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Abstract. Based on recent advances in control theory, we propose the notion of
jitter margin for periodic control tasks. The jitter margin is defined as a func-
tion of the amount of constant delay in the control loop, and it describes how
much additional time-varying delay can be tolerated beforethe loop goes unsta-
ble. Combined with scheduling theory, the jitter margin canbe used to guarantee
the stability and performance of the controller in the target system. It can also be
used as a tool for assigning meaningful deadlines to controltasks. We discuss the
need for best-case response-time analysis in this context,and propose a simple
lower bound under EDF scheduling. Finally, a control-scheduling codesign pro-
cedure is given, where periods are assigned iteratively to yield the same relative
performance degradation for each control task.

1 Introduction

1.1 Background and Motivation

In classical feedback control theory (e.g., [1]), notions such asphase marginandgain
marginare used to describe how sensitive a control loop is towards various uncertainties
in the plant. Nonnegative margins are required to ensure thestability of the closed-loop
system. The margins are also used as practical stability measures, and there are various
rules of thumb associated with them. For instance, it is typically recommended to have a
phase margin of at least 30◦–45◦ to ensure some degree of robustness and performance
of the system.

When a controller is implemented as a task in a real-time system, a new kind of
uncertainty is introduced—animplementation uncertainty. In this paper, we will focus
on the specific problem ofoutput jitter. Variability in the task execution time and pre-
emption from other tasks can cause the controller to experience a different amount of
input-output delay in each period. It is well known that sucha jitter can degrade the con-
trol performance and in extreme cases even cause instability of the control loop (e.g.,
[2]). Although the present paper only considers jitter due to CPU scheduling, some of
the results also carry over to networked control systems, where jitter due to variable
transmission times is a major issue.

The majority of previous work on jitter in real-time controlsystems has focused
on either scheduling theory or control theory. In the few instances where an integrated
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approach has been taken, the control analysis has been somewhat underdeveloped. By
contrast, our analysis yields hard results and should hencebe applicable to a wide range
of systems, including safety-critical applications.

1.2 Contributions

Recently, a new stability theorem for control loops with time-varying input-output de-
lays has been developed [3]. Based on this theorem, we propose the notion ofjitter
margin for control tasks. The jitter margin can be combined with real-time scheduling
theory to guarantee the stability and performance of the controller in the target sys-
tem. The jitter margin can also be used as a tool for assigningmeaningful deadlines to
control tasks.

It is noted that the jitter analysis can be improved ifbest-case response times, as well
as worst-case response times, can be computed. For this purpose, we propose a lower
bound on the best-case response time under EDF scheduling, where no such results are
known to exist.

When designing a real-time control system, information about the task timing is
needed in the control design, and information about the controller timing sensitivity is
needed in the real-time design. Based on this insight, we propose an iterative control–
scheduling codesign procedure, where the jitter margin is used as a central tool.

1.3 Outline

This paper is outlined as follows. In Section 2, the assumptions are given, and the jitter
margin is defined. Its properties are discussed, and the problem of assigning control
task deadlines is treated. In Section 3, we discuss jitter analysis under fixed-priority
and EDF scheduling, and provide a simple but efficient lower bound on the minimum
response time under EDF. In Section 4, a codesign procedure is proposed, where the
goal is to implement a set of controllers such that they experience the same amount of
performance degradation in the target system. A design example is given, in which the
results under rate-monotonic and EDF scheduling are compared. Section 5 provides an
overview of related work. Finally, in Section 6, the conclusions are given and future
work is discussed.

2 The Jitter Margin

2.1 Preliminaries

Computer-controlled systems (e.g., [4]) are typically designed assuming periodic sam-
pling and either zero or a constant computational delay. A real implementation, how-
ever, will introduce jitter at various points in the controlloop.

In this paper, for analysis purposes, we will assume that thesampling is jitter-free,
while the input-output delay may be time-varying. Jitter-free sampling can be achieved
by programming the A-D converter to take samples periodically, or by requesting the
A-D conversion when the control task is released.
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Fig. 1. Computer-controlled system with continuous-time plantP(s), periodic samplerSh,
discrete-time controllerK(z), zero-order hold, and time-varying delay∆ .

The control loop assumed in this paper is shown in Figure 1. The plant is described
by the linear continuous-time systemP(s), and the plant output is sampled with the
constant intervalh. The controller is described by the linear discrete-time systemK(z).
Following the zero-order hold, there is a time-varying delay ∆ before the control signal
is applied to the input of the plant.

Exact stability analysis of the closed-loop system is trivial if the delay∆ is either
constant or varying according to a known, periodic pattern.If the delay varies randomly
among a set of known delays, Lyapunov theory can be used to verify the stability of the
closed-loop system. For freely time-varying delays, the analysis is considerably more
difficult. The following theorem from [3] is only sufficient,but it guarantees stability
for anydelays in a given interval, including constant, periodic, and random delays:

Theorem 1 (Stability under output jitter). The closed-loop system in Figure 1 is sta-
ble for any time-varying delays∆ ∈ [0, Nh], where N> 0 is a real number, if
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Proof. See [3]. ut

2.2 Definitions and Properties

We now consider a periodic control task with the periodT = h, executing in a real-time
system. The plant is assumed to be sampled when the task is released, and the control
signal is actuated when the task finishes.

The input-output delay experienced by the controller can bedivided into two parts:
a constant part,L ≥ 0, and a time-varying part (the jitter),J ≥ 0, see Figure 2. The
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Fig. 2. The input-output delay can be divided into a constant delay,L, and a jitter,J.

minimum possible delay is hence given byL, and the maximum possible delay is given
by L+J.

We will first recall the definition of the classicaldelay marginfor the jitter-free case
(J = 0):

Definition 1 (Delay margin). Given the system in Figure 1, the delay margin is defined
as the largest number Lm for which closed-loop stability is guaranteed assuming a
constant delay∆ = Lm.

Remark 1.For continuous-time control systems, the delay margin can be computed as

Lm = ϕm/ωc, (3)

whereϕm is thephase marginandωc is thecrossover frequencyof the system. Due
to aliasing effects, the exact computation is more complicated for computer-controlled
systems (see [4]).

In systems with jitter, the delay and the jitter will both contribute to the destabiliza-
tion of the system. Hence, we give the following definition ofthe jitter margin:

Definition 2 (Jitter margin). Given the system in Figure 1, the jitter margin is defined
as the largest number Jm(L) for which closed-loop stability is guaranteed for any time-
varying delay∆ ∈ [L, L+Jm(L)].

Remark 2.Since Theorem 1 is only sufficient, it can only be used to compute a lower
bound on the jitter margin. The theorem is not very conservative, however. To apply
the theorem, we replace the plantP(s) by its time-delayed versionP(s)e−sL and let
N = J/h.

The reason for defining the jitter margin as a function ofL is to make the stability
test less conservative whenever a lower bound onL is available. It is obvious that, if
a system is stable for any time-varying delay∆ ∈ [0, J], it must also be stable for any
time-varying delay∆ ∈ [L, J], 0 < L ≤ J. Furthermore, in the latter case, the system
might also be stable for longer delays. Based on this argument, the following properties
of the jitter margin can be derived (the proofs are omitted):

Property 1. Jm(L) = 0, L ≥ Lm.

Property 2. Jm(L) ≤ Lm, ∀L.

Property 3. Jm(L)+L is an increasing function ofL.
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Fig. 3. Example of jitter marginsJm(L): (a) PID controller withh = 10, (b) LQG controller with
h = 10, designed for the delayL = 5. (All units are in ms.)

Example 1 (Jitter margin).Figure 3 reports the jitter margin as computed by Theo-
rem 1 for the plantP(s) = 1000/(s(s+ 1)) and two different controllers. Both con-
trollers are designed with the sampling intervalh = 10 [ms]. In (a), a PID controller
is used. The delay margin isLm = 7.8, and the jitter margin has the maximum value
Jm(0) = 3.7. In (b), an LQG controller designed for a constant delayL = 5 is used.
Here, the delay margin isLm = 15.5, and the jitter margin has the maximum value
Jm(4.8) = 7.1. It can be seen that the jitter-margin function can have different shapes
for different controllers, but the maximum total delay,Jm(L)+L, is always an increas-
ing function. ut



2.3 Verifying Stability and Performance

If we know the constant delayL and the jitterJ of a control task, stability of the closed-
loop system is guaranteed if

Jm(L) > J. (4)

Often, it is not enough to just guarantee stability—there must also be some margins
that guarantee performance. In classical control theory, the phase margin is sometimes
used as a performance and robustness measure. Unfortunately, the phase margin is only
defined for systems without jitter. It is, however, possibleto generalize the concept via
an extended definition of the delay margin. Hence, we start bydefining a delay margin
for systems with delay and jitter:

Definition 3 (Delay margin for systems with delay and jitter). Given the system in
Figure 1, assuming some constant delay L and jitter J, the delay margin is defined as the
largest number Lm for which closed-loop stability is guaranteed for any time-varying
delay∆ ∈ [L+Lm, L+Lm+J].

Remark 3.For systems without jitter, this definition is equivalent toDefinition 1.

Expressed in terms of the jitter-margin functionJm(L), the delay margin is given by
the smallestLm that solves

Jm(L+Lm) = J. (5)

For the control designer, it is often more convenient to think in terms of phase
margin, since that measure is independent of time. For systems without jitter, the rela-
tionship between phase margin and delay margin is approximately given by (3). Based
on this observation, we propose the notion ofapparent phase margin:

Definition 4 (Apparent phase margin). Given the system in Figure 1, assuming the
constant delay L and the jitter J, the apparent phase margin is defined as the largest
numberϕ̂m for which closed-loop stability is guaranteed for any time-varying delay
∆ ∈ [L + ϕ̂m/ωc, L + ϕ̂m/ωc + J], whereωc is the crossover frequency of the system if
assuming only the constant delay L.

Similar to above, expressed in terms of the jitter-margin functionJm(L), the apparent
phase margin is given by the smallestϕ̂m that solves

Jm(L+ ϕ̂m/ωc) = J. (6)

A system with the apparent phase marginϕ̂m ≤ 0◦ can be interpreted as a system
for which stability cannot be guaranteed, while anyϕ̂m > 0◦ can be interpreted as a
performance guarantee. For systems without jitter, the apparent phase margin is equal
to the classical phase margin.



2.4 Deadline Assignment

In the real-time literature, task deadlines are often considered as given parameters. Us-
ing the jitter margin, we can derivereal hard deadlines that guarantee closed-loop sta-
bility. For instance, given that we have a lower bound on the constant delayL in the
target system, we can guarantee stability by assigning the relative deadline

D = L+Jm(L). (7)

(It is of course also required that all deadlines are really met during run-time.) Note that,
if no estimate ofL is available, assumingL = 0 yields a more conservative deadline.

Similarly, we can assign deadlines that guarantee a certainapparent phase margin
in the target system. Given a lower bound on the constant delay L in the target system
and a desirable apparent phase marginϕ̂m < ωc(Lm−L), we can guarantee a level of
performance by assigning the deadline

D = L+Jm(L+ ϕ̂m/ωc). (8)

Example 2 (Deadline assignment).Consider the LQG controller in Example 1, whose
jitter margin is shown in Figure 3(b). Without jitter, assuming L = 5, the phase margin
is ϕm = 34.9◦ and the crossover frequency isωc = 57.9 rad/s. Suppose that we require
an apparent phase margin ofϕ̂m = 20◦. The allowable jitter is then given by

Jm(5+20◦/57.9 rad) = Jm(11.0) = 1.4,

and we should hence assign the relative deadline

D = L+Jm(11.0) = 6.4.
ut

An interesting problem here is that, depending on the scheduling policy, the constant
delay might depend on the deadline which we are trying to compute. For instance, under
deadline-monotonicscheduling, the assigned deadline will affect the priority of the task,
which might in turn affect the constant delay. The problem could possibly be addressed
using an iterative deadline assignment procedure, but thisis left as future work.

3 Output Jitter Analysis

In order to apply the stability and performance analysis of the previous section, we need
to be able to compute the constant delay and the jitter for each control task in the system.
This can be done using response-time analysis. LetRi andRb

i denote, respectively, the
worst-case and best-case response times of taski. The constant delay,Li , and the jitter,
Ji , are then given by

Li = Rb
i , (9)

Ji = Ri −Rb
i . (10)



Often, the true values ofRi andRb
i cannot be obtained. First, if the task phasing

is unknown, one must assumeworst-case phasingwhen computingRi andbest-case
phasingwhen computingRb

i . It is not certain thatRi andRb
i canbothoccur during the

lifetime of the system. Second, depending on the schedulingpolicy and the task set,
exact analysis for the worst-case and the best-case response times may not be available.

From a stability perspective, it is always safe to overestimateRi and to underesti-
mateRb

i . This will makeLi smaller andJi larger, causing the apparent phase margin to
decrease.

Below, a brief outline of the available results in response-time analysis under fixed-
priority and EDF scheduling is given. For EDF, a new lower bound on best-case re-
sponse times is proposed.

3.1 Worst-Case Response Time Analysis

Under fixed-priority scheduling, assumingDi ≤ Ti , the worst-case response time of task
i is given by the well-known equation [5]

Ri = Ci + ∑
j∈hp(i)

⌈

Ri

Tj

⌉

Cj . (11)

Exact analysis also exists for task sets with release offsets as well as deadlinesD > T
[6, 7].

Under EDF scheduling, worst-case response-time analysis is more complicated. As-
sumingDi ≤ Ti , the worst-case response time of taski is given by [8, 9]

Ri = max
{

Ci , max
a≥0

{Li(a)−a}
}

, (12)

where the busy intervalLi(a) is given by the equation

Li(a) = Wi
(

a,Li(a)
)

+

(

1+

⌊

a
Ti

⌋)

Ci , (13)

and the higher-priority workloadWi(a,t) is given by

Wi(a,t) = ∑
j 6=i,D j≤a+Di

min

{⌈

t
Tj

⌉

, 1+

⌊

a+Di −D j

Tj

⌋}

Cj . (14)

It should be noted that only a finite number of values ofa must be checked when eval-
uating (12). The analysis has also been generalized to arbitrary deadlines [8].

3.2 Best-Case Response Time Analysis

Under fixed-priority scheduling, exact best-case analysishas recently been developed
for the caseD ≤ T [10]. The best-case response time of taski is given by the equation

Rb
i = Cb

i + ∑
j∈hp(i)

⌈

Rb
i

Tj
−1

⌉

Cb
j , (15)



whereCb
i denotes thebest-case execution timeof taski.

Under EDF scheduling, no exact best-case analysis is known to exist. A trivial lower
boundRi on the best-case response time of taski is given by

Rb
i = Cb

i . (16)

This is actually a quite good bound for the shortest-period tasks. The longest-period
tasks can, however, have much longer best-case response times, especially if the system
load is high.

A tighter lower bound on the best-case response time can be obtained by interfer-
ence analysis, see Appendix A. Our proposed lower bound,Ri , is given by the equation

Rb
i = Cb

i + ∑
∀ j :D j<Rb

i

⌈

min
{

Rb
i , Di −D j

}

Tj
−1

⌉

Cb
j , (17)

which can be solved by recursion from above (cf. [10]).
The results obtained with the proposed bound have been compared to results ob-

tained by simulation, where the shortest response time of each task was recorded. (Note
that the latter constitutes anupper boundon the real best-case response time.) The
bounds were evaluated for loads ranging fromU = 0.5 toU = 0.99. For each load case,
100 random task sets were generated. The number of tasks in each set was integer-
uniformly distributed between 2 and 10. The task periods were exponentially distributed
with mean 1, and the fraction of the execution time to the period was uniformly dis-
tributed between 0 and 1. The execution times were uniformlyrescaled to give the task
set the desired utilization. Throughout,Di = Ti andCb

i = Ci were assumed.
For each task set, the system was simulated for 1000 s, and theminimum response

time of the longest-period task (taskn) was recorded. The result was compared with the
bounds (16) and (17). Figure 4 shows the mean ofRb

n/Cn over the task sets for different
bounds and different loads. It is seen that the proposed bound performs quite well up to
a load ofU = 0.95. The bound is not tight since it does not consider initial interference,
see Appendix A.

4 A Codesign Procedure

To illustrate how the jitter margin could be applied in the design of real-time control
systems, we describe an iterative control–scheduling codesign procedure.

It is assumed that a set of independent controllers should beimplemented in the
same processor. The controllers are designed in continuoustime, and should be dis-
cretized and implemented as periodic tasks with different periods. The goal of the code-
sign procedure is to choose sampling periods such that the controllers will experience
the same relative performance degradation in the target system, taking the jitter into
account. The performance of the continuous-time controller is measured by its original
phase marginϕm, and the performance of the control task is measured by its appar-
ent phase margin̂ϕm (see Section 2.3). The goal of the procedure is to make the ratio
ϕ̂m/ϕm as equal as possible among the tasks.
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The inputs to the codesign procedure are a set ofn continuous-time plants,P(s),
a set ofn continuous-time controllers,K(s), estimates of the best-case and worst-case
execution times of the control algorithms,C andCb, and a scheduling policy where
worst-case as well as best-case response time analysis is available.

The procedure is outlined is the following steps:

1. Initialize by assigning initial (nominal) sampling periods h for the controllers.
(A common rule of thumb [4] is to choose the sampling period such thatωbh ∈
[0.2, 0.6], whereωb is the bandwidth of the closed-loop continuous system.)

2. Rescale the periods linearly such that the task set becomes schedulable under the
given scheduling policy. (Here, a suitable sufficient schedulability test can be used.)

3. Discretize the controllers using the assigned sampling periods, yielding the set of
discrete-time controllersK(z).

4. For each task, compute worst-case and best-case responsetimes,R andRb. (Here,
the analysis in Section 3 is applicable.)

5. For each task, compute the jitter margin using Theorem 1 and the apparent phase
marginϕ̂mi from (6), assuming the constant delayLi = Rb

i and the jitterJi = Ri −Rb
i .

6. For each task, compute the relative performance degradation r i = ϕ̂mi/ϕmi . Also,
compute their mean value, ¯r = ∑ r i/n.

7. For each task, adjust the period according to

hi := hi +khi(r i − r̄)/r̄,

wherek < 1 is a gain parameter.

8. Repeat from 2 until no further improvement is given. A suitable stop criterion is
when sum of the performance differences,∑ |r i − r̄|, is no longer decreasing.



The period adjustment mechanism in step 7 is intended to decrease the periods of
controllers with bad performance, and to increase the periods of controllers with good
performance. Choosing the gain parameter can be difficult. Asmall k will give slow
adaptation, while a largek can cause instability.

The iterative procedure tries to solve a highly nonlinear optimization problem. Hence,
it is not certain that it will converge to an optimal solution. For instance, under rate-
monotonic scheduling, a small period adjustment may changethe task priorities, and
this can in turn have a huge impact on the jitter. Neither is itcertain that a completely
equal performance degradation can be achieved.

Example 3 (Codesign).We consider an example where three controllers should be
implemented in a single CPU. Both rate-monotonic and EDF scheduling is considered.
The execution times of the control algorithms are assumed tobe equal and constant and
are given byR= Rb = 0.15 [ms]. The plants to be controlled are given by

P1(s) =
8·105

s(s+1000)
,

P2(s) =
4·104

(s−200)(s+200)
,

P3(s) =
5·107

s(s2 +100s+2.5·105)
,

(18)

and the continuous-time controllers are given by

K1(s) =
4.88·103(s+2·105)(s+1295)

(s+5000)(s2+7.325·104s+2.573·109)
,

K2(s) =
2.57·103(s+2·105)(s+259.1)

(s+3000)(s2+1.645·104s+1.35·108)
,

K3(s) =
478(s+2·105)(s2 +160.6s+1.655·105)

(s+2740)(s+1000)(s2+2494s+7.109·106)
.

(19)

Table 1 reports the bandwidthωb and the original phase marginϕm of each control loop.
It is seen that the loops have different bandwidths, which suggests that the controllers
would require different sampling intervals. The differences in bandwidth are also visible
in Figure 5, which shows the system responses for the different continuous-time loops.

To initialize the procedure, nominal sampling periods are chosen by the rule of
thumbωbh= 0.2. This results in a CPU utilization ofU = 1.30. Hence, slower sampling
must be used in the target system. For the controller discretization, the Tustin method
is used.

Table 1.Bandwidths and phase margins of the original continuous-time control loops

Loop ωb ϕm

P1(s),K1(s) 960 rad/s 74.1◦

P2(s),K2(s) 599 rad/s 49.5◦

P3(s),K3(s) 179 rad/s 69.7◦
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Fig. 5. System responses of the original continuous-time control loops.

First, rate-monotonic scheduling is assumed. The target utilization is chosen as
U = 0.78. The adaptation gain is chosen ask = 0.2. The results of the codesign proce-
dure after one and ten iterations are shown in Table 2. After the initial iteration, where
the nominal sampling periods have been simply rescaled, loop 3 has a small negative
apparent phase margin. That means that stability cannot be guaranteed for that loop.
After ten iterations, the periods have been adjusted such that they are nearly equal, re-
sulting in a somewhat more equal performance degradation (as measured by the ratio
ϕ̂m/ϕm).

To verify the results of the procedure, the complete real-time system (including
plants, controllers, and scheduler) was also simulated using the MATLAB/Simulink
toolbox TrueTime [11]. The actual control system responsesafter one and ten design
iterations are shown in Figure 6. It is seen that, after one iteration, loop 3 is close to
unstable, as predicted by the negative apparent phase margin. After ten iterations, the
performance degradation of loop 3 is visibly smaller.

Next EDF scheduling is assumed. The target utilization is chosen asU = 0.95. The
results of the codesign procedure after one and ten iterations are shown in Table 3. After
the initial iteration, task 3 has a large negative apparent phase margin, implying that the
control loop might be unstable. After ten iterations, the performance degradation is
quite even among the controllers. Again, the results were also verified in simulations.
Figure 7 shows the system response after one and ten iterations.

Table 2. Codesign results under rate-monotonic scheduling: (a) after one iteration, (b) after ten
iterations.

(a) Task h R Rb J Jm(Rb) ϕ̂m ϕ̂m/ϕm

1 0.35 0.15 0.15 0 1.08 60.8◦ 0.82
2 0.56 0.30 0.15 0.15 1.17 27.9◦ 0.56
3 1.87 0.90 0.15 0.75 0.47 −4.8◦ −0.07

(b) Task h R Rb J Jm(Rb) ϕ̂m ϕ̂m/ϕm

1 0.56 0.15 0.15 0 0.96 56.5◦ 0.76
2 0.57 0.30 0.15 0.15 1.17 27.7◦ 0.56
3 0.60 0.45 0.15 0.30 1.18 27.9◦ 0.40
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Fig. 6. Control system responses under rate-monotonic scheduling: (a) after one iteration, (b)
after ten iterations.

Table 3.Codesign results under EDF scheduling: (a) after one iteration, (b) after ten iterations.

(a) Task h R Rb J Jm(Rb) ϕ̂m ϕ̂m/ϕm

1 0.28 0.16 0.15 0.01 1.11 64.0◦ 0.86
2 0.46 0.34 0.15 0.19 1.21 33.4◦ 0.67
3 1.53 1.35 0.60 0.75 0.03 −18◦ −0.27

(b) Task h R Rb J Jm(Rb) ϕ̂m ϕ̂m/ϕm

1 0.40 0.31 0.15 0.16 1.04 43.1◦ 0.58
2 0.50 0.40 0.15 0.25 1.19 26.7◦ 0.54
3 0.54 0.45 0.15 0.30 1.20 29.8◦ 0.43
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Fig. 7. Control system responses under EDF scheduling: (a) after one iteration, (b) after ten iter-
ations.



The final design results under rate-monotonic scheduling and EDF scheduling are
quite similar. Under EDF, slightly shorter periods could beused, due to the higher level
of schedulability of EDF. It can also be noted that, under EDF, the jitter is more evenly
distributed among the tasks. This makes it possible to achieve a more even performance
degradation among the control loops.

5 Related Work

Several works have considered scheduling solutions to reduce output jitter in general.
In [12] and [13], it is suggested to use dedicated high-priority output tasks to reduce
the jitter. This has the disadvantages of a more complex implementation and longer
delays on average. [14] considers jitter reduction under deadline-monotonic and EDF
scheduling. Output jitter reduction under EDF is also the topic of [15] and [16]. It can
be noted that, in these papers, the jitter is defined between successive periods, rather
than over the lifetime of the system (as in this paper).

There have also been some efforts to specifically minimize jitter in control tasks.
The papers [17, 18] define thecontrol action interval, which is just another term for
output jitter. The proposed solution introduces high-priority tasks for the input and out-
put actions. Again, this has the disadvantage of longer delays on average. Also, the re-
sulting control performance is not analyzed. [19] proposesa subtask scheduling method
for control tasks, where the main part of the control algorithm are scheduled at different
priorities. The scheme attempts to reduce both the delay andthe jitter. The performance
improvements are verified by simulations.

Jitter compensation in control has been the subject of much research. In [20], an op-
timal jitter-compensating LQG controller is derived in thecontext of networked control
loops. The controller uses timestamps to track the sensor-to-controller and controller-
to-actuator delays. The performance is measured by a quadratic cost function and is
evaluated by stochastic analysis. [21] considers jitter compensation in state feedback
controllers. No specified scheduling algorithm is considered, but it is assumed that the
delays are known a-priori. Also, full state information is assumed. The performance
improvements are verified by simulations. In [22] a more realistic approach is taken,
where the output jitter experienced in one period is compensated for in the next period.
The resulting jitter-compensating controller can be viewed as a generalization of the
well-known Smith predictor.

In the area of control–scheduling codesign, [23] studies computational delays in
computer-controlled systems. Hard constraints on the controlled variables (e.g., phys-
ical constraints) are used to derive maximum allowable control latencies in different
regions of the statespace. It is noted that the hard deadlinemay be a random variable
due to stochastic disturbances acting on the process. The approach is extended in [24]
where the stability of the closed-loop system is also considered. Sampling period se-
lection for control tasks is the topic of [25]. The performance of the control loops are
described using cost functions, and the period assignment problem is formulated as an
optimization problem. The combined effect of period and delay on control performance
is studied in [26], where simulations are used to evaluate the performance. None of
these papers considers jitter, however.



6 Conclusion

This paper has proposed the notion ofjitter margin and showed how it can be applied
in the design of real-time control systems. The stability test is based on worst-case
assumptions about the jitter, and hence produces hard stability results. We have also
linked the control analysis to scheduling analysis, showing how output jitter analysis
can be used together with the jitter margin. An extensive codesign example has been
presented, where many of the concepts introduced in the paper have been applied.

This paper has only treated output jitter. In some applications, sampling jitter is also
an issue. We are investigating if the stability analysis canbe extended to also handle
this case.

The topic of best-case response-time analysis needs to be investigated further. For
instance, exact best-case response-time analysis under EDF could be developed. It
would also be interesting to consider jitter analysis wherethe same task phasing is
assumed for the best-case and the worst-case response-timeanalysis.

The suggested codesign approach is only one of many possible. It would be interest-
ing to also consider direct digital design, where the controller is designed to compensate
for the constant delay. In this case, a quadratic cost function is probably a better perfor-
mance measure than the apparent phase margin.

A A Lower Bound on the Best-Case Response Time under EDF

Consider a set of periodic tasks scheduled under EDF. Each task i has a periodTi , a
relative deadlineDi ≤ Ti , and a best-case execution timeCb

i . It is assumed that the task
set is schedulable. LetRi be the response time of an instance of taski that is released at
time 0, and let taskj be a potentially interfering task. We will construct a lowerbound
onRi by shifting each taskj such that minimum interference is obtained.

First, consider a taskj with D j ≥ Ri . It is obvious that the task can be phased such
that it does not interfere with taski.

For each taskj with D j < Ri we must consider two different cases, see Figure 8. In
case (a),Di −D j > Ri , and each instance of taskj released within the interval[0, Ri ]
will have higher priority than taski. Minimum interference is obtained when taskj is
phased such that one release occurs at timeRi. The number of complete preemptions
from task j is hence given bydRi/Tj −1e.

In case (b),Di −D j ≤ Ri , and instances of taskj will only have higher priority if
released within the interval[0, Di −D j ]. Minimum interference is obtained when task
j is phased such that one release occurs at timeDi −D j . The number of complete
preemptions from taskj is hence given byd(Di −D j)/Tj −1e.

Each complete preemption from taskj will contributeCj to the response time. Com-
bining the two cases above, a lower bound,Rb

i , on the minimum response time of taski
is given by

Rb
i = Cb

i + ∑
∀ j :D j <Rb

i

⌈

min
{

Rb
i , Di −D j

}

Tj
−1

⌉

Cb
j

This expression provides only a lower bound, since it does not take any initial (partial)
interference from taskj into account (see for instance Figure 8(a)). It is possible to
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Fig. 8.Different cases where taskj causes minimum interference for taski: (a)Di −D j > Ri , (b)
Di −D j ≤ Ri .

improve the formula slightly by including some obvious cases where initial interfer-
ence must occur. It is conjectured, however, that the expression for theexactbest-case
response time is as complex as the formula for exact worst-case response time under
EDF.
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