
A SIX-LEGGED ROBOT: REAL-TIME ISSUES AND
ARCHITECTURE

Mauro Marinoni, Alessio Carlini, Giorgio Buttazzo

University of Pavia, Italy
Email: the.nino@libero.it, lbrgc@tin.it, buttazzo@unipv.it

Abstract: Mobile robot systems often operate under real-time constraints imposed by
the interactions with the world in which they act. Such timing constraints are typically
assigned to the various software activities (acquisition, control and actuation tasks) that
run on the robot controller, and need to be enforced by the operating system that support
the application. To reduce weight and power consumption, however, battery-operated
robots are usually controlled by small microcontrollers with little computational power
and memory capacity. As a consequence, predictability as well as high efficiency is
required from the real-time kernel to enforce timing constraints on application tasks.
In this paper we describe a robot control architecture specifically developed for supporting
real-time applications in small mobile robots with limited resources. The proposed real-
time system has been used to control the behavior of a six-legged walking robot, where the
motion of each leg has to be synchronized with the other based on the walking parameters.

Keywords: Real-time kernel, scheduling, Embedded system, Control architecture

1. INTRODUCTION

The advancement of mechanical and electronical com-
ponents allows the development of robot vehicles and
walking machines that are smaller and smaller in size.
When such robots must exhibit a certain level of au-
tonomy, the major problem is to design an embedded
computer architecture which is small enough to fit on
the robot structure, and powerful enough to execute all
the robot computational activities needed for achiev-
ing the desired level of autonomy. In order to decrease
the weight of the batteries, the robot architecture must
be designed very carefully to limit energy consump-
tion. As a consequence, such small robots are usually
controlled by tiny microprocessors that have limited
memory and computational power.

Mobile robot systems, however, often operate un-
der dynamic and unknown environments, and must

? This work has been partially supported by grants from the Euro-
pean Union, under contract IST-2001-34820, and from the Italian
National Research Council (CR), under contract CNRC002FE3.

promptly react to external events in order to per-
form their goals. Such an interaction with the world
causes the robot activities to be characterized by tim-
ing constraints, that must be respected to achieve the
expected robot behavior. Typical computational ac-
tivities performed by the robot involve sensory ac-
quisition, data processing and motor control. At a
higher level of control, typical tasks include obstacle
avoidance, path planning and reactive actions (such
as feedback-based operations and tracking behaviors).
Most of these tasks are periodic, that is, must be cycli-
cally executed with specific rates, whose value de-
pends on the characteristics of the environment and on
the required robot performance (e.g., running speed,
reaction times, etc.). Some other activities may be
aperiodic, that is can be activated at unknown times
on the occurrence of specific events, such as a signal
change in a sensor.

To perform an accurate schedulability analysis of the
application, a periodic task τi is defined as an infinite
sequence of jobs τi,k (k = 1, 2, . . .), where the first job

Administrator
Proceedings of the 5th IFAC International Symposium on Intelligent Components and Instrumentsfor Control Applications (SICICA 2003), Aveiro, Portugal, July 9-11, pp. 245-250, 2003.



τi,1 is released at time ri,1 = Φi (the task phase) and
the generic kth job τi,k is released at time ri,k = Φi+
(k−1)Ti, where Ti is the task period. Each job is then
characterized by an execution time Ci (typically esti-
mated in worst-case conditions), a relative deadline Di

and an absolute deadline di,k = ri,k + Di. The ratio
Ui = Ci/Ti is called the utilization factor of task τi

and represents the fraction of processor time used by
that task. The value

Up =

n∑

i=1

Ui

is called the total processor utilization factor and
represents the fraction of processor time used by the
periodic task set. Clearly, if Up > 1 no feasible
schedule exists for the task set.

In order to achieve stability and guarantee a desired
performance, timing constraints need to be enforced
by the operating system that supports the applica-
tion. In particular, the operating system should guar-
antee that all periodic tasks are activated according
to their specified periods and executed within their
deadlines. In addition, tasks may have different impor-
tance, hence a proper priority level need be assigned to
them for scheduling purposes.

In 1973, Liu and Layland (Liu, 1973) analyzed the
properties of two basic priority assignment rules: the
Rate Monotonic (RM) algorithm (according to which
priorities are inversely proportional to task periods)
and the Earliest Deadline First (EDF) algorithm (ac-
cording to which priorities are inversely proportional
to absolute deadlines). Notice that RM is a static pri-
ority algorithm, since periods are usually fixed pa-
rameters, whereas EDF is a dynamic algorithm, since
absolute deadlines change from a job to the other.

The main result found by Liu and Layland is that,
if there are not resource constraints, nor precedence
relations, a set of n periodic tasks is schedulable by
the RM algorithm if

n∑

i=1

Ui ≤ n (21/n
− 1). (1)

As n increases, the right term of the feasibility condi-
tion decreases and it can be shown that:

lim
n→∞

n (21/n
− 1) = ln 2 ' 0.69.

Under the EDF algorithm, it has been shown that a set
of n periodic tasks is schedulable if and only if

n∑

i=1

Ui ≤ 1. (2)

Another important result proved by Liu and Layland is
that the RM priority assignment is optimal among all
fixed priority rules, in the sense that, if a task set can-
not be scheduled by RM, then it cannot be scheduled

by any other fixed priority assignment algorithm. In
(Dertouzos, 1974), Dertouzos showed that EDF is op-
timal among all priority assignments. Unfortunately,
however, EDF is more difficult to implement, since all
commercial real-time kernels do not support absolute
deadlines and dynamic priorities.

The consequence of these results is that, if peri-
odic tasks are assigned fixed priorities, the proces-
sor cannot be fully utilized to guarantee feasibility
of the schedule. On the other hand, dynamic priority
schemes like EDF, that would fully utilize the pro-
cessor, cannot be easily implemented on top of com-
mercial kernels that do not support absolute timing
constraints. Such a limitation is even more serious
when applications need to be realized on small 8-bit
microcontrollers.

To overcome the problem illustrated above, we de-
veloped a small real-time kernel for the Motorola
68HC11 microcontroller, capable of handling absolute
timing constraints and using EDF as a basic schedul-
ing mechanism. The system has been used to develop a
control application, in which a six-legged robot is pro-
grammed to walk in different modes and directions,
and to react to a limited number of events.

This paper describes our experience in developing
the robot system and discusses some details of the
robot architecture components. In particular, Section 2
presents an overview of the robot system architecture,
Section 3 illustrates the characteristics of the real-time
kernel, Section 4 describes the control algorithm used
to generate the motor actions, and Section 5 states our
conclusions and future work.

2. SYSTEM ARCHITECTURE

The robot developed in this work is a walking machine
endowed with six independent legs, each having two
degrees of freedom. With respect to a four-legged
robot, a six-legged machine is more stable during
walking, and leg motion generation can be performed
without the additional constraint of controlling the
center of mass of the robot. This allowed us to simplify
the development of the control algorithms and to test
several walking modes. The robot system consists of
three basic components, as illustrated in Figure 1: the
electromechanical structure, the motor controller, and
the walking controller.

Walking

Controller

Motor

Controller

Electromechanical

Structure

Fig. 1. Block diagram of the robot system.



2.1 The robot

The structure of the robot consists of an electrome-
chanical skeleton, which supports the 12 servomo-
tors that actuate the six legs. Each motor is a Hitec
HS-645MG and includes an internal position control
loop that allows the user to specify angular positions
through a PWM input signal. This feature simplifies
the external circuitry and avoids sending feedback sig-
nals to the motor control unit. The internal feedback
loop imposes an angular velocity of 250 degrees per
second and the motor is able to generate a maximum
torque of 9.6 kg/cm. The two motors that actuate a leg
are connected to a board that provides the motors with
power supply and the input signals coming from the
control layer.

2.2 Motor controller

The motor control layer is realized using a Mi-
crochip 16F876 Programmable Interrupt Controller
(PIC) (Microchip, 2001). The main function of the
PIC is to receive the joint reference positions from
the walking controller and generate the PWM signals
for driving the motors. The PWM signal generator is
interrupt driven and can drive up to 8 motors. To do so,
Interrupt 0 is periodically activated with a rate equal to
eight times the rate used by servomotors. Cyclically,
each of the eight output signals is set high, and the
PIC timer is set to the value equal to the pulse du-
ration corresponding to the desired angular position.
Hence, when activated, the routine serving Interrupt 1
only needs to reset all the outputs. A sample output
sequence generated by the PIC is shown in Figure 2.

t

M0

M1

M2

M3

M4

M5

M6

M7

Fig. 2. Example of pulse sequence generated by the
PIC.

Input set points are received from the walking layer
via a standard RS232 serial line, through the USART
integrated in the PIC, which allows a transfer rate up
to 56 Kbaud. This chip can also work in a mode that
allows to connect several PICs to the same serial line,
so extending the number of output PWM signals by
a multiple of eight. In this mode, an address must be
sent in the first byte of the input sequence, and the
chip enables itself only if recognize that address. The
reception routine and the corresponding interpreter

of data run in background. A check on the correct
reception is performed by sending each data back to
the sender, which performs the actual comparison with
the original data. In addition to the reference values
for the motors, from the same serial line, the PIC
can also receive a number of commands to disable a
motor, change the baud rate, or modify the period of
the PWM pulses.

The use of a standard RS232 serial line has the ad-
vantage of facilitating the replacement of the walk-
ing layer for simplifying testing. In our system, the
walking control has been implemented both on a Mo-
torola 68HC11 microcontroller and on a PC, which
simplifies the development of the control algorithms
and allows to display all system variables in a suit-
able graphical form. For the moment, the walking
controller and the PIC are connected through a serial
cable, but this can easily be replaced by a wireless
device. In fact, the PIC board provides two jumpers
to redirect the reception and transmission lines to an
auxiliary communication peripheral, rather than to the
Maxim MAX232 chip, that converts TTL signals into
12V signals. A diagram of the electrical layout of the
PIC board is illustrated in Figure.

At present, a single PIC is being used to drive 8
motors. This is possible by coupling the movements
of two pair of legs (two for each side). In this solution,
legs 1 and 5 move synchronously and are driven by
the same PWM signal. The same is true for legs 2 and
6. The extension to two PICs can simply be realized
by using the address recognition modality described
above.

2.3 Walking Controller

In the initial phase of development, in order to sim-
plify testing, the walking controller has been imple-
mented on a Personal Computer, using the Shark
real-time kernel (Gai, 2001). Then, the software has
been ported on the Motorola 68HC11 microcontroller
(Motorola, 2002), running the McuOS kernel (Carlini,
2002), described in the next section. The microcon-
troller is mounted on a single board computer (Grifo
GPC114), incorporating 64 Kbyte of memory (32
Kbye of EPROM and 32 Kbyte of RAM), an RS-232
serial line, a 20 lines standard connector and a 26 lines
Abaco I/O bus. The processor is a 8-bit CPU, with
a 2 MHz clock, capable of addressing 64 Kbytes of
memory. It includes 16 digital I/O lines, an 8-bit A/D
converter multiplexed on 8 lines, a 16 bit timer counter
and a standard RS232 serial communication line. The
application code has been written in C language, us-
ing a GCC compatible cross-compiler, with limited
optimization capabilities. For this reason, some time
critical portions of code have been written in assembly
language.



3. THE REAL-TIME KERNEL

To achieve predictability and efficiency on control ac-
tivities, the walking controller runs a real-time ker-
nel, McuOS, developed at the University of Pavia
for supporting small embedded applications on the
M68HC11 microcontroller. The kernel has a modular
structure and has been designed to be easily portable
on different hardware platforms. McuOS supports ex-
plicit timing constraints, such periods and deadlines,
and it is able to handle periodic and aperiodic tasks
with different criticality. In particular, the scheduling
mechanism is based on the Earliest Deadline First
(EDF) algorithm (Liu, 1973), and soft tasks are han-
dled through the Constant Bandwidth Server (CBS)
(Abeni, 1998), an efficient service mechanism that
allows achieving resource reservation and temporal
isolation among tasks. Using the CBS, each task τi

is assigned a predefined processor bandwidth Ui =
Ci/Ti, and the server guarantees that a budget Ci is
reserved for task execution in every interval of Ti units
of time. The isolation property of the CBS prevents
any temporal interference among concurrent tasks, in
the sense that a task with reserved bandwidth Ui runs
as it was executing alone on a slower processor of
speed Ui times the actual speed.

Besides the temporal isolation property provided by
the CBS, another peculiar feature of the McuOS kernel
is the high resolution time reference mechanism, im-
plemented using a circular timer, according to the Im-
plicit Circular Timer Overflow Handler (ICTOH) al-
gorithm (Carlini, 2003). This novel method provides a
simple and extremely efficient mechanism for achiev-
ing an infinite lifetime 1 and a high resolution, still
using 8-bits variables for time representation. For this
reason, the ICTOH algorithm is also characterized by
a small runtime overhead and memory requirements
when comparing two timing events.

The real-time scheduler implemented in the McuOS
kernel also provides a resource reclaiming mecha-
nism, which exploits the unused execution time left
by tasks that may complete earlier than expected. This
feature significantly improves the average response
times of tasks with variable computational require-
ments and also allows to reduce some problem de-
riving from dealing with relatively long periods and
deadlines.

Whenever the processor becomes idle, the reclaiming
mechanism is invoked for resetting all relative dead-
lines (that may have been postponed by the CBS to
enforce isolation) to their nominal value. The great
advantages of this method are its simplicity and its low
runtime overhead, which make it suitable for small
embedded systems. A disadvantage of the proposed
reclaiming method is that it is not easy to exploit
the unused CBS budget. To overcome this problem,

1 The lifetime is the maximum time that can be handled by the
system.

another reclaiming mechanism, denoted as the PASS
method, allows to transfer a residual budget to the
served task with the earliest deadline. It is worth notic-
ing that the PASS budget sharing mechanism is better
suited for tasks with periodic or sporadic arrivals. In
fact, if a new aperiodic request arrives just after the
previous one is ended, the residual budget (if any) may
be transferred to another task, and the new request has
to wait for the next recharge, so reducing aperiodic
responsiveness.

In the real-time literature, other solutions have been
proposed to reclaim the spare budget left by CBS
tasks. They are very effective in terms of perfor-
mance, but too costly to be implemented in a small
microcontroller. For example, the GRUB algorithm
(Lipari, 2000) makes intensive use of floating point
variables, that are not supported in small microproces-
sors or are heavy to manipulate. The CASH algorithm
(Caccamo, 2000) is based on a queue of spare capac-
ities that needs to be managed in addition to the other
system queues, thus increasing the runtime overhead
and memory requirements.

The CBS mechanism implememented in the McuOS
kernel extends the original CBS algorithm (Abeni,
1998), by making it capable of handling tasks that may
share mutually exclusive resources in a predictable
fashion. This is done by means of a simplified imple-
mentation of the Stack Resource Policy (Baker, 1991),
which is able to prevent unbounded priority inversion
and limit the maximum blocking time during access
to mutually exclusive resources. Although highly pre-
dictable, such a method introduces some extra runtime
overhead, that must be taken into account when veri-
fying schedulability conditions. In a small embedded
microcontroller as the M68HC11, such an approach
can only be justified when tasks have a few and large
critical sections. For this reason, task communication
can also be handled through classical mailboxes.

To simplify the development of real-time applications,
a tool is provided for helping the user in compiling the
kernel. Such a tool generates the application files from
a pair of files provided by the user. This allows de-
veloping real-time applications without knowing the
implementation details of McuOs. The first file speci-
fies the source code, in C language, of the application
tasks, so it basically contains a set of functions with
a set of variable definitions. The second file specifies
all parameters relative to tasks, CBS servers, and re-
sources. It is written in XML and can also include a
pair of user-defined functions for initializing the mi-
crocontroller and the interrupt handlers. The contain
of a sample configuration file is illustrated in Figure 3.

4. APPLICATION TASKS

The walking controller includes two important tasks:
the leg motion generator, which computes the refer-



<Task>
<FunctionName>Task0</FunctionName>
<StackSize>1000</StackSize>
<TaskType>SOFT_LIGHT</TaskType>
<ExecuteTime>1000</ExecuteTime>

</Task>
<CBS>

<Period>30000</Period>
<ManageTask>Task0</ManageTask>

</CBS>

Fig. 3. Sample XML specification of task parameters.

ence angles for each motor, and the transmission task,
which sends the actual data to the PIC.

The algorithm used to generate leg motion modulates
a reference walking step through a number of parame-
ters. An important parameter is the maximum angle
that each leg covers in the horizontal plane during
its motion (see Figure 4a). A differential change in
such angles for the left and right legs causes the robot
to turn. Another parameter that can be tuned is the
maximum angle that each leg covers in the vertical
plane (see Figure 4b). This value depends on the type
of surface on which the robot walks: small values are
sufficient for walking on smooth surfaces, whereas
higher values are needed in the presence of obstacles
or protruding regions.

α α

yα

L R

(b)(a)

Fig. 4. Leg angular rotations: (a) top view; (b) side
view.

To guarantee the equilibrium of the robot during walk-
ing, the algorithm always keeps three legs in touch
with the ground, in such a way that the center of mass
of the robot always falls in the triangle defined by the
touching points.

The specific position set points for the motors involved
in the horizontal motion are generated by sampling
two cosine functions with opposite phases. Similarly,
a pair of sine functions with opposite phases was
initially used for the vertical leg motion. However,
this solution has been modified since it was causing
the robot to have a significant roll while walking.
The specific shape of the waveform depends on many
factors, including equilibrium requirements, speed,
and maximum allowed roll.

Figure 5 illustrates the four functions that are presently
used for generating the vertical leg motion.

4.1 Timing constraint derivation

In the robot application we described in this paper,
task timing constraints have to be properly derived in

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

Leg 0 Orizontal

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

Leg 0 Vertical

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

Leg 1 Orizontal

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

Leg 1 Vertical

Fig. 5. Functions used for the vertical leg motion.

order to achieve a desired performance. In particular,
the deadline to be assigned to the communication task
depends on several factors, such as the transmission
speed of the serial line, the echoing time, the execution
time for error checking and the time for error recovery.
This deadline, in turn, determines the minimum period
that can be assigned to the leg motion generator task.
In fact, for each walking step, this task has to perform
eight transmissions to send the new set points to the
motors. In the interval between the transmission of
two set points, the communication task must be able
to send all data related to the previous step, otherwise
the message queue saturates in a short time. If Twalk is
the period of the leg motion generator task and Tsend

is the period of the communication task, then we must
have that

Twalk > 8Tsend.

At present, Twalk = 18 ms, whereas Tsend = 2 ms.

An another important timing parameter is the period
used for sampling the cosine functions used for leg
motion generation. In fact, the duration of a complete
walking step is equal to the period of the leg motion
generation task times the number of samples used for
describing the cosine functions. Considering the speed
limit of the motors, such a duration cannot be less
than the time needed by a servomotor to execute the
corresponding rotation. Hence,

Tstep = NsamplesTwalk >
2αmax

Vservo
. (3)

where Nsamples is the number of points used to sam-
ple the cosine functions, αmax is the cosine amplitude,
and Vservo is the velocity of the servomotor. Currently,
the cosine functions are set to cover and maximum
angle αmax = 75 degrees, and are sampled with 64
points. As a consequence, the time for performing a
full walking step is Tstep = 1, 152 seconds.

Turns during walking can be performed by changing
the amplitude, αR and αL, of the left and right angle.
Assuming that αR = αL (i.e., straight line motion) we
can compute the average walking speed of the robot
as the ratio of the space ∆x covered in a full walking



L0 105 mm
αy0 37,5

∆x(αmax) 322 mm
v(αmax) 0,28 mm

Table 1. Values of the robot parameters.

step and the time TStep required for it. The space ∆x

is given by

∆x = 4L0cos(αy0)sin(αmax)

where L0 is the leg length and αy0 is the amplitude of
the vertical cosine function (see Figure 2). Hence,

v =
∆x

Tstep
.

Using the values reported in Table 1, the average speed
of the hexapod is about 280 mm/s.

5. CONCLUSIONS

In this paper we presented a real-time architecture
for supporting the development of robotic control ap-
plications based on PWM-driven servomotors. As a
sample application, we described a six-legged walking
machine endowed with 12 position controlled servo-
motors. The PWM signals for the servomotors are
generated through a PIC subsystem, connected to the
host computer through a standard RS232 serial line.
The host computer, running the higher level control al-
gorithms, has been implemented both using a PC and
a Motorola 68HC11 microcontroller. In both cases,
the application tasks have been handled by a real-
time operating system to achieve predictable behavior
and guarantee of task timing constraints. A novel real-
time kernel (McuOS) has been used for the Motorola
68HC11 microcontroller, providing efficient internal
mechanisms for time management, task scheduling,
temporal isolation, resource sharing, and resource re-
claiming.

Experimental results performed on the robot system
showed the effectiveness of the proposed approach
and its potential use for other similar systems.

As a future work, we plan to endow the robot with a set
of sensors for achieving some autonomous behavior,
like proximity ultrasound transducers, a videocamera,
whisker-like contact switches, and light sensors. In
addition, we plan to monitor leg torques by reading
the current drained by the motor drivers. This is useful
for identifying possible situations that may prevent the
motion of some leg, due for example to big obstacles
along the path. Finally, we would like to redesign the
locomotion system to give each leg three degrees of
freedom. This would allow to implement more sophis-
ticated walking patterns, including lateral translation.

REFERENCES

Abeni, L. and Buttazzo, G.C. (1998). Integrating Mul-
timedia Applications in Hard Real-Time Sys-
tems. Proc. of the IEEE Real-Time Systems Sym-
posium, Madrid, Spain.

Baker, T.P. (1991). Stack-Based Scheduling of Real-
Time Processes, The Journal of Real-Time Sys-
tems 3(1), pp. 76-100.

Caccamo, M. and Buttazzo, G.C. and Sha, L. (2000).
Capacity Sharing for Overrun Control. Proceed-
ings of the 21st IEEE Real-Time Systems Sympo-
sium, Orlando, Florida.

Carlini, Alessio. (2002). A real-time kernel for the
M68HC11 microcontroller. Master Thesis, De-
partment of Computer Science, University of
Pavia.

Carlini, A. and Buttazzo, G.C. (2003). An Efficient
Time Representation for Real-Time Embedded
Systems. Proceedings of the 18th ACM Sympo-
sium on Applied Computing, Track on Embed-
ded Systems: Applications, Solutions, and Tech-
niques, Melbourne, Florida, USA.

Dertouzos, M.L. (1974). Control Robotics: the Proce-
dural Control of Physical Processes. Information
Processing, 74, North-Holland, Publishing Com-
pany.

Gai, P. and Abeni, L. and Giorgi, M. and Buttazzo,
G.C. (2001). A new kernel approach for modular
real-time system development. Proc. 13th IEEE
Euromicro Conf. on Real-Time System, Delft,
Netherland.

Lehoczky, J. P. and Sha, L. and Strosnider, J. K.
(1987). Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments. Proceedings of
the IEEE Real-Time Systems Symposium, pp.
261-270.

Lipari, G. and Baruah, S.K. (2000). Greedy Reclaima-
tion of Unused Bandwidth in Constant Band-
width Server. Proceedings of the 12th IEEE Eu-
romicro Conference on Real-Time Systems.

Liu, C.L. and Layland, J.W. (1973). Scheduling Al-
gorithms for Multiprogramming in a Hard real-
Time Environment. Journal of the ACM 20(1),
pp. 40–61.

Microchip Technology Inc.
(2001). PICmicro mid-range MCU family refer-
ence manual. www.microchip.com, 2001.

Motorola Inc. (2002).
M68HC11 Microcontrollers reference manual.
URL: www.motorola.com/semiconductors.

Sprunt, B. and Sha, L. and Lehoczky, J. (1989). Ape-
riodic Task Scheduling for Hard Real-Time Sys-
tem. Journal of Real-Time Systems, 1, pp. 27-60,
June.

Spuri, M. and Buttazzo, G.C. (1996). Scheduling Ape-
riodic Tasks in Dynamic Priority Systems. Real-
Time Systems, 10(2).




