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Abstract: In this paper we describe the real-time issues related to the development of
a control system for tracking and catching moving targets by vision. After describing
the main hardware and software components of the system, we discuss a number of
interesting scheduling problems that arise in these kind of control applications. A possible
solution to these problems is also outlined and has been implemented on top the Shark
operating system, used to develop the real-time application. The experimental results
obtained on the system prototype show the effectiveness of our approach and encourage
further research on the specific scheduling problems.Copyright @ 2003 IFAC.
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1. INTRODUCTION

Most of today’s real-time control applications are de-
veloped on top of priority based kernels. The most
common priority assignment used to handle real-time
periodic tasks is the Rate-Monotonic (RM) schedul-
ing algorithm, which assigns priorities to tasks pro-
portionally to their rates (Liu, 1973). RM is known
to be optimal among the class of fixed priority algo-
rithms, nevertheless, there are several problems that
may arise when implementing RM on top of com-
mercial real-time kernels. First of all, RM does not
allow a full processor utilization (except for special
harmonic period configurations), as its schedulability
bound is approximately equal to 69%, which is a very
low value, if compared with the one achieved by other
scheduling techniques (like EDF, that is able to exploit
the full processor power). Secondly, if the kernel does
not adopt a specific concurrency control protocol for
accessing shared resources, tasks may experience a
priority inversion phenomenon (Sha, 1990), for which
a higher priority task can blocked by a lower priority
task for an unbounded amount of time. Finally, if the
kernel does not allow interrupt scheduling, periodic

tasks can suffer long delays due to bursty interrupt
arrivals.

When a control application requires high performance
and efficient resource utilization, special real-time fea-
tures need to be adopted at the operating systems
level to avoid the problems outlined above. This is
especially true when real-time applications need to be
developed on small embedded microprocessors, with
limited memory and processing power.

In the application described in this paper, there are
two additional problems that need to be solved at the
kernel level, to achieve a desired level of performance.
The first problem is due to the presence of tasks
with highly variable computation time. Guaranteeing
these tasks assuming the worst-case execution time
would be too pessimistic, and would cause a waste of
processing power. On the other hand, considering their
average-case behavior is not safe, because execution
overruns may cause other tasks to miss their deadlines.
The second problem is given by the presence of a
particular sporadic task that needs to be executed at
a specific time instant, neither before, nor later. Notice
that the desired execution instant cannot be specified
by a classical deadline. In fact, the classical deadline

Administrator
Proceedings of the 5th IFAC International Symposium on Intelligent Components and Instrumentsfor Control Applications (SICICA 2003), Aveiro, Portugal, July 9-11, pp. 251-256, 2003.



semantics does not apply to this case, where an earlier
execution is also not acceptable.

Some of the problems mentioned above have been
addressed in the real-time literature, but the exist-
ing solutions are rarely adopted in practical systems.
For example, although EDF is able to achieve full
processor utilization, most real-time applications are
implemented using RM, because most commercial
kernels do not support deadline scheduling. For this
reason, the application presented here has been im-
plemented using a research kernel, Shark (Gai, 2001),
which allows to combine EDF with other scheduling
techniques for avoiding priority inversion. The EDF
algorithm (with shared resources) is also available in
MicOS (Carlini, 2003), a real-time kernel for develop-
ing embedded applications on top of small microcon-
trollers (e.g., the Motorola 68HC11).

The problem of handling tasks with variable compu-
tation times has been addressed by Caccamo et al.
in (Caccamo, 2002). The solution proposed by the
authors consists in adopting a reservation-based ap-
proach, combined with an efficient reclaiming algo-
rithm to exploit early completions. In particular, tasks
are isolated through a Constant Bandwidth Server
(Abeni, 1998), so that overruns do not interfere with
the other tasks, and residual budgets due to early
completion are used to handle sporadic overruns more
efficiently.

The issue of accounting for interrupt handling costs
in the analysis of periodic task scheduling has been
addressed by Jeffay and Stone in (Jeffay, 1993). They
studied the case of periodic tasks that must compete
for the processor with interrupt handlers running at
the highest priority, and derived a schedulability test
under EDF.

An alternate solution for scheduling fixed priority
tasks together with EDF is to partition the processor
into two applications: one including the fixed priority
tasks (running at the highest priority level), and the
other including the periodic tasks scheduled by EDF
at a lower priority. The issue of partitioning the pro-
cessor bandwidth into different applications has been
considered by Deng and Liu in (Deng, 1997), and by
Lipari and Bini (Lipari, 2003).

The system described in this paper is a tracking device
with two degrees of freedom, capable of orienting
a laser pointer on a moving target and following its
trajectory by vision. A pneumatic shooting device
is used to launch a plastic sphere on the target to
verify the correctness of the prediction. This system
can be useful whenever an object needs to be not
only tracked, but also catched in some manner, like in
dynamic grasping operations. The approach can also
be useful when the exact location of a target in some
future time needs to be estimated from its current
trajectory, as in done in astronomical applications for
tracking heavenly bodies.

Fig. 1. The pointing device.

We report our experience in developing the robot sys-
tem and present a number of interesting scheduling
problems that arise from these kinds of control ap-
plications. The paper also outlines the possible solu-
tions to these problems, that we have implemented
on the Shark operating system, used to support the
real-time application. In particular, Section 2 presents
an overview of the robot system, Section 3 illustrates
the characteristics of the real-time kernel, Section 4
illustrates the main real-time issues involved in the ap-
plication, Section 5 reports some experimental results,
and Section 6 states our conclusions and future work.

2. SYSTEM DESCRIPTION

2.1 General overview

The visual tracking system consists of a two-degrees-
of-freedom device driven by two independent servo-
motors. The servo motors are controlled by a PIC-
based board, connected to the PC by via a standard
RS232 serial port. A 20cm blowpipe, with a laser
pointer aligned with its axis, can be rotated to track
a moving target to follow its trajectory. A pneumatic
valve attached to the pipe is used to launch a plastic
sphere on the target in order to verify the correctness
of the prediction. A single fixed camera is used to
monitor the target position. This solution does not
allow us to evaluate the distance of the target, so we
assume that the target moves in a vertical plane with
known distance. A block diagram of the system is
illustrated in Figure 1.

2.2 System calibration

Coordinate conversion from the image space to the
actuation space is performed by a multi-layer neural
network, trained using the back propagation algorithm
in a calibration phase. The use of a neural network
allows avoiding (i) the complexity of an optical dis-
tortion modelling of the camera lens and (ii) the three
dimensional modelling of the physical environment
containing both the robot and the target motion plane.
The first advantage (i) makes the system independent
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Fig. 2. Adaptive tracking window.

from the lens optical parameters, so that the lens can
be freely changed and the system re-calibrated by a
simple network training. The second advantage (ii)
regards the robot and target motion plane position
and orientation: they can be changed by an off-line
network re-calibration.

The neural network is trained by an automatic cal-
ibration procedure, which generates the training set
by moving the motors in such a way that the laser
spot is positioned in several points of the visual field.
For each position of the spot, the system records the
coordinates in the image plane and the corresponding
values of the servomotors. Once trained, the network
is able to associate a pair of motor coordinates to each
point in the visual field, so driving the motors in the
image plane.

2.3 Visual Tracking

During tracking, image processing is performed at
frame rate (50 Hz) by performing a simple threshold
operation. Both the laser spot and the target are ex-
tracted from the background just on the basis of the
difference in the pixel grey levels. Once an object is
isolated, its position is detected by computing its cen-
ter of mass. To reduce the scanning area, the moving
target is searched in a small window centered in its
predicted position, rather than in the entire visual field.
If the target is not found in the predicted area, the
search is performed in a larger region until, eventually,
the entire visual field is scanned in the worst case.
If the system is well designed, the target is found
very quickly in the predicted area most of the times.
However, in rare situations (corresponding to abrupt
trajectory changes), a larger area need to be scanned,
causing the task execution time to increase substan-
tially (computation time increases quadratically as a
function of the number of trials).

Clearly, attempting to guarantee the visual tracking
task based on its worst-case execution time would
drastically reduce its frequency, causing a severe per-
formance degradation with respect to a soft guaran-
tee based on the average execution time. Hence, in
this application, is more convenient to perform a less

pessimistic analysis and accept some sporadic over-
run as a natural system behavior. However, in order
to avoid side effects, the operating systems has to
guarantee that overruns in a task do not interfere with
the execution of the other tasks. In Shark, this can
be ensured by using the Constant Bandwidth Server
(Abeni, 1998), which provides a sort of temporal iso-
lation among tasks to prevent reciprocal interference.
In addition to the CBS, the CASH reclaiming algo-
rithm (Abeni, 1998) tries to absorbe overruns by ex-
ploiting the spare time saved by tasks that complete
earlier than expected.

Target positions are estimated through a Kalman filter,
which uses the past trajectory coordinates to provide
the target position at a desired future time. In this way,
the blowpipe can point at the correct direction and
shoot at the correct time.

Kalman filtering theory requires a physical model of
the target motion. The model we used is based on
the material point kinematics equations, and general-
izes up to systems with uniform acceleration, using
a third order differential equations system. More ac-
curate and reliable estimators could be obtained if a
specific knowledge is available on the motion features,
but they would be less general and effective in the
presence of noise, or when the trajectory differs from
the expected one.

The current estimator receives as input the target co-
ordinates at each instant and computes as output the
future target position at a given time, filtering the noise
of the measures. Noise sensitivity can be adjusted by
acting on a single parameter,ρ. Low values ofρ make
the noise filter more effective, but the estimator takes
more time to adapt to abrupt trajectory changes. High
values ofρ cause a faster adaptation of the estimator,
but the noise can be interpreted as a trajectory change,
causing a higher prediction error.

Achieving a precise shot requires the evaluation of two
important parameters: the valve activation delay and
the sphere flight time. The valve activation is delayed
by the inertia of its electro-mechanical components.
This causes a delay between the shot signal triggered
by the system and the actual sphere shooting. Such a
delay is not constant, but slightly varies from one shot
to the other, thus causing a random error on the target.

Typical trajectories for the target and the sphere during
a successful experiment are illustrated in Figure 3. In
the figure,tlocked denotes the time at which the target
prediction is considered reliable (i.e., when the error
with the previous predictions is kept below a given
value),tshot denotes the time at which the sphere is
shot, andthit is the time at which the target is catched.

The sphere flight time depends on two parameters: the
distance of the target and the air pressure involved
in the shot. Since the distance can be approximately
considered as a constant, we assume that the flight
time only depends on the sphere speed, related to the
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Fig. 4. Main execution phases of the system.

air pressure. If the pressure is maintained constant,
then the speed can be assumed constant as well. The
experimental results were evaluated by a linear re-
gression analysis, considering the air friction effect on
the sphere approximately null, and a uniformly linear
motion, neglecting the effect of gravity.

2.4 Real-time software

The software developed for the tracking device in-
volves three main phases: a manual calibration, con-
sisting in parameter tuning and scan window sizing;
an automatic calibration, consisting in the training set
generation and the neural network training; and the
visual tracking phase. As scheme of the main phases
is shown in Figure 4.

The application was developed in a modular fashion,
in order to allow the execution of the different phases
only if necessary. The calibration must be done when-
ever the environmental conditions change or when the
robot is moved from its position. Once the calibration
is performed, the tracking step can be executed for
several times maintaining the same setting. Moreover,
in the case of variations of certain parameters, the
system can re-calibrate them only. For instance, if the
brightness level suddenly changes in the target motion
environment, i.e. turning the light on and off in a room,
then the image processing threshold values can simply
be reset independently of the other parameters.

The preliminary calibration step must begin with the
procedure for setting the limits of the motors, which
are essential to safely control the servos: the software
driver is designed to avoid potentially damaging com-
mands; the image processing threshold values are set
in order to separate both the laser spot and the target
pixels from the image background; the target size is
evaluated to optimize the center of mass computation;
the motor starting position is set; the Kalman filter is
manually calibrated by assigning the best fitting val-
ues to its parameters, i.e. by deciding the appropriate
number of integrators to use in the model.

The second step consists in the automatic training of
the neural network, in order to make it able to drive
the servos without the laser pointer assistance. During
this stage, the training set is automatically generated
and then used in the training procedure. This step is
an off-line operation that does not require any real-
time management.

After the system tuning, the tracking step can start.
It tracks the target trajectory and estimates the proper
time to catch the target.

The application consists of several calibration steps
and a number of control activities for achieving the
tracking behavior. The tasks and the resources in-
volved in the tracking application are illustrated in
5. Shared resource (except for the image buffer) are
accessed through the Stack Resource Policy (SRP),
a concurrency control protocol proposed by Baker
(Baker, 1991) for avoiding priority inversion phenom-
ena under EDF scheduling. The image is accessed
through a Asynchronous Communication Buffer (CAB),
which uses state message semantics and a memory
replication technique for avoiding blocking during
data exchange.

The Tracker task processes the image at frame rate,
feeding the Kalman filter, which, at any instant, es-
timates the future target positions. When the estima-
tion is judged to be predictable enough (that is, when
successive estimations match within a given error) the
system computes the absolute time and position of the
target and the Gunner task is posted to be executed
at that precise instant. In the meanwhile, the Adjuster
task continues to scan the image to check whether the
prediction is correct until the shooting time. If this is
not the case, the Tracker task is reactivated, otherwise
the Gunner task is executed at the planned instant to
open the pneumatic electro-valve.

Another task is dedicated to handle commands for the
servomotors. The application includes several other
tasks that, however, are not essential for catching the
target. For example, a low priority task displays the
output variables and manages some graphical repre-
sentation on the screen, whereas a soft sporadic task
handles the input from the keyboard.
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3. THE SHARK REAL-TIME KERNEL

Shark is a free real-time kernel developed at the
Scuola Superiore S. Anna of Pisa (Gai, 2001). The
main feature that distinguishes Shark with respect
to other real-time kernels is its high configurability,
which allows the user to combine different schedul-
ing algorithms to conform with specific application
requirements. Such a flexibility also applies to re-
source access protocols and aperiodic service algo-
rithms. Each policy is seen as a scheduling module
that can be selected at system initialization to work
in combination with the others modules according to
a multi-level scheduling architecture. Several modules
are already available for immediate use (such as RM,
EDF, Round-Robin, Slot Shifting, Sporadic Server,
Deferrable Server, CBS, TBS, Priority Inheritance,
Priority Ceiling, and Stack Resource Policy), however
the user can easily define new scheduling modules for
more specific purposes.

The kernel supports several I/O peripheral devices,
including network cards, frame grabbers, and data
acquisition boards. The interrupt mechanism is quite
flexible and allows splitting an interrupt handler in two
parts: a fast handler, which executes in the context of
the running task, and a safe handler, which is sched-
uled by the system as an ordinary aperiodic task with
given deadline. This method permits a much better
balancing between predictability and responsiveness
in the presence of interrupts.

The kernel provides Cyclical Asynchronous Buffers,
or CABs, to exchange data among periodic tasks with
different periods. In a CAB, read and write operations
can be performed simultaneously without causing any
blocking. Hence, a task can write a new message in
a CAB while another task is reading the previous
message. Mutual exclusion between reader and writer
is avoided by means of memory duplication.

To insert a message in a CAB, a task must first reserve
a buffer from the CAB memory space, then copy the
message into the buffer, and finally put the buffer into
the CAB structure, where it becomes the most recent
message. Similarly, to get a message from a CAB, a
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Fig. 6. Essential hardware components of the system.

task has to get the pointer to the most recent message,
use the data, and release the pointer.

The main structure of the real-time application is
illustrated in Figure 6.

4. REAL-TIME ISSUES

4.1 Variable computation times

The use of the adaptive window for centering the
moving target significantly increases the performance
of the system. With respect to a full image scan,
the execution time of the tracking task in the target
window can be reduced up to 95 percent in most scans,
making possible to follow the object at video rate (50
Hz). However, the adaptive window approach causes
the tracking task to have a highly variable computation
time, that must be properly handled, in order to avoid
deadline misses during long overruns.

In order to reduce the response time of the tracking
task during long overruns, a reclaiming mechanism,
the CASH algorithm (Caccamo, 2002), is used in com-
bination with the CBS. Using CASH, an overrun can
be partially (or possibly totally) absorbed by exploit-
ing the spare time saved by tasks that complete earlier
than expected. In fact, any spare time saved by early
completions is stored in a queue with a corresponding
deadline, and can be reused later, if needed by other
tasks.

4.2 On-time scheduling

The correct behavior of the catching system requires
the execution of a task (the Gunner) at a specific time
instant, planned in advance, to open the pneumatic
electro-valve. This poses a new scheduling problem
that creates an additional constraint in the feasibility
analysis. In fact, this activity can be modelled as a
sporadic task with a long inter-arrival time (equal to
the interval between two consecutive shots), but a very
short relative deadline, equal to its computation time.

A possible way to guarantee the task set is by using
the feasibility analysis provided by Jeffay and Stone



in (Jeffay, 1993), where the Gunner task is treated as a
higher priority interrupt that always preempt periodic
tasks at its arrival.

In Shark, the task is handled by an RM scheduling
module defined at the highest priority level, whereas
all periodic tasks are scheduled by EDF at a lower
level of priority.

5. EXPERIMENTAL RESULTS

Several tests have been performed on the system to
verify the correct behavior of the tracking and catching
algorithms, both for fixed and moving targets. The
system was also tested on targets with different size
and located at different (known) distances. The results
showed that, under the current assumptions and sys-
tem setting, catching is guaranteed for targets larger
than 3 cm located at a maximum distance of 1.5 m.
For smaller targets or higher distances, the errors are
basically due to the limited precision of the servomo-
tors used for positioning the device.

In the tests with a fixed target with the characteristics
described above, located in any position of the visual
field, the system never failed to catch the object. For
the dynamic tests, the target was mounted at the end of
a 80 cm stick, rotating on a vertical plane at a desired
speed. The parameters are reported in Table 1.

Table 2 show the errors resulting in a typical experi-
ment on a moving target rotating at a constant speed of
0.5 rotations per second. Numbers denote the distance
of hitting point from the target center in centimeters
(??? giusto ”in centimetri” QUI???). Figure 7 illus-
trates the graphical meaning of the results.

Table 1. Values of the testing parameters.

Parameter Value
Target distance 150 cm
Speed 0.5 RPM
Trajectory radius 20 cm
Valve delay 15 ms
Sphere delay 0.764 ms
Hidden layer neurons 20
Kalman filter’sρ 8.6·105

Forward estimation 12 step
Hooking radius 3 pixel
Hook number 10

Table 2. Robot testing results.

Shot number Fixed target Moving target
1 1 2.4
2 0.2 1.5
3 1.2 1.4
4 1.4 1.8
5 0.7 2.3
6 2.1 0.7
7 1.6 0.4
8 2 1.2
9 1.3 2.5
10 1.1 2.2

1 cm 2 cm 1 cm 2 cm

Fig. 7. Test results with a fixed target (left) and moving
target (right).

6. CONCLUSIONS

This paper presented a real-time visual tracking sys-
tem able to follow a moving target, predict its future
positions, and catch it with a plastic sphere launched
through a pneumatic blowpipe. Trajectory prediction
is performed by a Kalman filter that has been properly
tuned to work under different realistic conditions. Ser-
vomotors are driven by a neural networks, trained to
associate points in the image space to motor set points.

To achieve a correct real-time system behavior, we
hade to address a number of scheduling problems
derived from the peculiar characteristics of the ap-
plication tasks. In particular, we had to deal with a
periodic task with highly variable computation time
and with a sporadic task requiring to be executed at the
highest priority, with respect to the other EDF tasks.
The proposed solutions to these problems resulted to
be very effective and were implemented in the Shark
real-time kernel.

As a future work, we plan to improve the calibration
phases for those procedures that now require a manual
intervention, such as the threshold setting and the
Kalman filter tuning. This would allow the system
to self-calibrate in different working conditions. To
reduce the pointing error, we plan to replace the actual
servomotors with more precise dc motors with high
resolution encoders and external position control loop.
Finally, the use of stereo vision system would allow
working with unknown target distances, and the use
of a more powerful computer would allow to run
more sophisticated image processing algorithms for
tracking targets with different shapes.
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