An Efficient Time Representation for Real-Time Embedded
Systems *

Alessio Carlini
University of Pavia, Italy

carlini.alessio@libero.it

ABSTRACT

Real-time systems should provide a time representation mech-
anism which allows to specify timing constraints in a wide
range and with sufficiently high resolution. Moreover, the
system lifetime (that is, the longest absolute time that can
be handled by the system) should be as long as possible,
or possibly infinite. In powerful architectures, this goal is
achieved by representing time through variables with a large
number of bits. Unfortunately, in real-time embedded sys-
tems with small memory requirements, such a solution can-
not be used, and a trade off needs to be found for memory,
system resolution and the longest representable timing con-
straint. In such systems, the runtime overhead introduced
by the time representation mechanism is also crucial and
needs to be taken into account.

In this paper we present an efficient method for time repre-
sentation suited for small embedded systems. The method
allows to achieve an infinite lifetime, high resolution and deal
with sufficiently large timing constraints. The proposed ap-
proach is compared with other methods proposed in the lit-
erature and it is proved to be more efficient in terms of both
overhead and memory requirements. The method allows an
efficient implementation of deadline-based scheduling algo-
rithms (such as EDF) and time accounting mechanisms for
capacity based servers and resource reservation policies. The
proposed technique has also been implemented and tested in
two real-time kernels for small embedded microcontrollers.

*This paper appears in Proceedings of the ACM Sympo-
sium on Applied Computing (SAC 2003), track on Embed-
ded Systems, Melbourne, Florida, USA, March 9-12, 2003.
Permission to make digital or hard copies of all or part this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage, and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2003, Melbourne, Florida, USA 2003 ©ACM 1-58113-
624-2/03/03...$5.00

Giorgio C. Buttazzo
University of Pavia, Italy

buttazzo@unipv.it

1. INTRODUCTION

Embedded real-time systems have often to satisfy a set of
stringent requirements in order to be installed on top of
an integrated device. Beside satisfying functional and non
functional application requirements, an embedded system
must typically run on small processors with little process-
ing power and small memory space. Hence, it must have a
small memory footprint. To save memory space, however,
typical kernels for embedded systems do not include sophis-
ticated mechanisms for handling real-time constraints and
use simple scheduling and resource management schemes.
As a consequence of such a design choice, these kernels are
very reactive to events, but achieve poor resource utilization
and exhibit low predictability during peak load conditions,
due to priority inversion phenomena [14] and other side ef-
fects.

For example, the MCX11 kernel [16] is a kernel totally writ-
ten in assembly code for the Motorola 68HC11 microcon-
troller. It can manage up to 126 tasks and has a memory
footprint of 3 Kbytes. Task scheduling is performed based on
a fixed priority scheme and task communication may occur
through shared memory buffers or message queues. The ker-
nel does not provide a notion of global time, but only allows
posting events with a time granularity of 50 milliseconds.
SSX5 is a commercial real-time system produced by Real-
ogy [17] for M68HC12 microcontrollers. This kernel provides
fixed priority preemptive scheduling and it is based on the
single-shot execution model, in which tasks run to comple-
tion when activated. They are preempted as appropriate,
but always complete before returning control to lower pri-
ority task that they have preempted. Single shot execution
allows the use of a single stack, which leads to significant
reduction in RAM requirement. However, tasks cannot be
created dynamically. The ROM and RAM costs for some
SSX5 objects commonly used in application is 723 bytes
ROM for code and static data and 83 bytes on RAM. Other
OS functions can be included when the application uses
them. MaRTE OS [13] is another real-time kernel for em-
bedded applications, which allows greater flexibility. Most
of its code is written in Ada with some C and assembler
parts and it follows the Minimal Real-Time POSIX.13 sub-
set. ERIKA [9] is a modular kernel for real-time systems. It
consists of two main layers: the Kernel Layer and the Hard-
ware Abstraction Layer. The Kernel Layer contains a set of
modules that implement task management functions, real-
time scheduling policies (as cyclic executive, Rate Mono-
tonic, Earliest Deadline First, etc.) and resource manage-

ment protocols (like Priority Inheritance and Stack Resource
Policy), interrupt processing and error treatment. All these
modules are developed using portable C code. The Hard-
ware Abstraction Layer (HAL) contains some very basic ser-
vices that are architecture-specific, like context-switch, in-
terrupt handling, low-level timer and memory management
initialization. For architectures with very small RAM mem-
ory, ERIKA provides a mono-stack task management policy,
where all tasks use the same stack, but it also allows applica-
tions to use a multi-stack model. MICOS [4] is a microkernel
developed for the Motorola 68HC11 micocontroller, which is
also available for Intel X86 architectures. To facilitate porta-
bility on different platforms, the kernel consists of two main
layers: the kernel layer and the hardware layer. MICOS
is one of the few kernels which implements dynamic EDF-
based scheduling for better resource utilization. It handles
hard real-time tasks, soft real-time tasks, and non critical
activities. The time management method adopted in the
kernel is the one described in this paper. It was used to
implement a resource reservation mechanism for providing
temporal isolation among tasks [1], as well as good aperi-
odic responsiveness. The reservation mechanism allows the
user to reserve a fraction of processor to each soft task, to
guarantee a minimum level of performance. The efficiency of
the time management also allows monitoring task execution
times for detecting execution overruns and collecting statis-
tical information on timing parameters. The kernel with all
real-time features requires 8 Kbytes of memory.

In a real-time system, the system’s lifetime is the maximum
time the system can operate without causing a real-time
clock overrun. It can be extended either by increasing the
number of bits of all time variables or decreasing the timer
resolution.

For example, with a 10 ms resolution, a linear time clock
represented on 16 bits has a lifetime of about 11 minutes,
which can be extended up to one hour using a 50 millisecond
resolution. However, this is not suitable for most real-time
applications. On a 32-bit time representation the lifetime
becomes about 16 months, which could be fine. However,
handling 32-bit timing constraints on a 8-bit microcontroller
would cause a large overhead, since each 32-bit integer oper-
ation must be split into several 8-bit instructions, also con-
sidering the reduced number of registers available (3 for the
M68HC11).

Another solution to achieve a large lifetime with a small
number of bit is to decrease the resolution. For example, a
lifetime of 1 month with 16-bit time representation can be
achieved using a resolution of 1.6 seconds, which is unsuit-
able for most practical cases.

As a consequence, when working with 8-bit or 16-bit mi-
crocontrollers, a long lifetime can be achieved either using
a 32-bit linear timer (with large overhead) or with a 16-bit
circular timer, by handling the overflow (in this case the life-
time becomes infinite). It is worth observing that, when us-
ing a circular timer, the overflow has to be managed at every
time comparison, and hence it must be efficiently handled.
The proposed method (ICTOH) is able to perform such an
overflow management with a very small overhead compared
with the existing techniques [12, 7, 6].

In general, a time management mechanism should have the
following characteristics.

1. Time resolution should be as high as possible in order
for the kernel to provide high responsiveness to asyn-
chronous events. High timer resolution also allows to
increase processor utilization in the case task periods
or deadlines are not multiple of the system tick. In this
situation, in fact, to avoid missing deadlines, a period
which is not multiple of the tick, should be reduced to
the closest multiple. Hence, the higher the resolution,
the smaller the utilization increase due to the period
reduction.

2. The maximum time interval P handled by the system
should be as long as possible in order to manage tasks
with large periods or long relative deadlines (with re-
spect to the system tick).

3. In embedded systems with stringent memory require-
ments, the system time should be represented using
the minimum number of bits. Such a requirement is in
contrast with the previous ones and imposes a trade
off in the kernel.

4. The time management mechanism should not intro-
duce a large runtime overhead.

In general, possible compromises depend on several factors,
including the processor speed, the available memory, the
efficiency of the kernel, the time horizon required by the
applcation, the maximum extension of the relative timing
constraints, the task criticality, and the number of tasks in
the system.

This paper provides the following contributions:

1. It presents a simple time management technique (IC-
TOH) that can be efficiently implemented in many em-
bedded real-time systems with limited amount of re-
sources. The method allows to achieve an infinite life-
time, high resolution and deal with sufficiently large
timing constraints. The problem of time management
is typically neglected in real-time kernels for small pro-
cessors, since tasks are scheduled using a set of fixed
priorities, thus no absolute deadline management is
required.

2. It allows an efficient implementation of deadline-based
scheduling algorithms (such as EDF') and time account-
ing mechanisms for using capacity based servers and
resource reservation policies.

3. It compares the proposed approach with other meth-
ods proposed in the literature, showing that ICTOH is
more efficient in terms of both overhead and memory
requirements.

4. Tt presents some concrete implementation issues and
provides real experimental data from an EDF-based
kernel. In particular, the method has been imple-
mented in the MICOS microkernel [4] built for a Mo-
torola 68HC11 microcontroller and in the ERIKA ker-
nel [9].

lifetime

0000:0000 FFFF : FFFF.

Figure 1: Linear time model with 32 bits.

The rest of the paper is organized as follows. Section 2
presents the problem by describing two intuitive approaches.
Section 3 illustrates the proposed method and provides some
implementation details. Section 4 shows the effectiveness
of the proposed approach and compares it with other two
methods described in the literature. Finally, Section 5 con-
tains our conclusions and future work.

2. PROBLEM STATEMENT

Typical operating systems for medium size machines use a
linear time model, where time is represented using a 32 bit
variable with 1 millisecond resolution. In this case, the sys-
tem lifetime (that is, the maximum absolute time that can
be represented in the system) has a value of about a few
months. An example of linear time model is illustrated in
Figure 1. The main advantage of such a solution is that an
event e; precedes another event e; if e; < e;. The disadvan-
tage of a linear time model, however, is that it imposes a
finite lifetime. Increasing the lifetime requires either using a
larger number of bits or setting a lower time resolution. Both
solutions can be inappropriate for an embedded system with
stringent memory requirements and real-time constraints.

A reasonable compromise among the four requirements stated
in the previous section is to use a circular time model. It
differs from the linear one in that it handles the overflow
condition occurring when the n-bit variable used to repre-
sent the system time passes from 2" — 1 to 0.

Figure 2 shows a circular time model, implemented using a
16-bit variable. In this model, each cycle has a length P =
10000H (exadecimal), hence two events with a time differ-
ence greater than or equal td P cannot be handled by the
system without additional information. For example, Fig-
ure 2 shows two cycles in which four events are represented.
Since events e; and e have the same value (e1 = e2), they
are considered simultaneous by the system, although they
occur in two different cycles. Similarly, the time distance
between e1 and es (es — e1) is considered the same as the
one between e; and e (e5 —e1 = ez —e1).

3. THEICTOH ALGORITHM

This section describes the Implicit Circular Timer’s Over-
flow Handler (ICTOH) method which allows to efficiently
represent times in a circular time model. We first introduce
the following definitions.

Def. An event and its temporal reference on the circular
timer is denoted as e;. Thus, for example, we can say
that e; is a task activation and that e; = 04F3H.

FFFF 0000

Figure 2: Circular time model with 16 bits.

Def. The set of temporal references stored in the system at
time ¢ is denoted as E(t).

Def. The absolute time at which an event e; € E(t) occurs
is denoted as t(e;).

Def. The circular timer period is denoted as P. In other
words, P is the minimum interval of time between
two non simultaneous events characterized by the same
representation in the system.

Def. We say that two events e;, e; € E(t) belong to the
same cycle if the interval [t(e;), t(e;)] represented on
the circular timer does not include the values FFFFH
and 0000H. For example, in Figure 2 e; and e2 do not
belong to the same cycle, whereas es and es do belong.

Then the ICTOH method can be defined as follows.

ICTOH: If events are represented by n-bit unsigned in-
tegers, such that

P
Vit Vei,e; € E(t) |t(e:) —t(e;)] < 5 (1)
then Vi Ve;,e; € E(t) we have:

L. t(ei) > t(e;) <= (e; ©e;) < 5, (ei0e;) #0

<
2. t(ei) < tlej) <> (ei0e;) > £

3. te;) =t(ej) <= (ei©e;j) =0
where © denotes a subtraction (modulo 2™) between n-
bit integers, evaluated as an unsigned n-bit integer.

1

dt,

Figure 3: Example of events evaluated by ICTOH.

It is worth observing that for 8/16/32-bit integers such a
subtraction operation does not require a special support
since it is implemented in all CPUs. Figure 3 shows a set of
events which satisfies condition (1).

Notice that condition (1) represents the price we have to pay
for implementing a high resolution timer with an infinite
lifetime. It means that the system can only handle tasks
with timing constraints that cannot exceed the value of P/2
ticks.

So, for example, if the tick is set to 1 ms, and we use a 16 bit
variable for storing the system time, then P = 2'% = 65536,
meaning that the longest timing variable cannot be greater
than 32.768 seconds. If the application includes a task with
a greater period, we can increase the system tick, until a
value equal to the least timing value in the system.

So, actually, P/2 represents the maximun ratio between the
longest and the smallest timing parameter. If there is a task
set where such a ratio is greater than P/2, then the ICTOH
method cannot be used, and we are forced to pay a greater
overhead for handling time variables with a higher number
of bits.

The main property of the © operator is that
Va,b € [0,2" — 1] unsigned(b© a) = dist(a,b)

where

e dist(z,y) is the distance from z to y evaluated on the
time circle in the direction of increasing time values.
Notice that dist(z,y) = d means that if ¢ = x then,

after a delay of d, we have ¢t = y, independently from
the fact that x and y belong to two different cycles.

e unsigned(z) is the value of z, interpreted as an n-bit
unsigned value. We recall that according to the 2’s
complement representation,

. x if £>0
unsigned(z) = § on +z otherwise

For example, when evaluating events e»> and e3 in Figure 3,
we have that dt, = (e2 —e3) = DCT2H > 8000H = P/2.
Hence, we conclude that es must precede es and that the
actual time difference between the events is dt, = (ez—e2) =
238EH < P/2.

3.1 Extension

The constraint expressed by equation (1) can be relaxed if
we consider disjoined sets of events.

Def. Two sets of events E;(t) and E;(t) are said to be dis-
joined if every element of the first set is never compared
with an event of the second set.

Def. Let F be the set of all the disjoined sets in the system.

Then, we can formulate constraint (1) as follows:

Vt VEi(t) € F(t) Vei,e; € Ex(t) |t(e:) — te;)| < g. (2)

In this way it is possible to manage temporal events which
are spread in intervals greater than P/2, provided that events
belonging to the same group are not separated by a time dif-
ference greater than P/2. Figure 4 illustrates two groups of
events that satisfy constraint (2) and can be handled by the
ICTOH method.

Task activation times and deadlines represent a typical ex-
ample of two disjoint groups of events. In fact, although an
absolute deadline is computed from task’s activation time
(by summing the corresponding relative deadline), the dead-
line event enters the system only after task activation, hence
there is no need to compare the two events.

3.2 Implementation notes

Given a pair of events e; end e; represented through vari-
ables with 8, 16, or 32 bits, then by computing the difference
(ei ©¢ej) as a signed integer we can say that:

It is worth noting that such a result is valid only for vari-
ables represented on 8/16/32 bits, since only in this case
all unsigned numbers with a value greater than or equal to

/* code for managing
the case el > e2 */

Language Linear timer implementation ICTOH implementation
unsigned el,e2; unsigned el,e2;
if (el == e2) if (el == e2)
/* code for managing /* code for managing
simultaneous events */ simultaneous events */
C else if (el > e2) else if ((signed)(el-e2) > 0)

/* code for managing
the case el > e2 */

;code for managing

sthe case el < e2
greater_el_e2:

;code for managing

sthe case el > e2
equal_el_e2:

;code for managing

sthe case el = e2

else else
/* code for managing /* code for managing
the case el < e2 */ the case el < e2 */
el DW _el DW
2 DW 2 DW
MOV AX, el MOV AX, el
CMP AX,_e2 SUB AX,_e2
JZ equal_el_e2 JZ equal_el_e2
CMP AX,0
JG greater_el_e2 JG greater_el_e2
Assembler X86 | less_el_e2: less_el_e2:

;code for managing

sthe case el < e2
greater_el_e2:

;code for managing

sthe case el > e2
equal_el_e2:

;code for managing

sthe case el = e2

Table 1: ICTOH vs. the simple linear timer: implementation issues.

FFFF 0000

Figure 4: Two groups of disjoint events
{e1,e3;€e2,e4,e5} that can be handled by the IC-
TOH method.

P/2 (evaluated using the two’s complement representation)
are considered to be negative. For variables with a different
number of bits, the test has to be performed as shown in the
previous section, which however in several CPUs does not
cause a larger overhead in terms of time and memory.

Table 1 compares the proposed ICTOH algorithm with the
classical linear timer (without overflow management).

As clear from the assembler (X86) formulation, the differ-
ence between the two implementations is very small and
the overhead introduced by ICTOH consists in just one as-
sembly instruction. In fact, the execution time of a CMP
instruction is similar to the one of a SUB instruction, and
the additional instruction (CMP AX,0) required by ICTOH
does not introduce a large overhead, being performed using
a register and an immediate operand.

4. COMPARISONWITHOTHERMETHODS

The implementation illustrated in Table 1 shows that the
proposed method introduces a runtime overhead practically
similar to the one introduced by the linear timer, which is
the simplest possible implementation (which does not even
handle the overflow). To handle the overflow, whenever an
event exceeds the system lifetime, a routine must recom-
pute all temporal events present in the system, by trans-
lating them of a fixed quantity. Such an approach is not
efficient, especially in microcontrollers, since it introduces a

large runtime overhead at every timer overflow.

In this section we compare the ICTOH approach with two
other methods proposed in the literature. The first method
was proposed by Park et al. in [12], while the second method
was proposed by Fonseca in [7]. The same problem has also
been addressed in [6], however the proposed solution is less
efficient than those compared here.

41 Method 1

The method proposed by Park et al. in [12] has been devised
to handle deadlines assuming they are never in the past
(d; < t) and that the longest relative deadline is less than the
circular timer period (D; < P). Hence, the method consists
in handling those deadlines which exceed the current cycle
(i.e., the one containing t).

The basic idea is to add the constraint that Vi D; < P.
Moreover, an additional bit d_bit; is associated to each tem-
poral event to indicate whether it belongs or not to the cur-
rent cycle. An additional bit #4;; is also used for the system
time ¢ as a base to identify the current cycle. Then, the
method consists to invert the ;; bit at each new timer cy-
cle. Whenever a new deadline d; falls in the current cycle
the corresponding d_bit; is inizialized at the value of tp;,
otherwise d_bit; = tp;;. A comparison between two dead-
lines is performed on the additional bits first. If they are
equal, the two values are compared as shown in Table 2.

unsigned t,d1,d2;
char flag,t_bit,d1_bit,d2_bit;

//t-bit management

if (£<0x8000 && flag==0){
t_bit" =1;
flag=1;

telse if (t>=0x8000)
flag=0;

//new deadline management
if (d1<t)

d1_bit=t_bit"1;
else

d1_bit=t_bit;

//Deadline comparison
if (d1==d2)
// Code for managing the case d1 = d2
else if(d1_bit==d2_bit){
if(d1>d2)
// Code for managing the case d1 > d2
else
// Code for managing the case d1 < d2
telse if (d1_bit==t_bit){
// Code for managing the case d1 < d2
telse
// Code for managing the case d1 > d2

Table 2: Deadline comparison using Method 1.

It is worth noting that the additional bit used by this method

introduces a large overhead due to its dynamic management.
Moreover, storing this bit either increases the required mem-
ory or causes a larger runtime overhead. In fact, storing the
bit in a dedicated byte is clearly a waste of memory. On
the other hand, compressing those bits would increase the
overhead for their manipulation.

4.2 Method 2

The method proposed by Fonseca in [7] also uses an addi-
tional bit, £p;, but only for the ¢ variable. Hence, such a bit
can be stored in a dedicated byte without much problems.
The major novelty of this method is to exploit the property
of unsigned and signed integer numbers, which have two dif-
ferent discontinuity points: one from (2" — 1) to 0 and the
other from (2"~ ! —1) to (2"71).

By limiting the interval of the manageable events to ¢ £+ %
and using the ;¢ value, computed based on ¢, to specify
which of the two representations has to be used, it is possible
to manage time with a reduced overhead. The method is
described in Table 3.

unsigned el,e2;
char t_bit;

//Time management
t-= 0x4000;
if ((signed)t<0)
t_bit=0;
else
t_bit=1;

//Deadline comparison
if (el==e2){
// Code for managing the case el = e2
telse if (t_bit==0){
if (el>e2)
// Code for managing the case el > e2
else
// Code for managing the case el < e2
telse {
if ((signed)el>(signed)e2)
// Code for managing the case el >e2
else
// Code for managing the case el < e2

Table 3: Event comparison with Method 2 [7].

This method is better than Method 1 because:

e It does not require an additional bit for each temporal
event;

e Creating new events does not introduce overhead.

Nevertheless, this method is less efficient than ICTOH be-
cause it requires storing and managing the additional tp;;.

Method Function Code | Variables | Tz | Taug
(Bytes) | (Bytes) | (us) | (ps)

Handling t4;: 28 2 20 11

Method 1 Handling e; (e; = d;) 20 n 16 13
Comparison 30 0 20 19

Handling t4;: 18 1 13 12

Method 2 Handling e; 0 0 0 0
Comparison 28 0 16 15

Handling tp;¢ 0 0 0 0

ICTOH Handling e; 0 0 0 0

Comparison 15 0 11 9

Table 4: Comparison among the three methods on a MCU 68HC11 at 8Mz.

Moreover, when comparing two events, Method 2 is heavier

than ICTOH, since it requires one more test (if (t_bit==0){...}).

Table 4, obtained by optimizing the code for the 68HC11 as-
sembly language, summarizes the main features of the three
methods presented in this paper in terms of code length,
additional memory requirements, maximum and minimum
execution time.

To better evaluate the difference among the three methods,
we performed an experimental test on a kernel using an EDF
scheduler on a Motorola 68HC11. The test has been run on
9 periodic tasks with periods equal to 15, 21, 43, 150, 186,
320, 521, 946, 1080 milliseconds respectively. The results of
the test are reported in Table 5, which shows that ICTOH
is more effective than the other methods in terms of both
runtine overhead and memory requirements.

Method 1 | Method 2 | ICTOH
Total execution | 18ms/s 12ms/s 5ms/s
time
Processor utiliza- 1.8% 1.2% 0.5%
tion
Code size 270 Bytes | 120 Bytes | 30 Bytes

Table 5: Performance of the methods on a MCU
68HC11 system running 9 periodic tasks handled
by EDF.

5. CONCLUSIONS

In this paper we presented an efficient method for repre-
senting time and compare timed events in small embedded
processors with small memory requirements. The method
allows to achieve an infinite lifetime and balance the system
resolution with the longest relative timing constraint han-
dled by the system. The method has been implemented on a
kernel for a Motorola 68HC11 microntroller. For most con-
trol applications considered in our lab, the timer resolution
has been set to 100 microseconds, giving a limit of about 3
seconds for the maximum relative deadline/period that can
be specified on the tasks.

The performance of the proposed method has been evalu-
ated and compared with two other approaches, resulting in
a more efficient implementantion and a smaller overhead,
comparable with the one of a linear timer model without

overflow management.

As a future work, we plan to use such a method for imple-
menting an execution time monitoring mechanism useful for
developing capacity-based servers or performing statistical
evaluations on timing events.

6. REFERENCES
[1] L. Abeni and G. Buttazzo, “Integrating Multimedia
Applications in Hard Real-Time Systems”, Proc. of
the IEEE Real-Time Systems Symposium, Madrid,
Spain, December 1998.

[2] L. Abeni and G. Buttazzo, “Support for Dynamic QoS
in the HARTIK Kernel,” Proceedings of the 7th IEEE
Real-Time Computing Systems and Applications,
Cheju Island, South Korea, December 2000.

[3] G. Buttazzo, “HARTIK: A Real-Time Kernel for
Robotics Applications”, Proceedings of the 14th IEEE
Real-Time Systems Symposium, Raleigh-Durham, pp.
201-205, December 1993.

[4] Alessio Carlini, “A real-time kernel for embedded
applications on a Motorola 68HC11 microcontroller”,
Technical Report, Robotics Lab, University of Pavia,
TR~2001-01, December 2001.

[6] M.L. Dertouzos, “Control Robotics: the Procedural
Control of Physical Processes,” Information
Processing, 74, North-Holland, Publishing Company,
1974.

[6] R. Elz and R. Bush, “Serial Number Arithmetic”,
August 1996, Network Working Group, request for
comments, 1982. URL:
ftp://ftp.isi.edu/in-notes/rfc1982.txt.

[7] Pedro Fonseca, “Approximating linear time with finite
count clocks”, Technical Report, Dep. de Electrénica,
Universidade de Aveiro, Revista do DETUA
vol.3,n.4,pp:359-361, ISSN-1645-0493, Sept.2001.

[8] P. Gai, L. Abeni, M. Giorgi and Giorgio Buttazzo, “A
New Kernel Approach for Modular Real-Time systems
Development”, Proceedings of the 13th IEEE
Euromicro Conference on Real-Time Systems, Delft,
Netherlands, June 2001.

[9] Paolo Gai, “A Flexible and Configurable Real-Time
Kernel for Time Predictability and Minimal Ram
Requirements” Technical Report, Scuola Superiore S.
Anna of Pisa, RETIS TR2001-02, March 2001. URL:
http://gandalf.sssup.it/ pj/research.html.

[10] G. Lamastra, G. Lipari, G. Buttazzo, A. Casile, and
F. Conticelli, “HARTIK 3.0: A Portable System for
Developing Real-Time Applications,” Proceedings of
the IEEE Real-Time Computing Systems and
Applications, Taipei, Taiwan, October 1997.

[11] C.L. Liu and J.W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard real-Time
Environment,” Journal of the ACM 20(1), 1973, pp.
40-61.

[12] Moonju Park, Lui Sha, and Yookun Cho, “A Pratical
Approach to Earliest Deadline Scheduling”, Technical
Report, School of Electrical Engineering and
Computer Science, Seoul National University, Seoul,
Korea, December 2001.

[13] M. A. Rivas and M. Gonzalez Harbour,
“POSIX-Compatible Application-Defined Scheduling
in MaRTE OS,” Proceedings of the Work-In-Progress
session of the 13th Euromicro Conference on
Real-Time Systems, Delft (NL), June 2001. URL:
http://ctrpcl7.ctr.unican.es/.

[14] L. Sha, L.R. Rajkumar, J.P. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization,” IEEE Transactions on Computers,
39(9), 1990.

[15] M. Spuri and G.C. Buttazzo, “Scheduling Aperiodic
Tasks in Dynamic Priority Systems,” Real-Time
Systems, 10(2), 1996.

[16] The MCX11 kernel,
URL: http://www.introl.com/introl-
demo/demo/MCX11/contents.html.

[17] The SSX5 kernel, URL: http://www.realogy.com/.
Alessio Carlini’s biography

Alessio Carlini graduated in Computer Engineering from the
University of Pavia in 2002. During his thesis, he designed
and developed a real-time kernel for a Motorola 68HC11
microcontroller, aimed at running control applications for
robotic systems. After his graduation, he worked as a re-
search assistant in the Robotics Laboratory of the Computer
Science Department of the University of Pavia, developing a
vision-based obstacle avoidance system for an autonomous
vehicle. Currently, he is working in Prisma Engineering,
focusing on embedded systems and digital communication
devices.

Giorgio Buttazzo’s biography

Giorgio C. Buttazzo graduated in Electronic Engineering
from the University of Pisa in 1985, received a Master in
Computer Science from the University of Pennsylvania in
1987, and a Ph.D. in Computer Engineering from the Scuola

Superiore S. Anna of Pisa in 1991. He is an Associate Pro-
fessor of Computer Engineering at the University of Pavia,
Italy. His main research interests include real-time operat-
ing systems, dynamic scheduling algorithms, quality of ser-
vice control, multimedia systems, advanced robotics appli-
cations, and neural networks.

