consid-
eration.

The scheduling model of the synchronous traffic in FTT-
Ethernet, considering inserted idle-time and coarse reso-
lution to express message parameters, follows closely the
non-preemptive blocking-free model presented in [12]. In
that work, several methods are suggested to adapt exist-
ing schedulability analysis for independent preemptive tasks
with fixed priorities (e.g. [8] and [11]) to such model. Such
adaptation can be further enlarged to apply directly to FTT-
Ethernet when using fixed priorities-based scheduling. It
suffices to consider that the remaining parts of the EC out-
side the maximum synchronous window (LEC-LSW) are in-
cluded in the inserted idle-time (fig. 1). For dynamic prior-
ities, such as when using EDF scheduling, a straightforward
adaptation of existing schedulability analysis for indepen-
dent preemptive tasks consists on considering the inserted
idle-time as an extra virtual message with period of 1 EC
[13].

Finally, in order to correctly calculate the transmission
time of each message (equivalent to the execution time of a
task) a correct characterization of the communication over-
heads per message transmission/reception must be carried
out. These overheads are due to extra time (guarding time)
that must be allocated between consecutive transmissions
to guarantee that no collisions occur at the network access
level. The necessity of such guarding time arises from vari-
ations in the instants of message reception caused by propa-
gation delays in the network as well as from variations in the

1 2 3 4 5

M1

M2

M3

M4

Message periods (EC)

Rounded period

Exact period

Previous period

M
e
s
s
a
g
e
s

Figure 2. Rounding of periods in FTT-Ethernet.

transmission/reception instants of messages caused by vari-
able latencies in the node’s hardware and operating system.
The propagation delay can be upper-bounded by knowing the
transmission bit-rate and network topology. Concerning the
frame transmission/reception jitter, an experimental charac-
terization before system set-up must be carried out.

4. Applying the Elastic Task Model to message
scheduling

The Elastic Task Model was originally developed for task
scheduling in single microprocessors. Under this framework,
tasks are considered preemptible. However, in the context of
message scheduling, message transmissions cannot be sus-
pended and resumed later, therefore preemption is not al-
lowed. Another difference refers to the resolution used to
express periods, initial phasings and deadlines. FTT-Ethernet
uses a coarse resolution equal to the EC duration while in the
original elastic task model the resolution can be arbitrarily
small. Moreover, the transmission time of messages in FTT-
Ethernet is always much smaller than the EC duration while
in the elastic task model the task execution times are not con-
strained beyond a limited utilization factor.

Despite these differences, the elastic task model can be
easily applied to FTT-Ethernet. With the simple adaptation
suggested at the end of Section 3.3, equation 3 can still be
used to generate new message utilizations (% �). However,
these utilizations do not necessarily lead to periods that are
multiples of the EC duration (LEC) and thus, they must be
rounded up (fig. 2) to the next integer multiple of LEC (

����
),

as in (10). The rounding must be done in excess, in order
to guarantee that the resulting message set does not have a
greater utilization factor than desired (% '). After rounding
up the periods, each message utilization % �� is given by (11)
and the overall effective utilization % �� AYA is obtained by sum-
ming % �� for all i. Due to the rounding ups of the periods,% �� AYA � %S' (fig. 3).

To avoid this situation and improve the efficiency of the

Utilisation factor (%)

UU
eff
’

d U
d,j
+ Ud,k

+(0) U
eff
’ (1) U

eff
’ (2)

Uj Uk

Figure 3. Increasing the effective utilization
factor in FTT-Ethernet.

FTT-Ethernet implementation, the elastic task model was ex-
tended with an additional optimization step, performed after
the initial compression algorithm, in which the slack utiliza-
tion factor is better distributed among the messages. This
redistribution is carried out coherently with the philosophy
of the elastic model, guaranteeing that the resulting effective
utilization factor does not exceed

���
(fig. 3).

The optimization step allows calculating a succession of
effective utilization values

����	�
������ starting from
�������� de-

fined as above. Firstly, the process computes a vector with
utilization values

������ � for every message � that can be de-
compressed and has utilization lower than the one result-
ing from equation 3 (���), using equation 14. Each of these
values corresponds to the increased overall utilization that
would result if the utilization of message � was enlarged as
in (12), due to reducing the respective period to the nearest
integer multiple of LEC. The vector {

� ���� � } is sorted in as-
cending order and for each � , if

�������� �������� � �"!#�$�
then�������� �%&�('
�*) �������� �������� � � and the period of message

i is reduced by the duration of one EC (LEC). After scan-
ning the whole vector, the final message periods impose an
overall bandwidth utilization factor that is potentially closer
to the desired value

�+�
.

,.-	/10325476�8/�9;: 6</>= 9?: @ /A /CB1D�E @
=FBFDGE @IH 6C/ (10)

A 8/ 9 @ /6 8/ (11)

A�J/ 9 @ /K 6 8/�L DGE @ M (12)

N A / 9 A�J/OL A 8/ (13)

,.-	/G0*2 4 A JPRQ / 9 A PTS K A J/ L A / M E�4E�/ (14)

5. Experimental results

The Elastic Task Model has been implemented on the top
of the S.Ha.R.K. kernel [14] with the FTT-Ethernet as the
real-time communication protocol. A set of experiments on
a multimedia application where performed. The same set of
experiments was carried out also with Hub and Switch based
Ethernet to assess the benefits of the presence of a determin-
istic communication layer.

The application developed consisted in the simulation of a
video surveillance security system, containing a set of physi-
cally distant video cameras and a central console. Each cam-
era can be served by distinct QoS, according to the current

�=JH7 & ������ �������=� � �� � �� ����
 �� �>�? �
1 0.89/0.84 10 5 30 1

2 0.89/0.84 10 5 30 2

3 0.89/0.84 10 5 30 4

4 0.89/0.84 10 5 30 6

Table 1. Task set parameters used in the ex-
periments.
(Periods and transmission times in milliseconds)

bandwidth availability and the relevance of the data being
sent. If enough bandwidth is available, all the cameras are
allowed to sent frames at the nominal rate. Conversely, if the
demanded bandwidth cannot be granted, higher bandwidth is
reserved to cameras that transmit more relevant data.

The elastic guarantee mechanism has been implemented
in the FTT Master node, acting both as QoS and admission
control manager. All the change requests submitted to the
Synchronous Messaging System are firstly submitted to the
elastic guarantee mechanism. If the request results in an in-
feasible message set, it is rejected. Conversely, if the result-
ing message set is schedulable, the QoS manager calculates
the new periods and updates the Synchronous Requirements
Table. Since the SRT is used both by the QoS manager and
the Scheduler, a mutex was used in order to guarantee data
access consistency. Therefore, the updates to the SRT are
atomic.

5.1. Experimental set-up description

The experimental set-up consists on 6 PC’s, one acting
as FTT Master, four as slaves, each producing a message
stream associated to one camera, and, finally one PC dedi-
cated to collecting network traffic data. The communication
infrastructure was Ethernet at 10Mbps.

The simulated cameras have a resolution of 384*288 pix-
els and a color depth of 8 bits, yielding a frame size of 884.7
Kbit. The camera data frames are sent without any kind of
compression. Since the image frame size is larger that the
maximum Ethernet packet size, each image frame is split
in 1000 Byte packets. A header containing the camera ID,
frame and packet number, and packet data size is added to
each packet, yielding a total Ethernet packet data size of 1010
Bytes.

The task set parameters used in the experiment are shown
in Table 1, where

� �
represents the message transmis-

sion time (@10Mbps) both for the FTT and Ethernet case,� � � � � � ����

and
� � �	��

are the nominal, minimum and maxi-
mum periods respectively and � � is the message’s elastic co-
efficient.

At the beginning of the experiment all cameras sent data
at the nominal rate. At time

C #�� � camera 1 requested an
increase in its QoS. This request is found to be feasible by
the elastic guarantee mechanism as long as cameras 3 and 4
increase their transmission periods. The elastic task model
found a feasible set with � � = #�� B�� � X # !	� B�� ��
 #! � B � �� #�� � B ��� . At time

C #�� � , the QoS requirement

�=JM7��O<'J 9����� ����� 9����� 9�����
1 10 5 10

2 10 10 10

3 10 15 10

4 10 20 10

Table 2. Periods of each message (ms) during
the experiments.

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000

S
en

t p
ac

ke
ts

time (ms)

Cam_1
Cam_2
Cam_3
Cam_4

Figure 4. packets sent using FTT-Ethernet.

of camera 1 is reset to its nominal value, causing all the cam-
eras to return to their nominal QoS.

The resulting message periods during the experiments are
summarized in Table 2.

Practical experiments with this traffic pattern where made
using both FTT-Ethernet and Hub and Switch based Ether-
net.

5.2. Results with FTT-Ethernet

In the FTT-Ethernet setup the EC duration was set to
5ms (LEC=5ms) and the synchronous window was upper
bounded to 37% of the EC (LSW=1.85ms), representing
a maximum bandwidth of 3.7Mbps available for the syn-
chronous traffic (SMS). This type of traffic was scheduled
according to the EDF policy.

As referred at the end of Section 3, it is important to char-
acterize and bound the communication overheads per mes-
sage transmission/reception and include them in each mes-
sage transmission time, for admission control and scheduling
purposes. These overheads depend on both network proper-
ties, such as length and number of hubs, as well as on variable
latencies imposed by the node’s hardware and operating sys-
tem in the transmission and reception of messages. The com-
bined effect of these aspects was experimentally measured
and upper bounded to 50 � � . Furthermore, each synchronous
message also includes a specific FTT-Ethernet header [10]
with additional control bytes. The resulting packet size, for
1000 data bytes, is 8896 bits resulting in a transmission time
of approximately 0.890ms at 10 Mbps.

Figure 4 presents the number of packets transmitted by
each of the nodes as a function of time, during the exper-

�=JM7 � <'J1GH�
1 2 3 4

Rel. release jitter (avg) (%) 0.53 0.45 1.85 2.83

Absolute release jitter(%) 8.66 7.80 9.79 21.39

Table 3. message jitter with FTT-Ethernet.

�=JM7 � <'J1GH�
1 2 3 4

Rel. release jitter (avg) (%) 0.66 1.71 1.13 0.69

Absolute release jitter(%) 66.44 91.65 90.33 90.81

Lost packets (%) 1.65%

Table 4. message jitter (shared Ethernet).

iment. Initially, all cameras send packets at the same rate.
However, at time

C # � � , the accumulated number of pack-
ets sent by each camera starts to diverge as a consequence
of a request from camera 1 to increase its QoS. The elastic
mechanism finds a feasible set, which results in an increase
of the bandwidth assigned to this camera and a decrease in
the bandwidth assigned to cameras 3 and 4. At

C # � � , cam-
era 1 requests a QoS reduction to its nominal value. This
implicitly causes the QoS of the remaining cameras to be in-
creased to their nominal value, too. Consequently, from that
moment on, all cameras start sending packets at the same rate
again.

Table 3 summarizes the figures concerning the jitter suf-
fered by the messages sent by each of the cameras. The
values are presented in percentage and normalized to the re-
spective message period. These values are relatively small
despite the occurrence of changes in the message set, due
to the control of transmission instants preventing the occur-
rence of collisions at the network access level.

5.3. Results with hub-based Ethernet

A second experiment was carried out using the same com-
munication infrastructure as in the previous section, but with-
out the use of the FTT-Ethernet layer. In each node a task was
configured to reproduce the same data rate described above,
at approximately the same instants, but without synchroniza-
tion.

In this scenario, the Ethernet packet is composed of the
data bytes plus a header, 10 bytes long, conveying informa-
tion required to allow the consumers to identify and reassem-
ble the data. The total packet size amounted to 8384 bits,
corresponding to a transmission time of approximately 0.84
ms.

The number of packets sent by each node during the ex-
periment follows a pattern very similar to the one obtained
with FTT-Ethernet (fig. 4). However, as can it be observed
in Table 4, there are, now, lost packets and an absolute release
jitter that is considerably greater than the one experienced in
the previous case.

It is interesting to observe that, despite using a relatively
light load (around 35%), the event-triggered nature used in
this approach leads to situations where, at some instants, sev-
eral messages become ready simultaneously, originating col-
lisions. In turn, these collisions result in a strong increase in
the jitter figures and sometimes to lost packets.

�=JH7��O<'J�G �
1 2 3 4

Rel. release jitter (avg) (%) 6.13 0.32 11.00 17.01

Absolute release jitter (%) 66.61 74.61 83.30 126.41

Table 5. message jitter (switched Ethernet).

5.4. Results with switched Ethernet

In this case, the experimental setup is similar to the one
described in the previous section, except that a switch was
used to interconnect the nodes, instead of a hub. Again, the
number of packets sent by each node during the experiment
follows roughly the same pattern as in both previous cases.
However, when comparing with the results obtained in the
hub-based experiment, there are no frame drops, now. This
result was expected, since the use of a switch avoids colli-
sions, implements queuing at the switch ports and the total
bandwidth requested was well below the network maximum
throughput.

Concerning the jitter figures, shown in Table 5, it can
be observed that the values for camera 4 are the greatest
among all the experiments, with some messages delayed by
more than one period. This phenomenon is explained by the
buffering made at the switch ports.

6. Conclusions

In this paper was presented the application of the Elastic
Task Model to message scheduling on a communication net-
work using the FTT-Ethernet real-time communication pro-
tocol. The elastic task model was integrated in the FTT-
Ethernet protocol, acting both as QoS and admission con-
trol manager, providing a framework in which periodic mes-
sages can be served by distinct QoS during system’s normal
operation. This model is particularly useful for distributed
systems supporting dynamic environments, in which appli-
cations have to adapt to the varying operative conditions,
leading to variations both in internal computational activities
and messages exchanged by the underlying communication
system. The policy for selecting a solution during run-time
is implicitly encoded in elastic coefficients provided by the
user at system configuration time.

A set of experiments was carried out, in order to assess
the effectiveness of the proposed approach. The obtained re-
sults have shown that the architecture presented in this paper
provides flexible communication, capable of handling dy-
namic sets of periodic messages, without jeopardizing the
systems timeliness. Moreover, the same set of experiments
was carried out over hub and switched-based Ethernet. De-
spite of the fact that no packet loss has occurred with the use
of the switch, both of them have proved to be incapable of ef-
fectively handle time-constrained real-time messages, since
large values of jitter were experienced.

References

[1] Thomesse, J-P, “Fieldbus and Interoperability”, Control
Engeneering Practice, 7(1), pp81-94, 1999.

[2] G. Beccari, S. Caselli, M. Reggiani, F. Zanichelli, ”Rate
Modulation of Soft Real-Time Tasks in Autonomous
Robot Control Systems”, IEEE Proceedings of the 11th
Euromicro Conference on Real-Time Systems, York,
June 1999.

[3] G. Buttazzo, G. Lipari, and L. Abeni, ”Elastic Task
Model for Adaptive Rate Control”, Proceedings of the
IEEE Real-Time Systems Symposium, Madrid, Spain,
pp. 286-295, December 1998.

[4] G. Buttazzo and L. Abeni, “Adaptive Rate Control
through Elastic Scheduling”, Proceedings of the 39th
IEEE Conference on Decisionand Control, Sydney,
Australia, December 2000.

[5] G. Buttazzo, G. Lipari, M. Caccamo, L. Abeni, “Elastic
Scheduling for Flexible Workload Management”, IEEE
Transactions on Computers, Vol. 51, No. 3, pp. 289-
302, March 2002.

[6] T.-W. Kuo and A. K, Mok, “Load Adjustment in Adap-
tive Real-Time Systems”, Proceedings of the 12th IEEE
Real-Time Systems Symposium, December 1991.

[7] C. Lee, R. Rajkumar, and C. Mercer, ”Experiences with
Processor Reservation and Dynamic QOS in Real-Time
Mach”, Proceedings of Multimedia Japan 96, April
1996.

[8] C.L. Liu and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard real-Time Environment”,
Journal of the ACM, 20(1), 1973, pp. 40–61.

[9] T. Nakajima, “Resource Reservation for Adaptive QOS
Mapping in Real-Time Mach”, Sixth International
Workshop on Parallel and Distributed Real-Time Sys-
tems, April 1998.

[10] Pedreiras, P., L. Almeida and P. Gai, “The FTT-
Ethernet protocol: merging flexibility, timeliness and
efficiency”, Paper accepted for publication at the Eu-
romicro Conference on Real-Time Systems 2002, Vi-
enna, June, 2002.

[11] Tindell, K., A. Burns, J. Wellings, “Analysis of Hard
Real-Time Communications”, The Journal of Real-
Time Systems, Vol.9, 147-171, 1995.

[12] Almeida, L., J. Fonseca, "Analysis of a Simple
Model for Non-Preemptive Blocking-Free Schedul-
ing", ECRTS01, 13th Euromicro Conference on Real-
Time Systems, Delft, The Netherlands, 13-15 June
2001.

[13] Almeida, L., P. Pedreiras, J. Fonseca, “The FTT-CAN
protocol: Why and How”. IEEE Transactions on Indus-
trial Electronics, (to appear) December 2002.

[14] Paolo Gai, Massimiliano Giorgi, Luca Abeni and Gior-
gio Buttazzo, “A New Kernel Approach for Modular
Real-Time Systems Development”, Proceedings of the
13th IEEE Euromicro Conference on Real-Time Sys-
tems June 2001 Delft, The Netherlands.

