
Rate Monotonic Analysis:
The Hyperbolic Bound

Enrico Bini, Giorgio C. Buttazzo, Member, IEEE, and Giuseppe M. Buttazzo

Abstract—In this paper, we propose a novel schedulability analysis for verifying the feasibility of large periodic task sets under the rate

monotonic algorithm when the exact test cannot be applied on line due to prohibitively long execution times. The proposed test has the

same complexity as the original Liu and Layland bound, but it is less pessimistic, thus allowing it to accept task sets that would be

rejected using the original approach. The performance of the proposed approach is evaluated with respect to the classical Liu and

Layland method and theoretical bounds are derived as a function of n (the number of tasks) and for the limit case of n tending to

infinity. The analysis is also extended to include aperiodic servers and blocking times due to concurrency control protocols. Extensive

simulations on synthetic tasks sets are presented to compare the effectiveness of the proposed test with respect to the Liu and Layland

method and the exact response time analysis.

Index Terms—Rate-monotonic analysis, periodic scheduling, schedulability test.

æ

1 INTRODUCTION

DURING the last 30 years, periodic task scheduling has
received much consideration in the real-time research

community due to the large number of control applications
using cyclical activities. Since a few years ago, the most
critical control applications were developed using an offline
table-driven approach (time line scheduling), according to
which the time line is divided into slots of fixed length
(minor cycle) and tasks are statically allocated in each slot
based on their rates and execution requirements [1]. The
schedule is then constructed up to the least common
multiple of all the periods (called the hyperperiod or the
major cycle) and stored in a table. At runtime, tasks are
dispatched according to the table and synchronized by a
timer at the beginning of each minor cycle. On one hand,
time line scheduling is straightforward to implement and
does not introduce significant runtime overhead (since
scheduling decisions are taken offline). Moreover, tasks
always execute in their preallocated slots, so the experi-
enced jitter is very small.

On the other hand, time line scheduling is fragile during

overload situations since a task exceeding its predicted

execution time could generate (if not aborted) a domino

effect on the subsequent tasks, causing their execution to

exceed the minor cycle boundary (time line break). In

addition, time line scheduling is not flexible enough for

handling dynamic situations. In fact, creation of a new task,

or a little change in a task rate, might modify the values of

the minor and major cycles, thus requiring complete
redesign of the scheduling table.

Such problems can be solved by using a priority-based
approach, according to which each task is assigned a
priority (which can be fixed or dynamic) and the schedule is
generated online based on the current priority value. In
1973, Liu and Layland [2] analyzed the properties of two
basic priority assignment rules: the Rate Monotonic (RM)
algorithm (according to which priorities are inversely
proportional to task periods) and the Earliest Deadline
First (EDF) algorithm (according to which priorities are
inversely proportional to absolute deadlines). Their major
contribution was to derive two simple guarantee tests to
verify the schedulability of a periodic task set under both
algorithms.

Their results refer to the following task model. Each
periodic task �i consists of an infinite sequence of jobs �i;k
(k ¼ 1; 2; . . .), where the first job �i;1 is released at time
ri;1 ¼ �i (the task phase) and the generic kth job �i;k is
released at time ri;k ¼ �i þ ðkÿ 1ÞTi, where Ti is the task
period. Each job is characterized by a worst-case execu-
tion time Ci, a relative deadline Di, and an absolute
deadline di;k ¼ ri;k þDi. The ratio Ui ¼ Ci=Ti is called the
utilization factor of task �i and represents the fraction of
processor time used by that task. Finally, the value

Up ¼
Xn
i¼1

Ui

is called the total processor utilization factor and represents
the fraction of processor time used by the periodic task set.
Clearly, if Up > 1, no feasible schedule exists for the task set.

The two schedulability conditions for RM and EDF are
derived for a set ÿ of n periodic tasks under the assumptions
that all tasks start simultaneously at time t ¼ 0 (that is, �i ¼ 0

for all i ¼ 1; . . . ; n), relative deadlines are equal to periods
(that is, di;k ¼ k Ti), and tasks are independent (that is, they do
not have resource constraints, nor precedence relations).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003 933

. E. Bini is with Scuola Superiore S. Anna, Piazza Martiri della Libertà, 33,
56127 Pisa, Italy. E-mail: e.bini@sssup.it.

. G.C. Buttazzo is with the Università di Pavia, Via Ferrata 1, 27100-Pavia,
Italy. E-mail: buttazzo@unipv.it.

. G.M. Buttazzo is with the Dipartimento di Matematica, Università di Pisa,
Via Buonarroti 2, 56127-Pisa, Italy. E-mail: buttazzo@dm.unipi.it.

Manuscript received 21 Mar. 2002; revised 25 July 2002; accepted 30 July
2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 116128.

0018-9340/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

Under such assumptions, a set of n periodic tasks is
schedulable by the RM algorithm if

Xn
i¼1

Ui � n ð21=n ÿ 1Þ: ð1Þ

Throughout the paper, we will refer to the previous
schedulability condition as the LL-test. We recall that

lim
n!1

n ð21=n ÿ 1Þ ¼ ln 2 ’ 0:69:

Under the EDF algorithm, a set of n periodic tasks is
schedulable if and only if

Xn
i¼1

Ui � 1: ð2Þ

Since the work presented by Liu and Layland, a lot of
work has been done on periodic tasks to improve the
schedulability bound of the RM algorithm or relax some
restrictive assumption on the task set. In [3], Lehoczky et al.
performed a statistical study and showed that, for task sets
with randomly generated parameters, the LL-test is able to
guarantee schedulability up to a processor utilization of
about 88 percent. Exact schedulability tests for RM yielding
to necessary and sufficient conditions have been indepen-
dently derived in [4], [3], [5]. Using the Response Time
Analysis (RTA) proposed in [5], a periodic task set is
schedulable with the RM algorithm if and only if the worst-
case response time of each task is less than or equal to its
deadline. The worst-case response time Ri of a task can be
computed using the following iterative formula:

R
ð0Þ
i ¼ Ci

R
ðkÞ
i ¼ Ci þ

X
j:Dj<Di

R
ðkÿ1Þ
i

Tj

& ’
Cj;

8><>: ð3Þ

where the worst-case response time of task �i is given by the

smallest value of R
ðkÞ
i such that R

ðkÞ
i ¼ R

ðkÿ1Þ
i . It is worth

noting, however, that the complexity of the exact test is

pseudopolynomial, thus it is not suitable for use for online

admission control in applications with large task sets.
The Rate Monotonic algorithm is probably the most used

priority assignment in real-time applications because it is
very easy to implement on top of commercial kernels,
which do not support explicit timing constraints on the task
set. Indeed, an RM scheduler can be implemented just by
assigning each task a fixed priority level inversely propor-
tional to its period. On the other hand, implementing a
dynamic scheme, like EDF, on top of a priority-based kernel
would require keeping track of all absolute deadlines and
performing a dynamic mapping between absolute dead-
lines and priorities. Such a mapping should be done every
time a new task receives a priority falling between two
adjacent priority levels. Such an additional implementation
complexity and runtime overhead, due to dynamic priority
management, often prevents EDF being implemented on
top of commercial real-time kernels, even though it would
increase the total processor utilization.

Using a fixed priority scheme like RM, however, does not
prevent developing real-time applications with dynamic

task activation. In fact, each task would still have a fixed
priority level (assigned according to RM), but would be
activated upon the arrival of an external event.

Consider, for example, a radar tracking application in an
environment where there are a number of moving targets,
having different but constant and known speed. In this case,
using an RM priority assignment, the priority of a task is
fixed, but proportional to the target speed. In this scenario,
to optimize the available resources, a task is activated when
a new target enters the monitored environment and killed
when the target goes out of the visual field. In such a
system, an online acceptance test needs to be executed at
each task activation to guarantee that all active tasks will be
scheduled within their given period. The failure of the
acceptance test can be used to allocate additional computa-
tional resources (if available), to generate an alarm, if the
system is not able to handle the overload, or to take proper
recovery action.

If the number of active tasks is high, the exact schedul-
ability test provided by the response time analysis could
require too much time to be executed online, whereas the
classical Liu and Layland test could fail on a feasible task set.
The graph reported in Fig. 1 shows the number of steps in the
innermost loop of the RTA and LL tests as a function of the
number of tasks (for the RTA test, the maximum and the
average number of steps are reported because they are
significantly different). In this simulation, the periods are
uniformly distributed in the interval ½Tmin; Tmax�, where
Tmin ¼ 10 and Tmax ¼ 10; 000 units of time, and the WCET,
Ci, are uniformly distributed in ½0; Ti�. For example, in an
application with 50 tasks, where each step takes 10 micro-
seconds to run, the RTA acceptance test would take 0:1
seconds, whereas the LL-test would run in 500 microseconds.
It is worth noting that, to accept a new task, when the current
set has been already guaranteed, the LL-test can actually be
performed in one step only, by summing the utilization of the
incoming task to the total processor utilization previously
computed. Conversely, in the same situation, the complexity
of the RTA-test remains the same.

In the context described above, the acceptance test
proposed in this paper, having the same O(n) complexity
as the Liu and Layland test, can be efficiently executed

934 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 1. Comparison between the RTA and the LL test in terms of

complexity.

online to accept more tasks in the system and increase the
exploitation of computational resources.

In [6], Sjödin and Hansson proposed an improved
version of the RTA test which runs more efficiently in the
average case, but still has pseudopolynomial complexity in
the worst-case. In [7], Sha et al. extended the rate monotonic
analysis in the presence of resource constraints, where
access to resources is performed using concurrency control
protocols, such as the Priority Inheritance Protocol and the
Priority Ceiling Protocol. In [5], Audsley et al. generalized
the response time analysis, including resource constraints.

A method similar to the one described here has been
independently developed by Oh and Son in [8] to verify the
schedulability of periodic task sets in a multiprocessor
environment. The authors, however, do not compare the
effectiveness of the method against other classical
approaches and the analysis is not extended to deal with
resource constraints and aperiodic servers. The basic
guarantee test has also been described in [9] in the context
of uniprocessor scheduling, but without any performance
characterization and comparison.

The present paper extends and integrates the results
presented by the same authors in [10] and provides the
following contributions:

. We present an efficient test for verifying the
feasibility of large periodic task sets with fixed
priorities in dynamic environments, when the
response time analysis cannot be applied online
due to prohibitively long execution times. The
proposed test has the same complexity as the
original Liu and Layland bound, but it is less
pessimistic, thus allowing it to accept task sets that
would be rejected using the original approach.

. We prove that the proposed test is tight, in the sense
that it is the best possible bound that can be found
given the same information on the task set (i.e., the
individual task utilization factors).

. We analytically derive the asymptotic behavior of
the bound as the number of tasks tends to infinity.

. The performance of the test in terms of the
acceptance ratio is compared with respect to EDF,
RTA, and the LL-test.

. The schedulability test is extended to consider more
realistic cases concerning task sets with shared
resources and aperiodic servers.

The rest of the paper is organized as follows: Section 2
presents the hyperbolic feasibility bound for the
RM algorithm, explaining its relation with the classical
Liu and Layland approach in the utilization space. Section 3
evaluates the theoretical improvement of the proposed test
with respect to the Liu and Layland bound as a function of
n (the number of tasks) and computes its asymptotic value
as n tends to infinity. Section 5 extends the schedulability
test to take aperiodic servers and resource constraints into
account. Section 4 presents a number of simulation
experiments performed on synthetic task sets aimed at
comparing the proposed approach with other classical ones
as a function of the number of tasks. Section 6 presents two
methods for improving the hyperbolic bound for task sets

with particular characteristics. Finally, Section 7 states our

conclusions and future work.

2 THE HYPERBOLIC BOUND

The schedulability test we propose in this paper is derived

from the same worst-case scenario identified by Liu and

Layland in [2] for a set on n periodic tasks. However,

instead of minimizing the processor utilization with respect

to task periods, we manipulate the feasibility condition in

order to find a tighter sufficient schedulability test as a

function of the individual task utilizations. It is worth

noting that the Liu and Layland proof has been shown to be

incorrect by Devillers and Goossens in [11]; however, the

bug in the proof does not affect our result since the worst-

case scenario remains valid, as also shown by Liu in [9].
The following theorem provides a sufficient condition

for testing the schedulability of a task set under the RM

algorithm.

Theorem 1. Let ÿ ¼ f�1; . . . ; �ng be a set of n periodic tasks,

where each task �i is characterized by a processor utilization

Ui. Then, ÿ is schedulable with the RM algorithm if

Yn
i¼1

ðUi þ 1Þ � 2: ð4Þ

Proof. Without loss of generality, we may assume that tasks

are ordered by increasing periods so that �1 is the task

with the highest priority and �n is the task with the

lowest priority. In [2], as well as in [11], it has been

shown that the worst-case scenario for a set on n periodic

tasks occurs when all the tasks start simultaneously (e.g.,

at time t ¼ 0) and periods are such that

8i ¼ 2; . . . ; n T1 < Ti < 2T1:

Moreover, the total utilization factor is minimized when

computation times have the following relations:

C1 ¼ T2 ÿ T1

C2 ¼ T3 ÿ T2

� � �
Cnÿ1 ¼ Tn ÿ Tnÿ1

8>><>>: ð5Þ

and the schedulability condition is given by:

Xn
i¼1

Ci � T1: ð6Þ

Fig. 2 illustrates an example of such a worst-case scenario

for a sample set of five periodic tasks. From (5), the

schedulability condition can also be written as

Cn � 2T1 ÿ Tn; ð7Þ

which implies the schedulability of �n and all the other

tasks in the set. Starting from such a worst-case scenario,

the least upper bound Ulub of the processor utilization

factor can be found by minimizing the expression of Up
with respect to periods. However, we show that the

minimization process does not simplify the final result,

but only reduces its applicability. In fact, an equally

BINI ET AL.: RATE MONOTONIC ANALYSIS: THE HYPERBOLIC BOUND 935

simple, but less stringent, result can be derived by

manipulating (5) and (7), as described below. Defining:

Ri ¼
Tiþ1

Ti
and Ui ¼

Ci
Ti
;

(5) can be written as follows:

U1 ¼ R1 ÿ 1
U2 ¼ R2 ÿ 1
� � �
Unÿ1 ¼ Rnÿ1 ÿ 1:

8>><>>: ð8Þ

Now, we notice that:

Ynÿ1

i¼1

Ri ¼
T2

T1

T3

T2
� � � Tn

Tnÿ1
¼ Tn
T1
:

If we divide both sides of the feasibility condition (7) by

Tn, we get:

Un �
2T1

Tn
ÿ 1:

Hence, the feasibility condition for a task set which fully

utilizes the processor can be written as:

Un þ 1 � 2Qnÿ1
i¼1 Ri

:

Since Ri ¼ Ui þ 1 for all i ¼ 1; . . . ; nÿ 1, we have

ðUn þ 1Þ
Ynÿ1

i¼1

ðUi þ 1Þ � 2

and, finally,

Yn
i¼1

ðUi þ 1Þ � 2;

which proves the theorem. tu

Notice that the Liu and Layland bounds expressed by (1)

and (2) can easily be represented in the task utilization

space, denoted as the U-space from now on. In such a space,

a point U ¼ fU1; U2; . . . ; Ung represents a periodic task set

whose tasks have utilizations U1, U2, . . . , and Un, respec-

tively. Notice, however, that different task sets with

different period relations, but the same tasks’ utilizations,

are mapped on the same point.
In the U-space, the Liu and Layland bound for RM

(LL bound) is represented by an n-dimensional plane

which intersects each axis in UlubðnÞ ¼ n ð21=n ÿ 1Þ, whereas
the EDF bound is represented by an n-dimensional plane
which intersects each axis in 1. All points below the
RM surface represent periodic task sets that are feasible
with both RM and EDF, whereas the region above the
EDF surface identifies those task sets whose total utilization
is greater than one and, hence, are not feasible with any
algorithm. Finally, the region located between the two
parallel planes of RM and EDF identifies those task sets
which are schedulable by EDF, but cannot be guaranteed to
be schedulable by RM using condition (1).

In the U-space, the RM bound expressed by (4) is
represented by an n-dimensional hyperbolic surface, tan-
gent to the RM plane, and having the same axis intersec-
tions as the EDF plane. For this reason, it will be referred to
as the hyperbolic bound, or H-bound for short. Fig. 3
illustrates such bounds for n ¼ 2. Notice that the asymp-
totes of the hyperbole are at Ui ¼ ÿ1. From the plots, we can
clearly see that the feasibility region below the H-bound is
larger than that below the LL-bound and the gain is given
by the dark gray area.

A quantitative evaluation of the gain (in terms of
schedulability) achieved by the H-bound over the classical
LL-bound as a function of the number of tasks is presented
in Section 3.

2.1 Tightness of the H-Bound

In this section, we show that the hyperbolic bound is
tight, meaning that it is the best possible bound that
can be found using the individual task utilization
factors Ui as a task set knowledge. To show this
property, we need to demonstrate that, for any set of
utilization factors fU1; U2; . . . ; Ung which violates the
hyperbolic bound, it is possible to find a task set ÿ ¼
fðT1; C1Þ; ðT2; C2Þ; . . . ; ðTn; CnÞg which is not schedulable.

The intuitive proof of the tightness for a set of two
periodic tasks is illustrated in Fig. 4.

936 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 2. Worst-case scenario for a set of five periodic tasks.

Fig. 3. Schedulability bounds for RM and EDF in the utilization space.

Given an arbitrary set of Ui (represented by the point in

the U-space) which does not satisfy condition (4), we can

always find the task periods (which correspond to the linear

constrains in Fig. 4) such that the resulting task set is not

schedulable (that is, the point in the U-space misses the

constraints).
More formally, the tightness of the hyperbolic bound is

proved by the following theorem.

Theorem 2. For every set fU1; U2; . . . ; Ung, 0 � Ui � 1, such

that

Yn
i¼1

ðUi þ 1Þ > 2;

there exists a task set ÿ ¼ f�1; . . . ; �ng whose tasks have

utilizations fU1; U2; . . . ; Ung which cannot be scheduled by the

RM algorithm.

Proof. To build the nonschedulable task set, we first choose

T1 arbitrarily and then calculate the other parameters as

follows:

Ci ¼ Ui Ti i ¼ 1; . . . ; n
Tiþ1 ¼ Ti þ Ci i ¼ 1; . . . ; nÿ 1:

�
ð9Þ

We observe that the 2nÿ 1 equations expressed in (9)

have 2nÿ 1 variables (T2; . . . ; Tn; C1; . . . ; Cn) and, in

every equation, there is only one unknown, so the

system has a unique solution. Following the same

approach used in the proof of Theorem 1, we notice that:

Ynÿ1

i¼1

ðUi þ 1Þ ¼ Tn
T1
:

Moreover, by adding the last nÿ 1 equations in (9), we

have:

Tn ÿ T1 ¼
Xnÿ1

i¼1

Ci:

Hence, from the hypothesis, we can write:

ðUn þ 1Þ
Ynÿ1

i¼1

ðUi þ 1Þ > 2

ðUn þ 1Þ Tn
T1

> 2

Cn þ Tn > 2T1

Cn þ ðTn ÿ T1Þ > T1

Cn þ
Xnÿ1

i¼1

Ci > T1

Xn
i¼1

Ci > T1:

Hence, the constructed task set is not schedulable in
the worst-case scenario (see (6) and Fig. 2). tu

3 COMPARATIVE EVALUATION

In this section, we compute the gain (in terms of schedul-

ability) achieved by the hyperbolic test over the classical Liu

and Layland test as a function of the number of tasks. This

is done by computing the volume in the U-space of the

regions underlying the bounds and plotting their ratio as a

function of n.
To evaluate the efficiency of the Liu and Layland test, we

will compute the measure of the region LnðAÞ defined as:

LnðAÞ ¼ x 2 IRn : xi � 0;
Xn
i¼1

xi � A
()

: ð10Þ

In the following, jEj will denote the n-dimensional measure

of a subset E of IRn.

Lemma 1. For every integer n and for all A > 0, we have

LnðAÞj j ¼ A
n

n!
: ð11Þ

Proof. We will proceed by induction on n. For n ¼ 1,

LnðAÞ reduces to the interval ½0; A�, hence, its measure

is clearly A.
Now, assume that equality (11) is true for nÿ 1 and

for all A > 0. In particular, we have

Lnÿ1ðAÿ xnÞj j ¼ ðAÿ xnÞ
nÿ1

ðnÿ 1Þ! :

Therefore,

LnðAÞj j ¼
Z A

0

dxn

Z
Lnÿ1ðAÿxnÞ

dx1 � � � dxnÿ1

¼
Z A

0

ðAÿ xnÞnÿ1

ðnÿ 1Þ! dxn

and, defining y ¼ ðAÿ xnÞ, we can write:

LnðAÞj j ¼
Z A

0

ynÿ1

ðnÿ 1Þ! dy ¼ A
n

n!

as required. tu
To evaluate the effectiveness of the hyperbolic test, we

will compute the measure of the region HnðAÞ defined as

BINI ET AL.: RATE MONOTONIC ANALYSIS: THE HYPERBOLIC BOUND 937

Fig. 4. Tightness demonstration sketch (for n ¼ 2).

HnðAÞ ¼ x 2 IRn : xi � 0;
Yn
i¼1

ð1þ xiÞ � A
()

: ð12Þ

Lemma 2. For every integer n and for all A � 1, we have

HnðAÞj j ¼ ðÿ1Þn 1ÿA
Xnÿ1

k¼0

ðÿ lnAÞk

k!

" #
: ð13Þ

Proof. We will proceed by induction on n. For n ¼ 1, HnðAÞ

reduces to the interval ½0; Aÿ 1�, whose measure is

clearly Aÿ 1.
Now, assume equality (13) is true for nÿ 1 and for all

A � 1. In particular, we have

Hnÿ1
A

1þ xn

� ����� ����
¼ ðÿ1Þnÿ1 1ÿ A

1þ xn
Xnÿ2

k¼0

1

k!
ÿ ln

A

1þ xn

� �k" #
:

Therefore,

HnðAÞj j

¼
Z Aÿ1

0

dxn

Z
Hnÿ1ð A

1þxnÞ
dx1 � � � dxnÿ1

¼
Z Aÿ1

0

ðÿ1Þnÿ1 1ÿ A

1þ xn
Xnÿ2

k¼0

1

k!
ÿ ln

A

1þ xn

� �k" #
dxn

and, defining y ¼ ð1þ xnÞ, we have:

HnðAÞj j

¼
Z A

1

ðÿ1Þnÿ1 1ÿA
y

Xnÿ2

k¼0

1

k!
ÿ ln

A

y

� �k" #
dy

¼ ðÿ1Þnÿ1 yþA
Xnÿ2

k¼0

ðÿ1Þk

ðkþ 1Þ! ln
A

y

� �kþ1
" #y¼A

y¼1

¼ ðÿ1Þnÿ1 Aÿ 1þA
Xnÿ2

k¼0

ðÿ lnAÞkþ1

ðkþ 1Þ!

" #

¼ ðÿ1Þn 1ÿA
Xnÿ1

k¼0

ðÿ lnAÞk

k!

" #
as required. tu
To evaluate the gain of the hyperbolic test with respect to

the LL test, we have to compute the ratio

�n ¼
Hnð2Þj j

Ln n ð21=n ÿ 1Þð Þj j : ð14Þ

In fact:

. According to (12), Hnð2Þj j represents the hypervo-
lume in the U-space of the task sets found schedul-
able by the hyperbolic test;

. According to (10), Ln n ð21=n ÿ 1Þ
ÿ ��� �� represents the

hypervolume in the U-space of the task sets found
schedulable by the LL test.

Proposition 1. As n tends to infinity, the asymptotic behavior of

�n is

�n ¼
ffiffiffi
2
p
þOðnÿ1Þ:

Proof. By observing that

ffiffiffi
2n
p
¼ exp

ln 2

n

� �
¼ 1þ ln 2

n
þ ln2 2

2n2
þOðnÿ3Þ;

we can write:

Ln n ð21=n ÿ 1Þ
� ���� ���
¼

n
ffiffiffi
2n
p
ÿ 1

ÿ �� �n
n!

¼ lnn 2

n!
1þ ln 2

2n
þOðnÿ2Þ

� �n
¼ lnn 2

n!
exp n ln 1þ ln 2

2n
þOðnÿ2Þ

� �� �
¼ lnn 2

n!
exp

ln 2

2
þOðnÿ1Þ

� �
¼

ffiffiffi
2
p lnn 2

n!
1þOðnÿ1Þ
ÿ �

:

If we now define

SkðxÞ ¼
Xk
j¼0

xj

j!

by Taylor expansion of ex, we obtain

ex ¼ SkðxÞ þ
xkþ1

ðkþ 1Þ!þ e
� xkþ2

ðkþ 2Þ! ;

where � 2 ðx; 0Þ. Therefore,

Snÿ1ðÿ ln 2Þ

¼ eÿ ln 2 ÿ ðÿ ln 2Þn

n!
1ÿ e� ln 2

nþ 1

� �
¼ 1

2
ÿ ðÿ1Þn lnn 2

n!
1ÿ e� ln 2

nþ 1

� �
;

where � 2 ðÿ ln 2; 0Þ. Thus, we have:

Hnð2Þj j ¼ ðÿ1Þn 1ÿ 2Snÿ1ðÿ ln 2Þ½ �

¼ 2
lnn 2

n!
1ÿ e� ln 2

nþ 1

� �
¼ 2

lnn 2

n!
1þOðnÿ1Þ
ÿ �

;

which gives

�n ¼
ffiffiffi
2
p
þOðnÿ1Þ; ð15Þ

as required. tu

4 SIMULATION RESULTS

In this section, we present some simulation experiments we

performed on synthetic task sets to evaluate the tightness of

the H-bound (denoted by HB in the graphs), with respect to

the Liu and Layland bound (LL in the graphs) and the exact

test given by (3), resulting from the response time analysis

938 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

(denoted by RTA in the graphs). Simulations have been
conducted on randomly generated task sets having the
desired total utilization.

In our experiment, we generated 106 task sets uniformly
distributed in the region Lnð1Þ of the U-space, as defined by
(10). This is the region where task sets are schedulable by
EDF. For different values of n, we computed the number of
task sets guaranteed by the LL test, by the hyperbolic test,
and by the exact test, respectively. Fig. 5 reports such ratios
with respect to the total number of generated task sets (we
recall that all task sets are generated to be feasible with
EDF). Fig. 6 compares the LL-test and the H-test with
respect to the exact RTA test.

It is worth noting that, although all the ratios tend to zero
as n tends to infinity, the schedulability gain achieved by
the H-test over the LL-test increases as n gets larger. This
can be clearly seen in Fig. 7, which reports the ratio of the
number of task sets guaranteed by the H-test and the
number of task sets guaranteed by the LL-test, as a function
of n. We observe that the ratio tends to

ffiffiffi
2
p

, as predicted by
the asymptotic analysis presented in Section 3.

5 EXTENSIONS

In this section, we extend the hyperbolic approach to take

aperiodic servers and shared resources into account. First,

we derive a schedulability condition for a Polling Server

[12] scheduled by RM at the highest priority and then

generalize the analysis to a Deferrable Server. Finally, we

show how to take blocking times into account.

Theorem 3. Let ÿ ¼ f�1; . . . ; �ng be a set of n periodic tasks,

where each task �i is characterized by a processor utilization

Ui, and let S be a Polling Server with utilization Us ¼ Cs=Ts
such that Ts � minðT1; . . . ; TnÞ (that is, S is assigned the

highest priority). Then, ÿ is schedulable with the RM

algorithm in the presence of server S if

Yn
i¼1

ðUi þ 1Þ � 2

Us þ 1
: ð16Þ

Proof. Without loss of generality, assume that tasks are

ordered by increasing periods so that �1 is the task with

the highest priority and �n is the task with the lowest

priority.
Lehoczky et al. proved in [12] that the worst-case

scenario for the task set occurs when all the tasks start
simultaneously (e.g., at time t ¼ 0) and

Ts < Ti < 2Ts 8i ¼ 1; . . . ; n
Cs ¼ T1 ÿ Ts
C1 ¼ T2 ÿ T1

C2 ¼ T3 ÿ T2

� � �
Cnÿ1 ¼ Tn ÿ Tnÿ1

Cn ¼ Ts ÿ Cs ÿ
Pnÿ1

i¼1 Ci ¼ 2Ts ÿ Tn:

8>>>>>>>><>>>>>>>>:
ð17Þ

Hence, the feasibility condition for a task set which fully

utilizes the processor and minimizes the total utilization

factor can be written as

Cn � 2Ts ÿ Tn
or (dividing both sides by Tn) as

BINI ET AL.: RATE MONOTONIC ANALYSIS: THE HYPERBOLIC BOUND 939

Fig. 5. Feasibility ratios with respect to EDF as a function of n.

Fig. 6. Feasibility ratios with respect to RTA as a function of n.

Fig. 7. Hyperbolic test versus LL-test as a function of n.

ðUn þ 1Þ � 2
Ts
Tn
: ð18Þ

Following the same approach used for proving

Theorem 1, we define (for all i < n)

Ri ¼
Tiþ1

Ti

and notice that

T1

Ts
¼ Us þ 1

Tn
T1
¼
Ynÿ1

i¼1

Ri ¼
Ynÿ1

i¼1

ðUi þ 1Þ:

Hence, (18) can be written as

ðUn þ 1ÞTn
T1
� 2

Ts
T1
;

which leads to

Yn
i¼1

ðUi þ 1Þ � 2

Us þ 1
;

as required. tu
For a Deferrable Server, the analysis performed in [12] by

Lehoczky et al. can also be expressed in the hyperbolic

form. By following the same reasoning presented in [12], in

the presence of a high priority Deferrable Server, the

constraint on Cn can be written as:

Cn � K T1 ÿ Tn:

where K ¼ Usþ2
2Usþ1 . Hence, the feasibility condition becomes

Yn
i¼1

ðUi þ 1Þ � Us þ 2

2Us þ 1
:

Analogous considerations can be done for the more precise

analysis presented in [13], but they are omitted due to space

limitations.
In the presence of resource constraints, blocking times

due to mutual exclusion can be taken into account in the

hyperbolic test by increasing tasks’ execution times by a

suitable blocking factor. Hence, the n schedulability condi-

tions derived by Sha et al. in [7] can be expressed as follows:

8i ¼ 1; . . . ; n
Yiÿ1

k¼1

ðUk þ 1Þ Ci þBi

Ti
þ 1

� �
� 2:

6 REDUCING PESSIMISM

In this section, we present two particular task set scenarios

in which the pessimism of the hyperbolic bound can be

reduced to improve schedulability:

1. The first scenario includes task sets with harmonic
period chains, as also discussed by Kuo and Mok
in [14];

2. The second scenario includes task sets where the
condition T1 � Ti � 2T1 is relaxed.

6.1 Task Sets with Harmonic Chains

Similarly to what Kuo and Mok presented in [14] for
improving the Liu and Layland bound, in this section, we
extend the hyperbolic bound result, using the harmonic
chains concept.

Let P ¼ fT1; T2; . . . ; Tng be the set of periods of a set ÿ ¼
f�1; �2; . . . ; �ng of periodic tasks. A subset R � P is said to be
a harmonic base of ÿ if there is a partition P of P into jRj
subsets such that:

1. Each member of P is the smallest element in exactly
one member of the partition P;

2. If x and y are two elements in the same member of
the partition P, then either x divides y or y divides x.

We call each subset in the partition P a harmonic chain.
Kuo and Mok also suggested a polynomial algorithm to

find the harmonic base given the task periods and they
provided a new bound, better than the Liu and Layland
one, taking into account such period properties. Their
bound is given by:

Xn
i¼1

Ui � K ð21=K ÿ 1Þ; ð19Þ

where K � n is the number of harmonic chains.
In [14], they also proved that all the tasks belonging to

the same member S of partition P can be merged together
into a new task �k such that Uk ¼

P
�i2S Ui, “without changing

the schedulability of the whole task set.” We refer to this
modified task set as ÿ�.

Applying the hyperbolic bound to ÿ� leads to the next
interesting theorem:

Theorem 4. Let ÿ ¼ f�1; . . . ; �ng be a set of n periodic tasks,

where each task �i is characterized by a processor utilization

Ui. Let P be the partition in K subsets of the task indexes

obtained by grouping the tasks into harmonic chains. Then, ÿ

is schedulable with the RM algorithm if

Y
S2P

1þ
X
i2S

Ui

 !
� 2: ð20Þ

Proof. It directly follows from the equivalence, in terms of
schedulability, between ÿ and ÿ� (proven by Theorems 1
and 2 in [14]) and Theorem 1. tu

As can be guessed, condition (20) is a relaxation of (4)
because we use the additional information on the harmonic
properties of the tasks periods. This statement is formally
proven in the next theorem.

Theorem 5. If a task set satisfies:

Yn
i¼1

ð1þ UiÞ � 2;

then it also satisfies:

Y
S2P

1þ
X
i2S

Ui

 !
� 2;

where P is the partition in harmonic chains.

940 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Proof. For the associative property of the product and for
the properties of partitions, the hyperbolic bound can be
written as:

Y
S2P

Y
i2S

1þ Uið Þ
" #

� 2:

Expanding the innermost product, we have:Y
i2S

1þ Uið Þ

¼ 1þ
X
i2S

Ui þ
X
i6¼j

Ui Uj þ
X
i6¼j6¼k

Ui Uj Uk þ � � �

� 1þ
X
i2S

Ui:

Hence,

Y
S2P

1þ
X
i2S

Ui

 !
�
Y
S2P

Y
i2S

1þ Uið Þ
" #

¼
Yn
i¼1

ð1þ UiÞ � 2;

as required. tu
Fig. 8 provides a graphical representation of the

improvement for a simple case of three tasks, �1, �2, and
�3, in which �1 and �2 have harmonic periods and, hence,
can be grouped into a chain.

A precise evaluation of the gain introduced by the
harmonic chain method would require computing the
measure of

KnðPÞ ¼ x 2 IRn : xi � 0;
Y
S2P

1þ
X
i2S

xi

 !
� 2

()

which is not trivial to compute.

6.2 Relaxing T1 � Ti � 2T1

By relaxing the worst-case condition for whichT1 < Ti < 2T1,

a better schedulability test can be found. In this section, we

present the analysis for the simple case of two tasks. By

defining

F ¼ T2

T1

� �
;

the worst-case situation occurs when

C1 ¼ T2 ÿ F T1

C2 ¼ T2 ÿ ðF þ 1ÞC1:

�
ð21Þ

Hence, the schedulability condition can be written as

C2 � F T2
F þ 1

T2=T1
ÿ 1

� �
:

Now, observing that

T2

T1
¼ U1 þ F;

the schedulability condition becomes

U2 � F
F þ 1

U1 þ F
ÿ 1

� �
;

that is,

U2

F
þ 1 � F þ 1

U1 þ F
;

and, finally,

Y2

i¼1

Ui
F
þ 1

� �
� 1

F
þ 1: ð22Þ

Fig. 9 plots (22) in the U-space for different values of the

F parameter. In this case, the asymptotes intersect each axis

in ÿF , so the hyperbole tends to approach the EDF line as F

gets larger.
Unfortunately, generalizing (22) to the case of n tasks is

not trivial and will be investigated as future work.

BINI ET AL.: RATE MONOTONIC ANALYSIS: THE HYPERBOLIC BOUND 941

Fig. 8. Schedulability regions of the plain H-bound (a) and its

improvement with harmonic chains (b).

Fig. 9. Hyperbolic RM bound for different values of F .

7 CONCLUSIONS

In this paper, we presented a hyperbolic schedulability
bound for the Rate Monotonic algorithm and evaluated its
effectiveness with respect to the classical Liu and Layland
utilization bound and the necessary and sufficient condition
computed through a response time analysis. The asymptotic
behavior of the hyperbolic bound relative to the LL bound
was also computed for n tending to infinity and found to be
equal to

ffiffiffi
2
p

. Since the hyperbolic test has an OðnÞ
complexity, it can be effectively used to perform online
admission control in large periodic task sets under the RM
algorithm, when the exact schedulability analysis cannot be
applied for efficiency reasons.

We proved that the hyperbolic bound is the tightest
among those using task utilizations as application para-
meters and we showed how the proposed analysis can be
improved by relaxing some pessimistic assumptions typi-
cally made on the task set to take advantage of additional
knowledge on the application. In particular, we considered
the case in which some tasks may have harmonic period
relations and the case in which periods are not constrained
to be in the worst-case configuration.

As future work, we believe additional pessimistic
assumptions can be relaxed or special task set character-
istics identified to improve the schedulability of the
RM algorithm within the same computational complexity.
We are also investigating the possibility of deriving a
tighter schedulability condition with polynomial complex-
ity as a function of arbitrary period relations.

REFERENCES

[1] J. Locke, “Designing Real-Time Systems,” invited talk at IEEE Int’l
Conf. Real-Time Computing Systems and Applications, Dec. 1997.

[2] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 40-61, 1973.

[3] J.P. Lehoczky, L. Sha, and Y. Ding, “The Rate-Monotonic
Scheduling Algorithm: Exact Characterization and Average Case
Behavior,” Proc. IEEE Real-Time Systems Symp., pp. 166-172, 1989.

[4] M. Joseph and P. Pandya, “Finding Response Times in a Real-
Time System,” The Computer J., vol. 29, no. 5, pp. 390-395, 1986.

[5] N.C. Audsley, A. Burns, K. Tindell, and A. Wellings, “Applying
New Scheduling Theory to Static Priority Preemptive Schedul-
ing,” Software Eng. J., Dec. 1993.

[6] M. Sjödin and H. Hansson, “Improved Response-Time Analysis
Calculations,” Proc. 19th IEEE Real-Time Systems Symp., pp. 399-
409, Dec. 1998.

[7] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization,” IEEE
Trans. Computers, vol. 39, no. 9, pp. 1175-1185, Sept. 1990.

[8] Y. Oh and S.H. Son, “Allocating Fixed-Priority Periodic Tasks on
Multiprocessor Systems,” Real-Time Systems, vol. 9, pp. 207-239,
1995.

[9] J.W.S. Liu, Real-Time Systems. Prentice Hall, 2000.
[10] E. Bini, G.C. Buttazzo, and G.M. Buttazzo, “A Hyperbolic Bound

for the Rate Monotonic Algorithm,” IEEE Proc. 13th Euromicro
Conf. Real-Time Systems, June 2001.

[11] R. Devillers and J. Goossens, “Liu and Layland’s Schedulability
Test Revisited,” Information Processing Letters, vol. 73, no. 5,
pp. 157-161, Mar. 2000.

[12] J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments,” Proc. IEEE
Real-Time Systems Symp., pp. 261-270, 1987.

[13] J.K. Strosnider, J.P. Lehoczky, and L. Sha, “The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-
Time Environments,” IEEE Trans. Computers, vol. 44, no. 1, pp. 73-
91, Jan. 1995.

[14] T.-W. Kuo and A.K. Mok, “Load Adjustment in Adaptive Real-
Time Systems,” Proc. IEEE Real-Time Systems Symp., Dec. 1991.

Enrico Bini is a PhD student in computer
engineering at Scuola Superiore S. Anna in
Pisa, Italy. In 2000, he graduated in the same
subject from the University of Pisa and received,
in the same year, the Licenza at Scuola Super-
iore S. Anna, where he won a national competi-
tion as a student. In 1999, through a European
Union student exchange program, he studied at
the Delft University of Technology in The Neder-
lands. His interests cover scheduling algorithms,

real-time operating systems, linear programming, and combinatorial
optimization.

Giorgio C. Buttazzo graduated in electronic
engineering from the University of Pisa in 1985,
received the Master’s degree in computer
science from the University of Pennsylvania in
1987, and the PhD degree in computer en-
gineering from the Scuola Superiore S. Anna of
Pisa in 1991. He is an associate professor of
computer engineering at the University of Pavia,
Italy. His main research interests include real-
time operating systems, dynamic scheduling

algorithms, quality of service control, multimendia systems, advanced
robotics applications, and neural networks. He is a member of the IEEE
and the IEEE Computer Society.

Giuseppe M. Buttazzo graduated in mathe-
matics from the University of Pisa in 1976 and
received, in the same year, the Diploma of
Scuola Normale Superiore di Pisa, where he
won a national competition as a student. He was
a PhD student from 1976 until 1980 at Scuola
Normale di Pisa, where he also received his first
permanent position as a researcher in 1980. He
became a full professor in mathematical analysis
at the University of Ferrara in 1986 and moved,

in 1990, to the University of Pisa, where he presently works in the
Department of Mathematics. His main research interests include
calculus of variations, partial differential equations, optimization pro-
blems, optimal control theory. On these subjects, he has written more
than 120 scientific papers and several books.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

942 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

