
IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), July 2004. 1

Managing Quality-of-Control Performance Under Overload Conditions�

Giorgio Buttazzo Manel Velasco Pau Marti Gerhard Fohler
University of Pavia Tech. Univ. of Catalonia University of California Malardalen University

Pavia, Italy Barcelona, Spain Santa Cruz, USA Vasteras, Sweden

buttazzo@unipv.it manel.velasco@upc.es pmarti@cs.ucsc.edu gerhard.fohler@mdh.se

Abstract

A common method for dealing with overload condi-
tions in periodic task systems is to reduce the load by en-
larging activation periods. When a periodic task imple-
ments a digital controller, however, the variation applied
on the task period also affects the control law, which
needs to be recomputed for the new activation rate. If
computing a new control law requires too much time to
be performed at runtime, a set of controllers has to be
designed off line for different rates and the system has
to switch to the proper controller in the presence of an
overload condition. In this paper, we present a method
for reducing the number of controllers to be designed
off line, while still guaranteeing a given control perfor-
mance. The proposed approach has been integrated with
the elastic scheduling theory to promptly react to over-
load conditions. The effectiveness of the proposed ap-
proach has been verified through extensive simulation
experiments performed on an inverted pendulum.

1 Introduction

The workload of a complex control system can
change significantly during system lifetime for various
reasons: new tasks can be activated or terminated in spe-
cific circumstances, computation time can vary due to
the non deterministic behavior of some low-level mech-
anisms (e.g., caching, pre-fetching, and interrupts), or
timing constraints can be changed by the application to
react to variations in the environment. If the load in-
creases above a certain limit, one or more tasks could
miss their deadlines, causing an unpredictable perfor-
mance degradation in the system. In real-time systems

�This work has been partially supported by Departament
d’Universitats, Recerca i Societat de la Informaci de la Generalitat de
Catalunya and by Spanish Ministerio de Ciencia y Tecnologia Project
ref. DPI2002-01621.

consisting of periodic activities, a way to react to work-
load variations is to modify task rates to bring the load
to a desired value. Several methods have been proposed
in the real-time literature for setting task rates.

For example, Kuo and Mok [10] presented a load
scaling technique to gracefully degrade the workload of
a system by adjusting the periods of processes Other
policies to dynamically adjust tasks’ rates in overload
conditions have been proposed under static [11] and dy-
namic priority assignments [2]. Buttazzo et al. [4] pro-
posed an elastic approach in which tasks are treated as
elastic springs, whose utilization can be compressed or
expanded by acting on task periods up to a desired value,
to reach a desired load. Elastic scheduling was also ex-
tended to be used with tasks with unknown and variable
computation times for adaptive QoS management [5],
and, has been used on networks to work with discrete
periods [16].

The major problem in the techniques cited above is
that rates are computed only based on load consider-
ations to meet schedulability constraints, without any
concern on the effects that the new periods have on the
control performance of the system.

The problem of integrating real-time schedulabilty
analysis with control system design was recently inves-
tigated by several authors [17, 1, 6, 14, 7, 15], however
the consequence of a rate change in terms of control per-
formance was not always taken into account.

Indeed, a digital controller is always designed as a
function of the sampling period. Hence, if a task period
is changed, the control law has to be changed accord-
ingly. If the control law is simple (e.g., a PID regulator),
the algorithm can be changed on line when the periods
are recomputed. If computing a new control law as a
function of the rate requires too much time to be per-
formed at runtime, a set of controllers has to be designed
off line for different rates and the system has to switch
to the proper controller in the presence of an overload
condition. However, working with a few discrete peri-

IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), July 2004. 2

ods strongly limits the possibility of efficiently reacting
to an overload condition, causing a waste of resources.

In this paper, we present a method for reducing the
number of controllers to be designed off line, while still
guaranteeing a given control performance with a con-
tinuous period adaptation. The proposed approach can
be easily integrated with the elastic scheduling theory to
promptly react to overload conditions. Extensive simu-
lations have been performed on an inverted pendulum to
verify the effectiveness of the proposed approach.

2 Evaluating control performance

Controller design attempts to minimize the system er-
ror produced by certain anticipated inputs. The system
error is defined as the difference between the desired re-
sponse of the system and its actual response. Perfor-
mance criteria (also called performance indexes or cost
functions) are mainly based on measures of the system
error. Traditional criteria (reported in control text-books,
e.g. [9]), such as IAE (Integral of the Absolute Error),
ITAE (Integral of Time-weighted Absolute Error), ISE
(Integral of Square Error) or ITSE (Integral of Time-
weighted Square Error), provide quantitative measures
of a control system response and are used to evaluate
(and design) controllers. Some of them weight errors
with time, penalizing steady-state errors and discount-
ing the transient response errors.

More sophisticated performance criteria, mainly used
in optimal control problems, account for the system er-
ror and for the energy that is spent to accomplish the
control objective. The higher the energy demanded by
the controller, the higher the penalty paid in the perfor-
mance criterion. In some case, system error and con-
trol energy are multiplied by a weight to balance their
relative importance. For example, in [12] and [8] the
performance criterion is only based on the system error,
whereas in [18] and [17] both system error and control
energy are considered.

The goal of our approach is to minimize the num-
ber of controllers that are required to guarantee a grace-
ful control performance degradation when continuously
adapting the period of the control task. The IAE perfor-
mance criterion will be used to compare the control per-
formance of a task running at different periods. Among
all the available norms, IAE has been selected because it
gives the best curves to conceptually illustrate the prob-
lem we are addressing.

It is defined as follows:

��� �

�
�

�

������ �� (1)

where���� is the system error and��� denotes an appro-
priate norm. The integral upper limit of equation (1)
could also be any time� marking the evaluation time in-
terval. If we assume the equilibrium point to be� (that
is, the system response converges to zero), then the sys-
tem error is the same as the system output����. In par-
ticular, since we want to compare the performance of a
controller running with different periods,����	�
 	 �
will denote the��� value obtained by a controller de-
signed with a nominal period	�, but running with a pe-
riod	 . Hence we have:

����	�
 	 � �

�
�

�

������ �� (2)

where���� is the system output. For the objective of this
work, the mathematical expression of����	�
 	 � is re-
quired to determine the minimum number of controllers
to be designed.

2.1 Mathematical expression of ����	�
 	 �

In this section we derive the mathematical expression
of the IAE for a controller designed to work at a nominal
period	� but running with a period	 .

Let (3) and (4) be the system equations of a
continuous-time system.

�� � ����� ����� (3)

���� � ������ (4)

Theorem 1 The mathematical expression of the
����	�
 	 � of a system specified by (3) and (4), where
the excitation input ��� is given by state feedback with
a discrete-time controller designed to work at a nominal
period 	�, but running with a period 	 , is given by

����	�
 	 � �

��
���

� �

�

������
 	�����	 �� �� (5)

where ����
 	�� is the discrete-time closed-loop system
matrix obtained with a discretization period of �, and
���	 � is the system state at each time �	 .

Proof.
Consider the discrete-time state space representation of
system (3) and (4), obtained with a discretization period
period	 and output at time� � � given by:

���	 � 	 � � ��	 ����	 � � 	�	 ���	 � (6)

���	 � 	 � � ����	 � 	 �� (7)

IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), July 2004. 3

where

��	 � � ��� 	�	 � �

� �

�

�������

The output� at any given time, within each sampling
period	 , is given by:

���	 � �� � �������	 � � 	�����	 � (8)

���	 � �� � ����	 � �� (9)

with � � � � 	 . As before, if we consider the equi-
librium point to be�, the system error becomes equal to
the system output�. The integral of the absolute error
of the system output� during each period	 , ���� , is
given by

���� �

� �

�

����	 � ��� �� (10)

with � � � � 	 . The ����	�
 	 � evaluation of the
system output is the sum of all the���� values for each
period	 , hence:

����	�
 	 � �

��
���

� �

�

����	 � ��� ��� (11)

Substituting the output���	��� in equation (11) by the
expressions given by (8) and (9) we obtain:

����	�
 	 � �
��
���

� �

�

����������	 � � 	�����	 ��� ��� (12)

Considering the controller� designed assuming a nom-
inal period	�, the state feedback is given by

��	 � � ��	�����	 �� (13)

Substituting (13) in equation (12) and reorganizing the
resulting expression, we obtain:

����	�
 	 � �
��
���

� �

�

�������� � 	�����	������	 ��� ��� (14)

Simplifying (14) by renaming the closed-loop system
matrix,����
 	�� � �����	�����	��, the theorem fol-
lows.�

2.2 Quality-of-Control performance index

As done in [14], instead of using the value given by
the ����	�
 	 � index, we use its inverse, as given by
equation (15), thus working with a measures that can be
interpreted as a Quality-of-Control (QoC): the smaller
the errors, the better the QoC:

����	�
 	 � �
�

����	�
 	 �
� (15)

In the next section, we show how to use the perfor-
mance index defined above to describe the quality of
control of a real-time system as a function of the sam-
pling rate.

3 Performance-rate functions

Using the performance index defined by equation
(15), our objective is to evaluate how much the control
performance degrades when a controller designed for a
specific rate is executed at a different rate. Then, by
knowing the relation between performance and rate for
a specific controller, we can decide the range of periods
for which that controller can guarantee a desired level of
performance, and thus decide when to switch to another
controller.

3.1 Analysis

To derive the relation between performance and rate,
we simulated a control system for an inverted pendu-
lum mounted on a motor driven cart, obtained via dis-
cretization of a linear continuous time-invariant state-
space representation. The control was derived using
simple state feedback (pole placement).

Figure 1 shows the values of the QoC performance
index achieved by the state feedback controller. The
controller was designed to work at a nominal period
	� � ��
� and tested within a range of periods from
	��� � ����� to 	�	
 � ����. As we can see from the
curve, the quality of control degrades significantly when
the sampling period increases with respect to the nomi-
nal value, whereas it is less sensitive to periods smaller
than	�.

The curve shown in Figure 1, which relates control
performance and controller execution rate, is referred to
asPerformance-Rate Function, (PRF), and it is charac-
terized by a nominal period	�, used to design the con-
troller, and a set of periods�	���
 � � �
 	�	
, used to
run the controller.

IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), July 2004. 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Qo
C

0.1 0.2 0.3 0.4 0.5 0.6
Periods(s)

0.4 s

Figure 1. Performance-rate function of a
controller designed to work at a nominal
period 	� � ��
�.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Qo
C

0.1 0.2 0.3 0.4 0.5 0.6
Periods(s)

0.3 s
0.4 s
0.5 s

Figure 2. Performance-rate functions of a
controller designed to work at three differ-
ent nominal periods.

Each performance-rate function can be formulated in
terms of equation (15) as

��� �	�
 �
 	���
 	�	
� �

�����	�
 �� � � � �	���
 � � �
 	�	
�� (16)

Using equation (16), the performance-rate func-
tion illustrated in Figure 1 can be expressed as
��� ���
�
 �
 �����
 �����. The shape of degradation
also depends on the nominal period	�. For example,
Figure 2 shows the performance-rate functions obtained
from a controller designed to work with three differ-
ent sampling periods:	� � ����, 	� � ��
�, and
	� � ����, but tested within the same range of periods
as before. Note that the degradation is more significant
for higher nominal periods. However, for each function,
the properties outlined before hold. For periods larger
than the nominal period, the QoC of the inverted pendu-
lum response drastically decreased: the system quickly
became unstable, making the pendulum to fall down.
This was an expected behavior, because the system was
controlled less frequently that it should be. For rates
higher than the nominal one (left side of each curve), the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Qo
C

0.1 0.2 0.3 0.4 0.5 0.6
Periods(s)

0.4s
Envelope

Figure 3. Performance-rate function of a
controller tuned to work with a nominal pe-
riod 	� � ��
� against the ideal controller
tuned at any rate.

response suffers a graceful and acceptable degradation
(smooth slope). In terms of the inverted pendulum re-
sponse, this means that it takes more time for the pendu-
lum to recover from a perturbation and it can suffer big-
ger deviations from the desired working point (vertical
position). This behavior is less intuitive, because we are
controlling the system more frequently. In this case, the
control does not fail but looses accuracy. The best con-
trol is achieved when the execution period is the same
as the nominal one (that is, when� � 	� in equation
(16)). Considering the previous observations, we will al-
low controllers to execute with periods shorter than the
nominal one, trading graceful performance degradation
with controller flexibility, as further explained in Section
3.2. But, in order to prevent instability, we will not al-
low controllers to execute with periods longer than the
nominal one.

A controller running with a period that is different
than the nominal one is called anon-tuned controller. To
better evaluate the error produced by a non-tuned con-
troller at any running period, it is worth to compare the
control performance index with the one achieved by the
corresponding tuned controller. Figure 3 shows the per-
formance function derived from a controller tuned with
a period	� � ��
� against the curve achieved by a con-
troller tuned for any rate. Note that this curve is the en-
velop of the set of performance rate functions.

The curve relative to the ideal controller tuned at
any rate is a special case of the performance-rate func-
tion expressed by equation (16), where� � 	� �� �
�	���
 � � �
 	�	
). Therefore, the performance-rate
function of an ideal controller can be formulated as fol-
lows:

��� ��
 �
 	���
 	�	
� �

������
 �� � � � �	���
 � � �
 	�	
�� (17)

IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), July 2004. 5

Note that in equation (17), if	��� � 	�	
 �
�, then the performance-rate function is evaluated in
one single period value. And, if� � 	�, then
��� �	�
 	�
 	�
 	�� � ����	�
 	�� corresponds to
the maximum of each performance-rate function.

3.2 Bounding the error during overloads

To cope with overload conditions, tasks must change
rates. However, if we want to have always the best
control performance achievable for any given task rate,
the execution period of the task must always coincide
with the nominal period used for the controller design.
As described in [13], this can be achieved either by re-
designing the controller at runtime for each new exe-
cution period, or by accessing it from a table of pre-
designed controllers. If re-designing the controller is
too expensive (in terms of computational overhead) to
be done at runtime, a number of controllers must be de-
signed off line and stored into memory: one for each
possible rate the task may adapt to cope with overload
situations. When the number of possible periods the task
is allowed to take is too big, the solution presented above
can be unfeasible in terms of memory demand (see [13]
for a detailed overhead analysis).

A possible way to overcome this problem is to re-
strict the task to work only with discrete rate variations.
However, working with a small number of discrete pe-
riods is not efficient, because it may be impossible to
reach the desired load after a rate variation. Having a
discrete number of rates means having a discrete num-
ber of resulting workloads. For example, if during an
overload the new periods are computed using a typical
load compression algorithm (e.g., the elastic compres-
sion algorithm [4] or other similar methods [2]), then the
resulting periods (which are treated as continuous vari-
ables) have to be enlarged to the closest available period,
for which the controller has been designed.

After resizing all the periods, the system workload
may be much lower than the desired one specified in the
load compression algorithm. As a consequence, the sys-
tem would run with low efficiency. To address this issue,
some authors [16, 8] proposed an adjustment technique
to slightly resize some periods after a discrete load com-
pression, to reach a workload closer to the desired one.

Actually, there is no need to work with discrete pe-
riods. Instead of forcing the control tasks to work at a
predefined rates, one could let them work at a rate re-
sulting from the compression algorithm, but switch to
the most appropriate controller that bounds the control
performance error with respect to the ideal tuned con-
troller, thus posing a trade-off design choice: number of
controllers vs. QoC.

To bound the error produced by a non-tuned con-
troller (with respect to the ideal one tuned at any period),
we have to switch controller as soon as the control per-
formance decreases below a given bound��	
. To re-
duce the number of controllers that have to be designed
off line to keep the error below a given value, we can ap-
ply the following approach (see Figure 4 as a reference):

1. The user starts by specifying the minimum admis-
sible QoC level (������) and the maximum error
��	
 (specified in percentage) that can be tolerated
with respect to the optimal curve corresponding to
the ideal tuned controller (theEnvelop curve in Fig-
ure 4).

2. The maximum error��	
 allows the user to de-
rive the minimum performance curve (theEn-
velop Error curve in Figure 4), which is given by
Envelop���	
�Envelop.

3. The range of possible periods is bounded by	���

and 	�	
. 	��� corresponds to the default pe-
riod of the controller task that is guaranteed by the
scheduling algorithm adopted by the system.	�	

corresponds to the nominal period of the controller
whose performance rate function crosses the inter-
section of the minimum performance curve with
������.

4. The first controller can be designed using the nom-
inal period	� � 	�	
.

5. The next nominal period can be set to the value
	� � 	� given by the intersection of the
performance-rate function tuned at	� with the
minimum performance curve (i.e., theEnvelop Er-
ror curve); and so on for the other periods, while
they are not smaller than	���.

Figure 4 illustrates an example showing the sequence
of performance-rate functions that bound the error with
respect to the tuned controller (theEnvelop curve) to
a value equal to��	
 (the Envelop Error curve). For
this case we need four performance-rate functions (cor-
responding to nominal periods equal to 0.31s, 0.38s,
0.46s, and 0.54s) to bound the error produced by a non-
tuned controller executing within�	���
 � � �
 	�	
 �
������
 � � �
 ���
�, where��	
 � ��� and������ �
���. 	��� is the default task period (�����) and	�	

is obtained from������, which is the minimum qual-
ity of service level specified by the user. In terms
of the inverted pendulum, this translates into a max-
imum allowed recovery time and pendulum deviation.
This specification can be easily mapped into a minimum
QoC.

IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), July 2004. 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Qo
C

0.1 0.2 0.3 0.4 0.5 0.6
Periods(s)

QoC min

Envelope
Envelope error
PRFs

Tmin Tmax

Figure 4. Sequence of controllers bound-
ing the performance error to a given value.

Note also that��	
 relates control performance to
system resources in terms of memory requirements
(number of controllers to be designed off line and stored
for runtime access). If��	
 � �, (that is, theEn-
velop Error curve coincides with theEnvelop curve), the
number of controllers to be designed off line would be
equal to the number of possible rates the task could run
to adapt within the specified range�	���
 � � �
 	�	
,
which causes the largest memory demand. The QoC
achieved in this case would be the optimal one, because
for each execution rate the system would execute the
corresponding tuned controller. As��	
 increases, less
controllers need to be designed off line (meaning less
storage memory), at the expenses of reducing the aver-
age achievable QoC.

3.3 The algorithm

In this section we present the detailed algorithm
(namedNominals) that produces the set of nominal pe-
riods that can be used to design the minimal set of con-
trollers that keep the QoC error smaller than��	
. The
algorithm requires as input arguments the default rate of
the controller (���), the minimum QoC level specified
by the user (������), and the maximum tolerated error
with respect to the optimal envelop curve (��	
).

Nominals (���, ������, ��	
)
�
	 �� �	 ������
 �� � ��	
 ������
 �� � �������;
/ Find � such that������ intersects envelope error curve /
	�	
 �� �	 ���� ��
 	
 	

� � �������;
/ Find a nominal period� - that will be���� - whose
performance rate function at time� is equal to������ /
�������� �� �	�	
�;
� �� 	�	
;
/ Starting with nominal period����, find the rest of nominal
periods, which are given by times� � ���� at which their
performance rate functions intersect envelop error curve /

While �� � 	����
���;
If �����
 ��� ��� �	�	

 �
 	���
 	�	
� �
��	
 ������
 ��

�������� �� �������� � ���;
	�	
 �� �;

End
End
Return (��������);
�

4 Overload management policy

The algorithm presented in Section 3.3 can be used
to derive the nominal rates of the performance-rate func-
tions that allow to keep the maximum error��	
 below
a given bound. Such nominal rates are then used to de-
sign the corresponding controllers that have to be stored
in memory for a possible runtime adaptation during tran-
sient overload conditions.

Initially, the system starts executing each controller at
a rate (���) that can be guaranteed by the scheduling
algorithm adopted by the system. If an overload condi-
tion occurs, task periods need to be increased to reduce
the load up to a desired value.

In this work, task rate adjustment is performed
through the elastic task model [3, 4], according to which
task utilizations are treated like springs that can be com-
pressed to a given workload through period variations.
The advantage of the elastic model with respect to the
other methods proposed in the literature is that a new
period configuration can easily be determined on line as
a function of the elastic coefficients, which can be set to
reflect tasks’ importance. The greater the elastic coeffi-
cient, the more flexible a task to period variations.

Once elastic coefficients are defined based on some
design criterion, the new task utilizations can be quickly
computed on line depending on the current workload
and the final desired load level. Then, the new period
configuration can easily be derived from the task com-
putation times and the (compressed) utilizations.

If the period	� resulting after the compression algo-
rithm falls in the interval given by two consecutive nom-
inal periods [�, 	���] in the performance-rate graph,
the system must select the controller with nominal pe-
riod equal to	���. The way controllers have been de-
signed guarantees that during overload conditions, as
long as periods vary in the range�	���
 � � �
 	�	
, the
QoC degradation will be bounded; that is, the perfor-
mance error with respect to the ideal tuned controller
will be less than��	
.

IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), July 2004. 7

5 Experimental evaluation

In this section we evaluate the method we have pre-
sented to control the QoS performance under overload
conditions. To illustrate the benefits of our approach, we
focus on a simple scenario, where the period of a control
task can be increased from����� to ���
� to cope with
an overload condition. The numbers we use here relate
to the simulations presented in Section 3 performed on
an inverted pendulum. Here, we compare three differ-
ent controller execution strategies, whose performance
curves are illustrated in Figure 5 (which has been ex-
tracted from Figure 4):

a) Optimal task. This case considers the execution
of a tuned controller for each period computed by the
load compression algorithm. Although this solution the-
oretically provides the best QoC, it may not be practical
for the large amount of required memory. In fact, for this
particular range of periods, if we assume a system clock
granularity of�����, we need enough memory for stor-
ing 30 controllers (corresponding to nominal periods of
�����
 �����
 � � �
 ���
�). Note that the number of con-
trollers increases to��� (or ����) with a clock granular-
ity of � � (or ��� �). The performance-rate function of
this task corresponds to theEnvelop curve illustrated in
Figure 5.

b) Adaptive task. This case considers the set of four
controllers, derived with the method presented in Sec-
tion 3.2 and Section 3.3, that guarantees a maximum er-
ror ��	
 � ���. According to the overload management
policy explained in Section 4, whenever the period of
a controller is adapted by the elastic compression algo-
rithm, the system selects the appropriate controller for
each period computed by the load compression algo-
rithm. The performance rate function of this task cor-
responds to theSet curve illustrated in Figure 5.

c) Static task. This case considers the execution of a
single controller, regardless of the task execution period
in the specified range. The performance-rate function of
this task corresponds to the���
� curve in Figure 5. For
this case, in overload conditions, no single controller is
able either to keep the pendulum stable or to guarantee
the������ specified by the user. Note that if the con-
troller is designed according to any period belonging to
the specified range, if the task executes with a longer pe-
riod, the inverted pendulum may fall down (as discussed
in Section 3.1). The only case the task does not exe-
cute with a period longer than the nominal one is when
the controller is designed with a nominal period equal to
the upper limit of the specified execution range, that is,
���
�. However, in this case, as it can be seen from Fig-
ure 5, for execution rates ranging form����� to ��
��,
the controller provides a QoC lower than that specified

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Qo
C

0.1 0.2 0.3 0.4 0.5 0.6
Periods(s)

Tmin Tmax

Envelope
Set
0.54s

QoCmin

Figure 5. Performance-rate functions for
the Optimal task (Envelop), Adaptive task
(Set) and Static task (0.54s).

Strategy Optimal Adaptive Static
task task task

Controllers 30 4 1
Avg. ��� 1.15 1.01 0.67
%��� 100 87.8 58.2
Keep������ OK OK fails

Table 1. Experimental evaluation summary.

by the user. Also note that the performance-rate func-
tion of this task overlaps with theSet curve in the time
interval from��
�� to ���
�.

Table 5 shows the evaluation summary of the ex-
periments performed on the three controller execution
strategies: the second row reports the number of re-
quired controllers; the third row indicates the average
QoC achieved by each method; the fourth row expresses
the QoC in average percentage; and the last row indi-
cates whether the method is able to keep the minimum
QoC level specified by the user. As we can see from the
table, theoptimal task achieves an average QoC of 1.15
for each execution. However, by drastically reducing the
number of controllers from 30 to 4, ouradaptive task is
able to keep an acceptable QoC level, equal to 1.01, cor-
responding to����� of the optimal value, whereas the
static task, which does not adapt the controller while the
task period is increased, only achieves an average QoC
of 0.67, corresponding to����� of the optimal value.

6 Conclusions

In this paper we addressed the problem of controlling
the quality of control (QoC) in a dynamic real-time sys-
tem subject to overload conditions, where load adjust-
ment is performed through period variations. To make
an efficient use of the available resources, while still

IEEE Proceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS’04), July 2004. 8

guaranteeing the feasibility of the schedule, we did not
restrict periods to vary on a limited set of predefined val-
ues, but allowed them to change continuously, making
sure to switch to a proper controller to keep the QoC
within a desired range.

By analyzing the performance characteristics of a
controller running at a rate different than its nominal
one, we proposed an approach that allows the user to de-
sign the minimum number of controllers needed to guar-
antee a desired performance in a set of admissible rates.
The method allows the application designer to specify
an error with respect to the ideal control performance
of a perfectly tuned controller, and provides a criterion
to balance such an error with control performance and
memory requirements.

The effectiveness of the proposed approach has been
verified through extensive simulations experiments car-
ried out on an inverted pendulum. The experimental
results confirmed the validity of the approach and pro-
vided a quantitative evidence of the dependency of the
specified error from the achieved control performance
and the memory requirements.

As a future work, we plan to further extend the pro-
posed method so that controllers can be adapted not only
to cope with overloads, but also to better conform with
the control application dynamics. That is, to provide an
integrated QoC management framework for the system
and the application, as a whole. This could be achieved
by dynamically tuning the elastic coefficients of control
tasks according to changes occurring in the controlled
plant.

References

[1] T. Abdelzaher, E. Atkins, and K. Shin, “QoS Negotia-
tion in Real-Time Systems and Its Applications to Au-
tomated Flight Control,”Proc. of the IEEE Real-Time
Technology and Applications Symposium, June 1997.

[2] G. Beccari, S. Caselli, M. Reggiani, F. Zanichelli, “Rate
Modulation of Soft Real-Time Tasks in Autonomous
Robot Control Systems,”IEEE Proc. of the 11th Euromi-
cro Conference on Real-Time Systems, York, UK, 1999.

[3] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic Task
Model for Adaptive Rate Control”,Proc. of the IEEE
Real-Time Systems Symposium, December 1998.

[4] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni,
“Elastic Scheduling for Flexible Workload Manage-
ment,” IEEE Transactions on Computers, Vol. 51, No.
3, pp. 289-302, March 2002.

[5] G. Buttazzo and L. Abeni, “Adaptive Workload Manage-
ment through Elastic Scheduling,” Real-Time Systems,
Vol. 23, No. 1, pp. 7-24, July 2002.

[6] M. Caccamo, G. Buttazzo, and L. Sha, “Elastic Feed-
back Control,” IEEE Proceedings of the 12th Euromicro
Conference on Real-Time Systems, pp. 121-128, June
2000.

[7] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. rzn,
“Feedback-Feedforward Scheduling of Control Tasks,”
Real-Time Systems, 23:1, 2002.

[8] A. Cervin, and J. Eker, “The Control Server: A Com-
putational Model for Real-Time Control Tasks,” IEEE
Proceedings of the 15th Euromicro Conference on Real-
Time Systems, pp. 113-120, Porto, Portugal, July 2003.

[9] R.C. Dorf, and R.H. Bishop,Modern Control Systems.
Seventh Edition, Addison-Wesley, 1995.

[10] T.-W. Kuo and A. K, Mok, “Load Adjustment in Adap-
tive Real-Time Systems,”Proceedings of the 12th IEEE
Real-Time Systems Symposium, December 1991.

[11] C. Lee, R. Rajkumar, and C. Mercer, “Experiences with
Processor Reservation and Dynamic QOS in Real-Time
Mach,” Proceedings of Multimedia Japan 96, April
1996.

[12] F. Lian, J. Moyne, and D. Tilbury, “ Network Design
Consideration for Distributed Control Systems,” IEEE
Transactions on Control Systems Technology, Vol.10,
No.2, March 2002

[13] P. Marti, G. Fohler, K. Ramamritham, and J.M. Fuertes,
“Jitter Compensation for Real-time Control Systems,”
Proceedings of the 22rd IEEE Real-Time System Sym-
posium, London, UK, December 2001.

[14] P. Marti, G. Fohler, K. Ramamritham, and J.M. Fuertes,
“Improving Quality-of-Control using Flexible Timing
Constraints: Metric and Scheduling Issues,” Proc. of the
23rd IEEE Real-Time System Symposium, Austin, TX,
USA, December 2002.

[15] L. Palopoli, L. Abeni, and G. Buttazzo, “Real-Time con-
trol system analysis: an integrated approach,” Proc. of
the 21st IEEE Real-Time Systems Symposium, Orlando,
Florida, December 2000.

[16] P. Pedreiras, and L. Almeida “The Flexible Time-
Triggered (FTT) Paradigm: an Approach to
QoS Management in Distributed Real-Time Sys-
tems,”International Parallel and Distributed Processing
Symposium, April, 2003.

[17] D. Seto, J. P. Lehoczky, L. Sha, and K. Shin, “On task
schedulability in real-time control systems,” Proc. of the
17th IEEE Real-Time Systems Symposium, Washing-
ton, DC, pp. 13-21, December 1996.

[18] K. Shin and C. Meissner, “Adaptation of control system
performance by task reallocation and period modifica-
tion,” IEEE Proc. of the 11th Euromicro Conference on
Real-Time Systems, pp. 29-36, June 1999.

