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Abstract. This paper focuses on the problem of providing efficient run-time support to multimedia applications
in a real-time system, where different types of tasks (characterized by different criticality) can coexist. Whereas
critical real-time tasks (hard tasks) are guaranteed based on worst-case execution times and minimum
interarrival times, multimedia tasks are served based on mean parameters. A novel bandwidth reservation
mechanism (the constant bandwidth server) allows real-time tasks to execute in a dynamic environment under a
temporal protection mechanism, so that each task will never exceed a predefined bandwidth, independently of its
actual requests. The paper also discusses how the proposed server can be used for handling aperiodic tasks
efficiently and how a statistical analysis can be applied to perform a probabilistic guarantee of soft tasks. The
performance of the proposed method is compared with that of similar service mechanisms (dynamic real-time
servers and proportional share schedulers) through extensive simulation experiments.
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1. Introduction

A real-time system is a computer system whose behavior depends not only on the
functional correctness of its outputs, but also on the time on which results are produced.
For some critical applications (e.g., flight control systems, defense systems, nuclear
power plants), missing a single temporal constraint (deadline) might cause a catastrophic
consequence. In this case, we say that tasks are characterized by hard timing constraints
that must be met in all anticipated workload conditions. An operating system able to
support this kind of task is called a hard real-time system.

In these systems, in order to provide an off-line guarantee on the feasibility of each
critical task, schedulability analysis is performed based on very pessimistic assumptions.
This means assuming that each task instance always issues requests at its maximum
activation rate and always uses its worst-case computation time. Moreover, to minimize
conflicts with the other tasks, resources are statically allocated to tasks based on
maximum requirements.

Such a design philosophy makes the system robust in tolerating peak load situations,
but causes a tremendous waste of resources, which are underutilized for most of the time.
In other words, high predictability is achieved at the price of low efficiency, which
increases the overall cost of the system.
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Although such an approach can be justified for safety-critical systems, it would not be
appropriate for non-critical real-time applications. Indeed, most real-time systems, such
as multimedia systems, control system simulators, virtual reality games, and even some
robotic systems, are not characterized by hard timing constraints. For such systems,
missing one or more deadlines does not generate catastrophic consequences on the
environment, but only causes a performance degradation. For these systems, using a hard
real-time approach to guarantee a certain level of performance would mean wasting a lot
of resources and paying a much higher cost.

In addition, for some application, a hard real-time approach is also difficult to adopt,
since estimating worst-case parameters can be very difficult or even impossible.
Continuous media (CM) applications are typical examples. CM activities—such as audio
and video streams—need real-time support because of their sensitivity to delay and jitter.
However, the use of a hard real-time system for handling CM applications would be
inappropriate for the following reasons:

e If a multimedia task manages compressed frames, the time for coding/decoding each
frame can vary significantly, hence the worst-case execution time (WCET) of the task
can be much higher than its mean execution time. Since hard real-time tasks are
guaranteed based on their WCET (and not based on mean execution times), CM
applications would waste system’s resources, especially the CPU.

e Providing a precise estimation of WCETs is a very difficult task, even for those
applications running on a specific hardware. This problem is much more critical for
multimedia applications, which in general run on many different machines (think of a
video conferencing system running on several different PC workstations).

e When data are received from an external device (for instance, a communication
network) the interarrival time of the jobs that manage such data may not be
deterministic, so determining a minimum interarrival time (MIT) for such jobs, may
not be possible. As a consequence, no a priori guarantee can be performed.

e Advanced multimedia systems tend to be more dynamic than classical real-time
systems, so most of the scheduling methodologies devised for static real-time systems
are not suited for CM applications.

For the reasons mentioned above, a large part of the multimedia community continues to
use classical operating systems, such as Unix or Windows, to manage CM applications.

To provide adequate support for such soft real-time applications, the challenge is to
increase efficiency on resource usage (to keep the overall cost low), and to remove any
assumption on the exact knowledge of execution times, still ensuring a certain level of
guarantee on system’s performance. In these systems, the concept of absolute guarantee
(given by a yes-or-no feasibility test) is too restrictive and should be replaced with the
notion of quality of service (QoS), which can be specified within a much larger gray-level
scale. More specifically, the features that would be desirable for supporting CM
applications include:
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e increasing resource utilization by adopting less pessimistic assumptions on tasks’
behavior;

e handling task overruns to achieve graceful degradation on system’s performance
during transient overload conditions;

e providing task isolation to avoid reciprocal interference during overruns (temporal
protection), so that a task overrun will not delay the execution of the other tasks;

e allowing efficient aperiodic task management, to improve aperiodic responsiveness
while preserving the desired QoS level of periodic tasks; and

e introducing the notion of probabilistic guarantee, to relax hard timing constraints in
favor of efficiency.

This paper presents a new scheduling approach which allows us to address all the
properties listed above. In particular, it integrates and consolidates some preliminary
work described in Abeni and Buttazzo (1998, 1999b, c).

The rest of the paper is organized as follows. Section 1.1 describes some related work
presented in the literature. Section 2 describes our general approach and states our
terminology and assumptions. Section 3 presents the scheduling algorithm and its main
properties. Section 4 addresses the problem of aperiodic task management. Section 5
illustrates how statistical analysis can be used to perform a probabilistic guarantee.
Section 6 discusses how the proposed method can be used to handle proportional share
tasks and provides a comparison with other resource reservation techniques. Finally,
Section 7 presents our conclusions and future work.

1.1. Related Work

Recently, significant work has been devoted at increasing the efficiency of real-time
systems through more flexible algorithms and scheduling paradigms.

In Goyal et al. (1996), the authors proposed a variant of the Solaris operating system,
based on the start fair queuing (SFQ) scheduling algorithm. In Stoica et al. (1996), the
FreeBSD scheduler has been modified to implement the earliest eligible virtual deadline
first (EEVDF) scheduling algorithm. In Waldspurger and Weihl (1995) the Linux kernel
has been modified to provide stride scheduling. The three scheduling policies cited above
are essentially based on a common approach referred as proportional share resource
allocation (PSA). The essence of PSA is to allocate a resource to a task for a uniform
fraction of any interval of time: in this way, each task makes progress as if it executes
alone on a slower processor. Although such a ‘‘fairness’’ in tasks management allows to
handle QoS requirements, spreading process execution can be too restrictive for some
applications (see Section 6).

A different approach to the problem of providing QoS control in an operating system is
to adapt the real-time theory to a more flexible environment. Govindan and Anderson
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(1991) describe a multimedia operating system based on an earliest deadline first (EDF)
scheduler. However, the QoS can only be guaranteed based on the WCET of each task
and based on a model of the external events that can activate a task (they use a linear
bounded arrival process).

Jeffay et al. (1992) present a hard real-time system based on EDF scheduling to be used
as a test bed for video conference applications; the system can guarantee each task at its
creation time based on its WCET and its MIT. While a bound for the WCET can be
found, the interarrival time may not have a lower bound, because of the unpredictability
of the network (which may even reverse the order of messages at the reception site). For
this reason, Jeffay introduces the rate-based execution (RBE) task model, which is
independent from the MIT (Jeffay and Bennet, 1995; Jeffay and Goddard, 1999).
Although this kind of task cannot be guaranteed to complete within a given deadline, it is
possible to guarantee that it will not jeopardize the schedulability of other hard real-time
tasks present in the system.

Mercer et al. (1993) propose a scheme based on CPU capacity reserves, where a
fraction of the CPU bandwidth is reserved to each task. A reserve is a couple (C;,T;)
indicating that a task 7; can execute for at most C; units of time in each period T;. This
approach removes the need of knowing the WCET of each task, because it fixes the
maximum time that each task can execute in its period. Since the periodic scheduler is
based on the rate monotonic algorithm, the classical schedulability analysis can be
applied to guarantee hard tasks, if they are present. The only problem with this method is
that overruns on multimedia tasks are not handled efficiently. In fact, if a task instance
executes for more than C; units of time, the remaining portion of the instance is scheduled
in background, prolonging its completion for an unpredictable amount of time.

Kaneko et al. (1996) propose a scheme based on a periodic process (the multimedia
server) dedicated to the service of all multimedia requests. This solution allows to nicely
integrate multimedia tasks together with hard real-time tasks; however, since a single
server is used to handle different streams, it is not easy to control the QoS of each task.

Deng and Liu (1997) describe a scheduling hierarchy which allows hard real-time, soft
real-time, and non-real-time applications to coexist in the same system, and to be created
dynamically. According to this approach, which uses the EDF scheduling algorithm as a
low-level scheduler, each application is handled by a dedicated server, which can be a
constant utilization server (Deng et al., 1997) for tasks that do not use non-preemptable
sections or global resources, and a total bandwidth server (Spuri and Buttazzo, 1994;
1996) for the other tasks. This solution can be used to isolate the effects of overloads at
the application level, rather than at the task level. Moreover, the method requires the
knowledge of the WCET even for soft and non real-time tasks.

In Zhang (1995) the virtual clock algorithm has been proposed to serve network
packets within a reserved bandwidth. Since the method is based on the knowledge of the
packet size, it cannot be used to serve tasks whose execution times are not known in
advance. Moreover, the virtual clock algorithm results to be equivalent to the total
bandwidth server, which is compared with the approach proposed in this paper.

In many practical real-time applications, the requirements for tasks are less stringent
than real-time theory usually permits. A more flexible approach could be to guarantee a
completion probability, rather than a hard deadline, since a task is usually acceptable if
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the probability of meeting a deadline is greater than a given value. In Tia et al. (1995), a
probabilistic analysis of the rate monotonic (RM) scheduling algorithm is performed, and
some solutions to guarantee a completion probability are presented. In Atlas and
Bestavros (1998), the RM algorithm is modified to perform on-line acceptance of single
jobs for ensuring (off-line) a minimum probability that a job is accepted; these two works
are both limited to a static priority (RM) assignment and to a semi-periodic (fixed
interarrival times) task model.

In Kang et al. (1997) a time division multiplexing (TDM) model is used to share
resources among tasks in a distributed system. In this paper and in two successive works
(Kang et al., 1998a, b) a statistical approach is used at design phase to compute the
probability distribution of tasks’ finishing times and check whether a distributed system
verifies some given constraints on latency and minimum output rate.

In Lehoczky (1996) a statistical analysis of the EDF scheduling algorithm is presented.
This analysis is based on the real-time queuing theory, that adapts the classical queuing
theory to handle queues containing clients characterized by a deadline. Although this
method can be used to estimate the system performance, it can hardly be used to enforce
the desired timing behavior on individual tasks.

2. Our Approach

In this section we present a new resource reservation method for executing soft real-time
tasks. We first introduce the task models and then show how these tasks can receive
adequate service.

2.1. Task Models

We consider a system consisting of three types of tasks: hard, soft, and non-real-time
tasks. A real-time task 1; is a stream of requests, or jobs, J,vd-, (j=1,...,n), each
characterized by an arrival time r;;, an execution time c¢;;, a finishing time f;;, and a
deadline d;;. Real-time tasks can be hard or soft: a task 7; is said to be hard if all its
instances have to complete within their deadline (Vj f;; < d; ;), otherwise a critical failure
may occur in the system. A task is said to be soft if a deadline miss in one or more
instances does not cause a critical failure, but only a QoS degradation.

A hard real-time task is typically characterized by two parameters (C;,T;), where
C; = max{c,;} is the WCET of each job and T; = min{r;; | — r;;} is the MIT between
successive jobs J; ;. and J;;. Notice that a periodic task is a special case of real-time
task, where T is equal to the task activation period, so that r;; | = r;; + T; for any job
J;j. The system must provide an a priori guarantee that all jobs of a hard task must
complete within a given deadline d; ;. In our model, the absolute deadline of each hard job
J;j is implicitly set at the value d;; = r;; + T}.

A soft real-time task is characterized by more relaxed constraints and by a weaker
knowledge of the task parameters. For each soft job J;;, a soft deadline is set at time

d r;j + T;. When execution times are not known, the sequence c;; can be seen as a

ij — ij
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sequence of values distributed according to a probability distribution function (PDF)
U(c) = P{c;; = c}, or as a stochastic process. Since U(c) does not depend on j, the
stochastic process is stationary and time-invariant, so it is ergodic. Hence, the execution
times expectation E[c]=> cU(c) is equal to the mean execution time, calculated as
¢ =lim;_, ZJ’.‘: 1¢; j/k. If the execution and interarrival times PDFs are known, a
statistical guarantee can be performed as described in Section 5.

The objective of the system is to minimize the mean tardiness of soft tasks, without
Jeopardizing the schedulability of the hard tasks. The tardiness E; ; of a job J, ; is defined
as

Ei,,' = max{O,fiJ- - di:j} (1)

where f;; is the finishing time of job J, ;.
Finally, non real-time tasks do not have timing constraints and can be scheduled in
background with respect to hard and soft tasks (e.g., in a round robin fashion).

2.2. Bandwidth Reservation

Treating soft tasks as hard tasks is not appropriate for the reasons mentioned in Section 1.
Moreover, when handling hybrid task sets consisting of hard and soft multimedia tasks,
an underestimation of the WCET (or an overestimation of the MIT) would jeopardize the
guarantee done on hard tasks. This problem is due to the fact that hard real-time systems
do not enforce any kind of temporal protection among tasks (since worst-case parameters
are known, the a priori analysis makes temporal protection useless for hard tasks).
In order to serve soft tasks in a real-time system, however, an explicit temporal
protection mechanism must be used to protect hard tasks from overruns generated by soft
tasks. Temporal protection can be achieved by using a proper resource reservation
strategy.

According to the approach we propose in this paper, each soft task is assigned a
fraction of the CPU (a bandwidth) and it is scheduled in such a way that it will never
demand more than its reserved bandwidth, independently of its actual requests. This is
achieved by assigning each task a suitable (dynamic) deadline, computed as a function of
the reserved bandwidth and its actual requests. If a task requires to execute more than its
expected computation time, its deadline is postponed so that its reserved bandwidth is not
exceeded. As a consequence, overruns occurring on task 7, will only delay task t,, but
will not steal the bandwidth assigned to the other tasks, which are then isolated and
protected from reciprocal interference. By isolating the effects of task overloads, hard
tasks can be guaranteed using classical schedulability analysis (Liu and Layland, 1973).

In our methodology, the bandwidth reservation mechanism is implemented by handling
each soft task by a dedicated real-time server, which keeps the task demand within the
reserved bandwidth through a suitable deadline assignment algorithm.

The bandwidth reservation mechanism is schematically illustrated in Figure 1. Hard
tasks are guaranteed a priori based on worst-case parameters and are directly inserted in
the ready queue, managed by the earliest deadline first EDF scheduling algorithm. Each
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Figure 1. Implementing bandwidth reservation through dedicated servers.

soft task is handled by a dedicated server, which ensures that its served task will never
contribute to the total processor load more than a given utilization U, specified by the
user.

It is worth noting that, using this approach, a task is re-shaped before entering the EDF
queue, so that it will not demand more than the reserved bandwidth. The server
mechanism is responsible for such a re-shaping and it must provide the following
important properties:

1. Feasibility: No deadline (hard or assigned by the scheduler) must be missed.
2. Efficiency: Tasks should be served in order to reduce the mean tardiness.

3. Flexibility: The server should handle tasks with variable or even unknown execution
times and arrival patterns.

Any aperiodic server, like the Dynamic Polling Server (Spuri and Buttazzo, 1996), the
Dynamic Deferrable Server (Ghazalie and Baker, 1995), the Dynamic Sporadic Server
(DSS) (Ghazalie and Baker, 1995; Spuri and Buttazzo, 1996), the Total Bandwidth Server
(TBS) (Spuri and Buttazzo, 1994, 1996), or the Constant Utilization Server (CUS) (Deng
et al., 1997) can be used to serve soft tasks, but each of these servers fails in providing
one of the previous properties. In particular, the TBS and the CUS require the WCET
knowledge, hence they cannot be used in practical situations, whereas the other servers
do not provide sufficient responsiveness in terms of mean tardiness. Hence, the problem
is to develop a server mechanism that does not depend on any WCET or MIT knowledge,
uses efficiently the CPU time (obtaining good performance), and provides temporal
isolation handling periodic and aperiodic arrivals in a proper way.

In this paper we present the Constant Bandwidth Server (CBS), a novel server that
achieves a performance similar to the one of the TBS, without requiring the WCET or
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MIT knowledge in advance. Moreover, if the WCET and MIT are known, the server
parameters can be set so that the served task behaves exactly as a hard task (hence, the
CBS can properly serve also hard tasks).

3. The Constant Bandwidth Server

In this section, we present a novel service mechanism to properly implement a bandwidth
reservation strategy. The service mechanisms that have inspired this work are the DSS
and the TBS. As the DSS, the CBS guarantees that, if U, is the fraction of processor time
assigned to a server (i.e., its bandwidth), its contribution to the total utilization factor is
no greater than U, even in the presence of overloads. Notice that this property is not valid
for a TBS, nor for a CUS, whose actual contributions are limited to U, only under the
assumption that all the served jobs execute no more than the declared WCET. With
respect to the DSS, however, the CBS shows a much better performance, comparable
with the one achievable by a TBS.

The basic idea behind the CBS mechanism can be explained as follows: when a new
job enters the system, it is assigned a suitable scheduling deadline (to keep its demand
within the reserved bandwidth) and it is inserted in the EDF ready queue. If the job tries
to execute more than expected, its deadline is postponed (i.e., its priority is decreased) to
reduce the interference on the other tasks. Note that by postponing the deadline, the task
remains eligible for execution. In this way, the CBS behaves as a work conserving
algorithm, exploiting the available slack in an efficient (deadline-based) way, thus
providing better responsiveness with respect to non-work conserving algorithms and to
other reservation approaches that schedule the extra portions of jobs in background, like
the one described by Mercer et al. (1993).

If a subset of tasks is handled by a single server, all the tasks in that subset will share
the same bandwidth, so there is not isolation among them. Nevertheless, all the other
tasks in the system are protected against overruns occurring in the subset.

In order not to miss any hard deadline, the deadline assignment rules adopted by the
server must be carefully designed. The following section precisely defines the CBS
algorithm, and formally proves its correctness for any (know or unknown) execution
request and arrival pattern.

3.1. Definition of CBS
The CBS can be defined as follows:

e ACBS is characterized by a budget ¢, and by an ordered pair (Q,, T,), where Q; is the
maximum budget and T is the period of the server. The ratio U, = Q, /T is denoted
as the server bandwidth. At each instant, a fixed deadline d is associated with the
server. At the beginning d;, = 0.
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e Each served job J;; is assigned a dynamic deadline d;; equal to the current server
deadline d, ;.

e Whenever a served job executes, the budget ¢, is decreased by the same amount.

e When ¢, = 0, the server budget is recharged at the maximum value Q; and a new
server deadline is generated as d;; | =d,; + T,. Notice that there are no finite
intervals of time in which the budget is equal to zero.

o ACBS is said to be active at time ¢ if there are pending jobs (remember the budget c;
is always greater than 0); that is, if there exists a served job J;; such that r;; < 1<f; .
A CBS is said to be idle at time ¢ if it is not active.

e When a job J;; arrives and the server is active the request is enqueued in a queue of
pending jobs according to a given (arbitrary) discipline (e.g., FIFO).

e When a job J;; arrives and the server is idle, if ¢; > (d;; —1;;)U; the server
generates a new deadline d; ;| = r;; + T and ¢, is recharged at the maximum value
Q,, otherwise the job is served with the last server deadline d;; using the current
budget.

e When a job finishes, the next pending job, if any, is served using the current budget
and deadline. If there are no pending jobs, the server becomes idle.

e At any instant, a job is assigned the last deadline generated by the server.

Figure 2 illustrates an example in which a hard periodic task, 7, with computation time
C, =4 and period T|, =7, is scheduled together with a soft task, t,, served by a CBS
having a budget O, = 3 and a period T, = 8. The first job of 7, (J, ), requiring four units
of execution time, arrives at time r, = 3, when the server is idle. Being ¢, > (dy — 1)U,
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Figure 2. An example of CBS scheduling.
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the job is assigned a deadline d; = r; + T, = 11 and ¢, is recharged at O, = 3. At time
t =17, the budget is exhausted, so a new deadline d, = d; + T, = 19 is generated and c;
is replenished. Since the server deadline is postponed, 7; becomes the task with the
earliest deadline and executes until completion. Then, 7, resumes and job J,; (having
deadline d, = 19) is finished at time =12, leaving a budget ¢, = 2. The second job of
task 7, arrives at time r, = 13 and requires three units of time. Since ¢, < (d, — r,)U,,
the last server deadline d, can be used to serve job J,,. At time =15, the server
budget is exhausted, so a new server deadline d; = d, + T, = 27 is generated and c, is
replenished at Q. For this reason, 7, becomes the highest priority task and executes
until time #=19, when job J; 5 finishes and 7, can execute, finishing job J,, at time
t =20 leaving a budget ¢, = 2. '

It is worth noting that under a CBS a job J; is assigned an absolute time-varying
deadline d; which can be postponed if the task requires more than the reserved bandwidth.
Thus, each job J; can be thought as consisting of a number of chunks H;,, each
characterized by a release time a@;; and a fixed deadline d;;. An example of chunks
produced by a CBS is shown in Figure 2. To simplify the notation, we will indicate all the
chunks generated by the server with an increasing index k (in the example of Figure 2,
H,, =H,, H, = Hy, Hy, = H3, and so on).

In order to provide a formal definition of the CBS, let @, and d, be the release time and
the deadline of the k-th chunk generated by the server, and let ¢ and n be the actual server
budget and the number of pending requests in the server queue (including the request
currently being served). These variables are initialized as follows:

dy=0, ¢c=0, n=0, k=0

Using this notation, the server behavior can be described by the algorithm shown in
Figure 3.

3.2. CBS properties

The proposed CBS service mechanism presents some interesting properties that make it
suitable for supporting CM applications. The most important one, the isolation property,
is formally expressed by the following theorems.

THEOREM 1 The CPU utilization of a CBS S with parameters (Q,,T;) is U, = Q,/T,,
independently from the computation times and the arrival pattern of the served jobs.

Proof: The proof is trivial for the case of periodic arrivals, but proving that no deadline
is missed in the general case of arbitrary arrival patterns requires a more formal (and
longer) verification. See Appendix for the complete proof. |

The following theorem provides a simple guarantee test for verifying the feasibility of
a task set consisting of hard and soft tasks.
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When job J; arrives at time r;
enqueue the request in the server queue;
n=mn+1;

if (n == 1) /* (the server is idle) */

if (r; + (¢ / Qo) * T >= dy)
[ mm Rule 1--—————————-———- */
k=k + 1;
ag s
d}c = ar + Ts,
c Qs;

else
e Rule 2-------------—- */
k=k+ 1;
ap = Tj;
dp = dg_1;

/* ¢ remains unchanged */
When job J; terminates
dequeue J; from the server queue;
n=mn-1;
if (n != 0) serve the next job in the queue with deadline dj;
When job J; executes for a time unit
c=c¢-1;

When (¢ == 0)

k=k+ 1;

ap = current_time();
di = de-1 + Ts;

c = Qs;

Figure 3. The CBS algorithm.

THEOREM 2 Given a set of n periodic hard tasks with processor utilization U, and a CBS
with processor utilization Uy, the whole set is schedulable by EDF if and only if

U,+U, <1

Proof: [f. Assume U, + U; <1 and suppose there is an overflow at time ¢ The
overflow is preceded by a period of continuous utilization of the processor. Furthermore,
from a certain point ¢ on (¢ < t), only instances of tasks ready at # or later and having
deadlines less than or equal to ¢ are run. Let C be the total execution time demanded by
these instances. Since there is an overflow at time ¢, we must have

t—t'<C
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Since C is due to periodic and aperiodic jobs, we can write:

C= 2”: r ;ﬂJ Ci +Dy(7,1)

i=1 i

where D(¢',t) is the computational demand due to the jobs served by the CBS in the
interval [z, 1].
Applying Theorem 1 we have

oy

i=1

< (t=17)(U, +Uy)

t—t
C.+(t-1"U
Tl l+( ) s

Thus, it follows that
U,+U;>1
a contradiction.

Only If. If an aperiodic request enters the system periodically, with period 7, and
execution time C = Q,, a CBS behaves exactly as a periodic task with period T, and
execution time Q; in this case, the total utilization factor of the processor is U, + Uj.
Hence, if the whole task set is schedulable, from the EDF schedulability bound (Liu and

Layland, 1973) we can conclude that U, + U, < 1. |

The isolation property allows us to use a bandwidth reservation strategy to allocate a
fraction of the CPU time to soft tasks whose computation time cannot be easily bounded.
The most important consequence of this result is that soft tasks can be scheduled together
with hard tasks without affecting the a priori guarantee, even in the case in which the
execution times of the soft tasks are not known or the soft requests exceed the expected
load.

In addition to the isolation property, the CBS has the following characteristics.

e The CBS behaves as a plain EDF algorithm if the served task t; has parameters
(C;,T;) such that C; < Q, and T; = T,. This is formally stated by the following

1771

lemma.

Lemma 1 A hard task t; with parameters (C;,T;) is schedulable by a CBS with
parameters Q, > C; and T, =T, if and only if t; is schedulable with EDF.

Proof: For any job of a hard task we have that r;;, —r;; > T; and ¢;; < Q,.

Hence, by definition of the CBS, each hard job is assigned a deadline d;; = r;; + T;
and it is scheduled with a budget O, > C;. Moreover, since ¢; ; < Q,, each job finishes
no later than the budget is exhausted, hence the deadline assigned to a job is never

postponed and is exactly the same as the one used by EDF |
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e The CBS automatically reclaims any spare time caused by early completions. This is
due to the fact that, whenever the budget is exhausted, it is always immediately
replenished at its full value and the server deadline is postponed. In this way, the
server remains eligible and the budget can be exploited by the pending requests with
the current deadline. This is the main difference with respect to the processor capacity
reserves proposed by Mercer et al. (1993).

e Knowing the statistical distribution of the computation time of a task served by a
CBS, it is possible to perform a QoS guarantee based on probabilistic deadlines
(expressed in terms of probability for each served job to meet a deadline). Such a
statistical analysis is presented in Section 5.

3.3. Implementation and Experimental Results

The proposed CBS algorithm has been implemented on the HARTIK kernel (Buttazzo,
1993; Lamastra et al., 1997), to support some sample multimedia applications. The
algorithm can also be easily implemented in different real-time kernels where time
accounting is provided. It is worth observing that a time accounting mechanism is
provided in most of real-time OSs (e.g., RT-Linux, Linux/RK, Nemesis, Rialto,
VxWorks, QNX/Neutrino), and in all POSIX compliant kernels. As an example, the CBS
has been implemented also in Linux/RK (Rajkumar et al., 2000).

In order to show the effectiveness of the proposed approach on a concrete case study,
we implemented a simple multimedia application consisting of a set of two MPEG
players, which typically exhibit a highly variable load, since the frame decoding time
depends on the frame type (traditionally denoted as I, P, or B). To create a more dynamic
load, tasks are activated at different time instants. In particular, the first MPEG player,
denoted as task 7, has a period 7| = 125 ms (frame rate: 8 frames per second), whereas
the second player, denoted as task 7,, has a period T, = 30ms (33 Fps).

To show the advantages presented by our approach, each player has been executed
using EDF, with and without CBS. Figure 4 reports the number of decoded frames as a
function of time, when the two periodic tasks are scheduled by EDF and 1, is activated at
t=2000ms. When 1, is the only task in the system, it runs at the required frame rate
(8 Fps), but when 1, is activated t; slows down at 4.4 Fps, while 7, begins to execute at
17.96 Fps #33 Fps. Such a difference in the frame rate indicates the presence of an
overload condition; indeed, some measurements on the execution times revealed that the
7,’s WCET is C; =49 ms, and the 7,’s WCET is C, = 53 ms, thus U=49/1254 53/
30=2.158 > 1.

When 7, terminates, 7, increases its frame rate to its maximum value (23.8 Fps, that
corresponds to a period of about 42 ms, which results to be the mean execution time for
7,). After this transient, 7, returns to execute at 8 Fps.

Figure 5 shows the number of decoded frames as a function of time, when the same
periodic tasks are scheduled by two CBSs with parameters (Q,,7T;) = (42,125) and
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Figure 4. Two MPEG players scheduled by EDE

(0,,T,) = (19,30). Being 42/125 4+ 19/30 =0.969 < 1, the two servers are schedulable,
and being O, = 42~¢,, t; will execute at a frame rate near to the required one.

From the plots we can see that the frame rate of 7, is about constant except for two
little variations corresponding to the activation and the termination of 7, (remember that
Q =c is a limit condition). This is obtained by slowing down the frame rate of 7, to
14.2 Fps: this task is clearly overloaded (T, < ¢;), so its demand can be limited by
assigning a maximum bandwidth to its dedicated server.

Notice that the proposed mechanism automatically arranges the task periods without
using an a priori knowledge of tasks’ execution times. The only information used by
the CBS is the couple (Q;,T;) and the estimation of task’s execution time given in the
budget.

Figure 4 shows another undesirable effect: when 7, terminates, the frame rate of t;
increases to its maximum value (more than the required rate), in order to terminate in the
same time instant in which it would terminate if 7, was not activated. This phenomenon
causes an acceleration of the movie that appears unnatural and unpleasant. This problem
can be solved using a skip strategy to serve soft tasks: when a job finishes after its
absolute deadline, the next job is skipped in order to recover from overruns.

As shown in Figure 6, a skip strategy eliminates accelerations in the movie, but
introduces another problem, visible in an experiment illustrated in Figure 7, in which the
same movie is decoded by two identical tasks, with U ~ 1. Although the two tasks have
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the same period, they proceed with different speeds. This is due to the fact that the system
is overloaded. In fact, if

€1 G

Usoft = +

Fij+1 =T Taj+1 — 12
then Usof[ = Cl/Tl + Cz/T2 > 1
When the two tasks are served by two identical CBSs with parameters Q; = ¢y ; = ¢
and T, = 20, they proceed at the same rate (the parameters are equal because the two
tasks play the same video).

3.4. Notes on Resource Sharing

In a multiprogrammed system, tasks are rarely independent one from another, but must
often cooperate in order to provide the expected service. In a shared memory
programming paradigm, cooperation is achieved through shared resources, which must
be used in mutual exclusion to preserve data consistency during concurrent accesses.
The use of classical semaphores for protecting critical sections of code, however, is
prone to priority inversion, which causes a high priority task to be blocked by a low
priority task for an unbounded amount of time, due to the interference of medium priority
tasks. Different solutions have been proposed in the literature to bound the priority
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inversion phenomenon, both under fixed-priority (Sha et al., 1990) and dynamic-priority
(Baker, 1991; Jeffay, 1992) assignments. In this paper, we analyze the problem by
assuming that resources are accessed according to the Stack Resource Policy (SRP)
(Baker, 1991).

When shared resources are accessed in mutual exclusion by soft tasks handled by a
capacity-based server, as the CBS, an additional problem arises if the server exhausts its
budget when a served task is inside a critical section. In this case, to prevent long
blocking delays due to the budget replenishment rule, the soft task is allowed to continue
executing with the same deadline (using extra budget) until it leaves the critical section.
The extra budget used to complete the critical section must then be subtracted from the
next replenishment to prevent server overruns from accumulating. This approach was first
presented by Ghazalie and Baker (1995) for accounting for the blocking effects of critical
sections in a number of dynamic aperiodic servers.

A typical example of budget overrun is depicted in Figure 8, where two hard tasks, t,
and 7,, run together with a soft task, 75, handled by a CBS. At time ¢;, according to the
SRP, task 7, cannot preempt t, inside the critical section because they share a common
resource. As a consequence, T, experiences a blocking time by 1, in [t{,t,] and [t,, 5]
Notice that [f,,#,] is not a blocking interval for 7,, because 75 executes in that interval
with a higher priority (i.e., with a shorter deadline). At time t;, the CBS budget is
exhausted while 75 is inside a critical section, so it is allowed to continue up to the end of
the critical section using the same server deadline. For doing that, an amount of extra
budget, A, must be used by the server to complete the operation. At time 7,, when 75 exits
the critical section, the CBS recharges its budget at the value O, — A and postpones its
deadline by 7. Hence, 7, resumes execution and completes its critical section at time 5.

Since the server execution is prolonged by an extra budget to allow the soft task to
complete the critical section, the server utilization has to be computed to take such a
budget overrun into account. The maximum interference created on task 7, by the budget
overrun mechanism occurs when the soft task exhausts its budget immediately after
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entering its longest critical section. Thus, if & is the duration of the longest critical
section of the tasks handled by the server (we assume &, <(Q,), the bandwidth demanded
by the server becomes Q; + &, /T.

3.5. Assigning Server Parameters

The CBS algorithm can be considered as a building block for properly implementing a
bandwidth reservation strategy in hybrid real-time systems consisting of hard and soft
tasks. When soft tasks are handled by a CBS, hard tasks can be guaranteed to meet their
deadlines using the simple schedulability test expressed by Lemma 2, independently from
soft tasks’ requirements.

The performance experienced by soft tasks is influenced by the Q, and T, scheduling
parameters. If some kind of QoS needs to be guaranteed to a soft task (e.g., in terms of
tardiness, deadline miss ratio, or frame rate), the server parameters should be tuned
according to the soft task requirements. This can be done either off-line (if some—even
approximate—information is known on the task behavior) or on-line (if nothing is known
about the task), using a feedback mechanism operating at a higher level with respect to
the scheduling algorithm. Some possible criteria for assigning or tuning the server
parameters are briefly discussed below.

If the WCET C; and the MIT T; are known for the served task, a hard guarantee can be
performed on task t; by assigning Q; > C; and T, = T}, as shown in Lemma 1.

If some (even approximate) knowledge about the execution and interarrival times is
provided, in the form of probability distributions, it is still possible to perform a QoS
guarantee based on probabilistic deadlines, as shown in Section 5.

If no a priori information is available on the execution and on the interarrival times of
the served task, tuning the server parameters to guarantee some QoS becomes more
difficult. However, the amount of reserved bandwidth can be dynamically adjusted using
an adaptive strategy.

Such an approach has been proposed, for example, in Abeni and Buttazzo (1999a),
where a QoS Manager, implemented as a user task, dynamically computes the (Q,,T,)
pair based on the actual resource allocation error. Using a CBS, the resource allocation
error can easily be evaluated by monitoring the difference between the current scheduling
deadline assigned to the served job and its soft deadline. Such a measure is then used as a
feedback signal for a controller (the QoS manager) which dynamically generates the new
reserved CPU bandwidth as an output.

In conclusion, the CBS is flexible and powerful enough to support both fixed and
dynamic, on-line and off-line parameter assignment strategies, thus it can be used in a
wide range of different systems.

4. Aperiodic Task Handling

In this section we show how the CBS can be efficiently used as a service mechanism for
improving responsiveness of soft aperiodic requests.
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Aperiodic servers, such as the DSS (Spuri and Buttazzo, 1996), the TBS (Spuri and
Buttazzo 1996) and the CUS (Deng et al., 1997) have been designed to handle all the
aperiodic requests with a single server, in order to improve the average aperiodic
response time without jeopardizing the periodic (hard) tasks schedulability.

Although the behavior of these servers seems similar to the one exhibited by the CBS,
there are important differences to consider. For example, when all the aperiodic requests
are handled together with a single server, it is impossible to control the QoS of individual
soft tasks. In fact, an aperiodic task performing a large number of requests would severely
affect the performance of the other aperiodic tasks (although it would not interfere with
the periodic ones). On the contrary, by using a CBS for each soft task (either periodic or
aperiodic), the individual performance of the served task can be controlled through the O,
and T, parameters. The CBS also provides temporal isolation (preventing the served task
to demand more than the allocated bandwidth) and, if properly dimensioned, allows us to
perform hard schedulability analysis (see Section 3.2), as well as statistical analysis (see
Section 5), which cannot be performed using the traditional approach.

Moreover, the CBS achieves a good performance (comparable with the one provided
by the TBS) in terms of tardiness. To show this result, we compared the CBS with other
similar service mechanisms, namely the TBS and the DSS. The CUS is not shown in the
graphs because its behavior is very similar to the one of TBS (indeed, slightly worse in
performance).

The main difference between DSS and CBS is visible when the budget is exhausted. In
fact, while the DSS becomes idle until the next replenishing time (that occurs at the
server’s deadline), the CBS remains eligible by increasing its deadline and replenishing
the budget immediately. This difference in the replenishing time causes a significant
difference in the performance offered by the two servers to soft real-time tasks. The TBS
does not suffer from this problem, however its correct behavior relies on the exact
knowledge of WCETs, so it cannot be used for supporting CM applications. Moreover,
since the CBS automatically reclaims any available idle time coming from early
completions, an explicit reclaiming mechanism has also been added in the simulation of
the TBS, as described in Spuri et al. (1995).

4.1. Possible Extensions

Since the CBS algorithm has been designed to reduce the tardiness, it behaves in a work
conserving fashion. However, in some situations such a behavior can decrease the QoS of
some multimedia applications, because it badly affects the jitter.

Consider, for example, a player task receiving an audio/video stream from the network:
packets are supposed to arrive periodically, but due to some network congestion they can
arrive in bursts. Hence, it may happen that different packets that were supposed to arrive
at times ¢, ¢ + T, and ¢ + 2T all arrive around time 7. Using the CBS to serve the task, if the
CPU has enough idle time, the player can ‘‘speed up’’ around time 7 > ¢+ 27, to slow
down in the future (because serving the three activations postponed the deadline to a large
value).
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We believe that some different techniques can be used to address this problem, and that
the ‘‘right solution’’ does not exist in general, but depends on the application semantic.
For example, if fairness is important to the application, then the CBS behavior can be
modified to make it non-work conserving. This can be achieved by suspending the server
until the scheduling deadline when the budget is exhausted. Such a new semantic,
however, would have a terrible impact on the tardiness, hence it is not always an
appropriate solution. A better approach would be to give the application the possibility to
switch between two CBS modes (work conserving and non-work conserving) at any
instant, without compromising system schedulability.

A different solution to the previous problem can be to use application-level adaptation
(as proposed in Abeni and Buttazzo, 2001), by skipping packets that ‘‘arrive too late’’,
whenever possible. Of course, in this case the scheduler cannot help, because the
overload management is completely application-dependent.

Finally, some reclaiming algorithm such as GRUB (Lipari and Baruah, 2000) or CASH
(Caccamo et al., 2000) can be used to avoid an excessive postponement of the sever
deadline in the presence of bursts.

4.2. Simulation Results

The performance of the CBS algorithm has been tested and compared against those
of other similar algorithms using the real-time scheduling simulator presented in Casile
et al. (1998).

All the simulations presented in this section have been conducted on a hybrid task set
consisting of five periodic hard tasks with fixed parameters and five soft tasks with
variable execution times and interarrival times. The execution times of the periodic hard
tasks are randomly generated in order to achieve a desired processor utilization factor
U ara- The execution and interarrival times of the soft tasks are uniformly distributed in
order to obtain a mean soft load Uy = X;¢;;/ 751 — 1;; With Uy going from 0 to
1 - Uhard'

The metric used to measure the performance of the service algorithms is the mean
tardiness experienced by soft tasks, where the tardiness of a task is defined by Equation
(1). Such a metric was selected because in multimedia applications meeting all soft
deadlines could be impossible or very inefficient; hence, the system should be designed to
guarantee all the hard tasks and minimize the mean time that soft tasks execute after their
deadlines. Standard deviations on the average values of the soft tardiness have been
computed for all the experiments and they were never greater than 3%.

In the first experiment, we compare the mean tardiness experienced by soft tasks when
they are served by a CBS, a TBS, and a DSS. In this test, the utilization factor of periodic
hard tasks is Uy,q = 0.5. The simulation results are illustrated in Figure 9, which shows
that the performance of the DSS is dramatically worse than the one achieved by the CBS
and TBS. This result was expected for the reasons explained above.

Figure 10 shows the same results, but without the DSS: the only difference is in the
scale of the y-axis. In this figure, the TBS and CBS curves can be better distinguished, so
we can see that the tardiness experienced by soft tasks under a CBS is slightly higher than




RESOURCE RESERVATION IN DYNAMIC REAL-TIME SYSTEMS 143

Hard task load = 0.5
900 T T T T T T

CBS +-
il
800 TBS -&-

700

600

500

400

Average soft tardiness

300 |

200

100 |

() 40—ttt ey 55— BB~ = G- i ]
0.46 0.465 0.47 0.475 0.48 0.485 0.49 0.495 0.5
Average soft load

Figure 9. First experiment (TBS, CBS, and DSS).

Hard task load = 0.5
30 T T T

CBS o—
TBS -
25 F

20 |

Average soft tardiness

Average soft load

Figure 10. First experiment (TBS and CBS).



144 ABENI AND BUTTAZZO

Hard task load = 0.7
80 T T T T T T T T

70

60

40 -

30 |-

Average soft tardiness

20

I 1 1 !

028 0282 0284 0286 028 029 0292 0294 029 0298 0.3
Average soft load

Figure 11. Second experiment.

that experienced using a TBS. However, the difference is so small that can be neglected
for any practical purpose.

Figures 11 and 12 illustrate the results of similar experiments repeated with U, 4 =
0.7 and U,,,4 = 0.9, respectively. As we can see, the major difference in the performance
between CBS and TBS appears only for heavy hard loads. However, this situation is of
little interest for most practical multimedia applications.

The advantage of the CBS over the TBS can be appreciated when WCET; > ¢; . In this
case, in fact, the TBS can cause an underutilization of the processor, due to its worst-case
assumptions. This fact can be observed in Figure 13, which shows the results of a fourth
experiment, in which U, 4 = 0.6, Uy = 0.4, the interarrival times are fixed, and the
execution times of the soft tasks are uniformly distributed with an increasing variance. As
can be seen from the graph, the CBS performs better than the TBS when tasks’ execution
times have a high variance.

5. Statistical Analysis

As stated in Section 1, by relaxing the timing constraints of the application we can better
utilize the processor and significantly increase the performance of the system. The new
task model, however, requires an appropriate schedulability analysis aimed at providing
an off-line guarantee on the QoS achieved by each task.
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We address this problem using the completion probability as a metric for expressing
and guaranteeing a desired QoS: while the classical hard guarantee requires each job to
finish within its deadline, the QoS guarantee ensures that a job will finish within its soft
deadline with a given probability. To perform a QoS guarantee we need to describe the
task’s parameters in a probabilistic way and introduce the concept of probabilistic
deadline.

According to this approach, each task is described by a pair of PDF [U;(c), Vi(t)],
where U,(c) is the probability that job J; ,j has execution time ¢, and V(7) is the probability
that jobs’ interarrival time is 7. Hence,

Ui(c) = P{e;j = c}
Vi(t) =P{rij o1 —riy =1t}

The QoS guarantee test is based on the notion of probabilistic deadline, 6. Our QoS
guarantee does not require that the probabilistic deadline is always respected, but that it is
respected with a given probability

X;(0) =P{f;; <ri;+0}

where f; ; is the job’s finishing time, and X;(9) is the probability that job J; ; finishes before
a deadline d;; = r;; + 0.

Definition 1 A task 7, is guaranteed to respect a constraint (9, p), if X;() > p.

5.1. Schedulability Analysis

To perform a statistical guarantee on soft tasks served by a CBS the server is modeled as a
queue, where each arriving job J;; can be viewed as a request of ¢;; time units. At any
time, the request at the head of the queue is served using the current server deadline, so
that it is guaranteed that Q; units of time can be consumed within this deadline.

We analyze the following cases: (a) variable computation time and constant interarrival
time; and (b) constant computation time and variable interarrival time.

5.1.1. Case a: c; variable, T; constant

This case treats the so called semi-periodic task model (Tia et al., 1995; Atlas and
Bestavros, 1998), which can be used to model is typical in applications that manage CM.
For example, a video stream requires frames to be played periodically, but the decoding/
playing time of each frame is not constant.
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Let U(c) be a generic PDF for the task’s computation times and let the interarrival
times be deterministic, so that

Vi) = {O, otherwise

In this case, if we assign T, = T}, the system can be modeled as a queue in which each T
units of time:

1. arequest of ¢; units arrives;
2. at most O, units can be served.

We can describe the system with a random process v; defined as follows:

Vg = Cp
{ vy =max{0,v;_y — Qi} +¢

where v; indicates the length of the queue (in time units) at time jT; that is, the units of
times that are still to be served when job J;; arrives. Since the CBS postpones the
scheduling deadline by T, each Q, units of execution time, the last absolute deadline
assigned by the server to J;; will be

Vi

dij=rij+ {a-‘ T,

If the system is not overloaded (U, + U; < 1), Theorem 1 ensures that each job will
finish at or before its last assigned deadline, so the probability that a job finds a queue of
length v; at its arrival is a lower bound of the probability that the job finishes within a
relative deadline

V.
d=|2|T
ol

If n,@ = P{v; = k} is the state probability of process v; and U(h) = P{c; = h} is the
probability that an arriving job requires & units of computation time (since ¢; is time
invariant, U(h) does not depend on j), n,({’ ) can be computed as follows:

1) = P{v; =k} = P{max{v;_, — 0,0} +¢; = k}
e)

= Z P{max{vj—l_QS70}+Cj:k/\Vj—l:h}

h= — o
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Figure 14. M for semi-periodic tasks.

Being v; greater than O by definition, the sum can be calculated for / going from 0 to
infinity:

. 0
1) = 3" P{max{h — 0,0} +¢; = k}P{v;_, = h}
h=0

0, . - .
=S vl "+ Y Pl =k—h+Qlnl "
h=0

h=0,+1

0, ) 0 )
= v+ Y Uvk—n+ Q)"
h=0

h=0,+1
Hence,
N . o .
m) =Y Ulm " S Ulk—h+ 0w Y (2)
h=0 h=0,+1

Using a matrix notation, Equation (2) can be written as
o = pqrv-" (3)

where IT is the vector of the state probabilities and M is described in Figure 14.

5.1.2. Case b: c; constant, T; variable

This case deals with a generalization of the sporadic task model that can be frequently
encountered in CM applications. For example, this is the case of a task activated by
external events, such a driver process activated by interrupts coming from a
communication network. In this case,

1, ifc=C
Ule) = {0, otherwise

and V() is a generic PDF.
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It is worth noting that, if Q, = C;, the CBS behaves exactly like a TBS with a
bandwidth U; = Q,/T,. In fact, if Q; = C;, each job finishes exactly when the budget
arrives to 0, and the server deadline is increased of T at the end of each job, which is
assigned a deadline d;; = max{r;;,d;;_} + T, identical to that assigned by a TBS. It
is also interesting to observe that, in this situation, the CBS is equivalent to a RBE
model (Jeffay and Bennet, 1995; Jeffay and Goddard, 1999) with parameters
x=1,y=T,D=T,.

In this situation, the CBS can be modeled by a G/D/1 queue: jobs arrive in the queue
with randomly distributed interarrival times and the server processes a request each 7
time units. We can define a random process w;, representing the time that job J; ; waits in
the queue before being served, as

Wi :di.j —riy— T
In this way, the distribution of the relative deadlines within which a job J;; is served is
given by

dij—rij=w;+T
Note that, if the system is not overloaded (Up + U, <1), Theorem 1 guarantees
that each job will finish at or before the deadline assigned by the server. Hence,
P{d;; —r;; < 6} isalower bound for P{f;; — r;; < 0}. Since d;; = max{r;;,d;; |} + T,
we have

Wig1=dij =Ty =1
= max{ri,i+ 15 di,i} +7,—T,— Tij+1
=max{0,d;; —r;; 4}
=max{0,7;; +w; + T — 11}

= max{0,w; —a;,, +T,}

where aj+1 :rid‘+1 —riJ.
Since g; is a stochastic stationary and time-invariant process and w; is a Markov
process, the matrix M describing the w; Markov chain can be found. By defining n,&’) =

P{WJ- =k} and V(h) = P{aj = h}, we have

n) = P{w; = k}
= P{max{0,w; | —a; + T,} =k}
o0
= Z P{max{0,w; | —a;+ T} =kaw;_; = h}
h=—w
o0

= Z P{max{0,n —a; + T;} = k}P{w;_, = h}

h= — o
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In order to simplify the computation, we distinguish two cases: k=0 and k > 0. For k=0
we can write:

[e¢]
n9::§: P{h—a;+T, <O0}P{w; | = h}
h= —w
[e¢]
= > Pla;>h+T}P{w,_, =h}
h= — o
0 0
:Z Z a—r}nh b
0 0
:E: E: -
For k > 0 we have
o0
U= 3" Plh—a+T,=k}P{w;_, =h}
h= — o0
= Z Pla;=h—k+Tim,
h= — o0
-y G-1)
=> V(h—k+T)m
h=0

Matrix M describing the Markov chain is shown in Figure 15.

Po 71 P2
VT, 1) V(T,) V(T +1) .
VT, -2) V(T,-1) V(T,) V(Ts +1)
V(T -3) V(T,-2) V(T,-1) V(Ty)
M= with p; = i V(r)
‘.(0) I-"'(l) ] ) r=i+7T,
0 V(0)
0

Figure 15. M for generalized sporadic tasks.
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5.1.3. Stability Considerations

For a generic queue, it is known that the queue is stable (i.e., the number of elements in
the queue does not diverge to infinity) if

mean interarrival time <1

mean service time

Hence, the stability can be achieved under the following conditions:

E[C]<Q, in case (a)
E[T] > T, in case (b)

where E[C] is the execution time expectation and E[T] is the interarrival time expectation.
In general, the stability is guaranteed if

E[C] _ 0,

E[T] T,
If the condition above does not hold, the difference between the deadline d; ; assigned by
the server to job J;; and the job release time r; ; will increase indefinitely. This means that,
for preserving the schedulability of the other tasks, 7; will slow down in an unpredictable
manner.

If the queue is stable, a stationary solution of the Markov chain describing the queue
can be found; that is, there exists a solution IT such that I1 = limj_, © H(j), so I =M. This
solution can be approximated by truncating the infinite dimension matrix M to an N x N
matrix M’ and solving the eigenvector problem I'" = M'T1’ with some numerical calculus
technique.

The knowledge of the PDF of the relative deadlines before which a multimedia task is
guaranteed to finish is useful for choosing the right server parameters (Q,,T,) for each
soft task, in order to analyze and control the QoS of each task.

5.2. An Example

Consider a generalized sporadic task with fixed computation time (equal to 1) and
interarrival times distributed as shown in Figure 16. The classical hard real-time analysis
would guarantee this task with a worst-case utilization factor of 1/30.33. Using
our approach, we can schedule the task with a CBS, with O, = 1 and T, < E[T] = 7.6. As
an example, consider T, = 6, giving a utilization factor of 1/6 =0.16.
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Figure 16. Interarrival time PDF V(7).

The resulting M matrix is

09 09 07 03 0 O .
0 o 02 04 03 0 O
0 o0 O 02 04 03 O
01 0 0 O 02 04 03
M=|0 01 0 0 0 02 04
0 01 0 0 0 02

Figure 17 shows the solution vector IT=M, which gives the CDF X(J) shown in
Figure 18. In general, the CDF is a function of the bandwidth reserved to the task,
increasing with the reserved bandwidth U,. Notice that, if C;/T; < U, < 1, the CFD
becomes a step function:

X(5) = {O if 0<T;
1 otherwise
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Figure 17. PDF of the last assigned deadline.
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Figure 18. Probabilistic deadline CDF lower bound X(J).
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5.3. Experimental Validation

To validate the correctness of our statistical analysis we implemented the guarantee
mechanism in a tool that calculates X;(J) for semi-periodic tasks and generalized
sporadic tasks, given U(c) or V(t), respectively. We simulated the CBS scheduler and
monitored the last server deadline assigned to a task and the task’s finishing time. Then,
we compared the simulation results with the theoretical ones.

In the first experiment, we considered a semi-periodic task with period 7; = 1250 and
computation times uniformly distributed in [100, 400], served by a CBS (Q,,T,) with
T, = 1250 and Q, ranging from 260 to 400. Figure 19 shows the cumulative distribution
function X(0) computed by our tool (using the approximated Markov chain solution) and
the one measured using the scheduling simulator, when Q, = 270. The continuous line
represents the finishing time CDF obtained by simulation. As the reader can see,
theoretical and simulation results are consistent, and are a tight lower bound for the
finishing time cumulative distribution function.

Table 1 shows the X(J) values for three different Q, values, computed using the
proposed analysis and the simulator. It can be seen that the analysis results are close to
the simulator’s ones; it is worth noting that the analysis results are always less than or
equal to the ones achieved by simulation (they are a lower bound of the exact cumulative
distribution function). We also performed other similar experiments for semi-periodic and

Finish time
Last deadline (analysis)
Last deadline (simulation) x

0.8

o
>

Probability

0.4

5000 10,000 15,000 20,000 25,000 30,000

Probabilistic deadline (&)

Figure 19. Simulation results versus analysis. The continuous curve represents the X(6) CDF as a function of J,
whereas the step functions represents the lower bounds, computed by simulation and analysis.
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Table 1. X(0) lower bounds obtained by simulation and analysis for different d and Q; values.

Q, =280 0, =320 Q, =400
0 Simulation Analysis Simulation Analysis Simulation Analysis
1250 0.388033 0.387972 0.677513 0.677459 1 1
2500 0.934535 0.934177 0.999879 0.999860 1 1
3750 0.994164 0.994103 1 1 1 1
5000 0.999548 0.999520 1 1 1 1
6250 0.999979 0.999979 1 1 1 1
7500 1 1 1 1 1 1
8750 1 1 1 1 1 1
10,000 1 1 1 1 1 1

sporadic tasks with different input PDFs, verifying the consistency between the stochastic
analysis and the simulation.

6. Comparison with Proportional Share Scheduling

Proportional share (PS) scheduling is a scheduling methodology developed for supporting
multimedia and soft real-time activities in a conventional operating system. In this
section we compare our approach with such a methodology and illustrate how PS
scheduling can be efficiently achieved using a CBS-based service.

6.1. The ideal model

The objective of the PS model is to emulate a fluid flow system on a discrete quantum-
based allocation system. The ideal scheduling model is the generalized processor sharing
(GPS) presented in Parekh and Gallager (1993). It can be thought as the limiting form of a
weighted round robin policy: each task t; is assigned a weight w;, which determines the
minimum bandwidth sharing of the task. Given a task set I' = {1,,..., 1,}, if ¢;(¢;,,) is
the execution time of task t; in an interval [t,,1,], the n tasks share the resource as
follows:

altih) S % G _ya (4)

V1, active in [t,?
7; active in [t 2]’ej(t1,t2) Z

Equation (4) expresses that in a GPS system each active task t; executes at least with a
rate equal to F; =w;/(X, c rw;). The actual execution rate varies with time and is
defined as the share of task 7;: f;(r) = wi/(Z; < r,yw;) where I', (1) is the set of tasks
which are active at time ¢.
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As a consequence, the following properties hold for any time interval [¢;,,]:

e(t; 1) > (t, — 1)F; (5)

etnot) = / f(0de (6)

In a PS system, the resource is allocated in discrete time quanta of length Q. A task
acquires the resource at the beginning of a time quantum and can release it either at the
end of the quantum (in this case a new request is posted) or before the end of the quantum
(in this case the process blocks and must be explicitly re-activated). This is done by
dividing each task t; in requests ¢¢ having maximum size Q.

Since the allocation is discrete in time, this approach generates an allocation error with
respect to the ideal GPS model. In fact, in the ideal GPS system, in any interval [¢,,,], a
task t; executes for a time f: fi(t)dt, whereas in a real system this is impossible because
of the allocation error. The difference between the ideal and the real schedule is called the
lag, defined as

lag;(1,) = / F(0dt — ej(to.11)

where ¢, is the activation time of task t;.

The goal of a PS algorithm is to reduce the allocation error experienced by tasks. To
support some form of real-time execution it is important to guarantee that lag,(¢) is
bounded. In fact, if an upper bound for lag,(¢) exists, the execution time accumulated by
7; is

(0> | £ (0)dt — max,{lag, (1)} ™)

Hence, a task t; having execution time C; is guaranteed to complete within a (relative)
deadline D; if

e(ty,tg +D;) > C;

6.2. Emulating PS with CBS

Looking at the definitions given in Sections 3 and 6.1, it is easy to see that the bandwidth
U; demanded by a task 7, is similar to the rate F;. The only difference between these
parameters is that, by definition, XF; = 1, whereas X U; <1 (using the constant
bandwidth abstraction, a fraction of the CPU bandwidth can be left available for other
purposes).

As a consequence, the behavior of a PS scheduler on a set of n tasks can be emulated
by serving each task through a CBS with bandwidth U; = F; and period T; = Q/U,;.

On the other hand, in Stoica et al. (1997), the authors show how the real-time tasks’
share can be maintained constant at the arrival of a new task (I" varies). This is done by



RESOURCE RESERVATION IN DYNAMIC REAL-TIME SYSTEMS 157

re-arranging the tasks’ weights. As shown in the cited paper, fixing the task share to a
specified value allows to perform a real-time guarantee on the task.

As for the constant bandwidth allocation, there is an admission test X, . +C;/T; < 1
(similar to 2, . rU; <1) and, if a new task is accepted, the weights are recomputed such
that for all real-time tasks F; = f;(f) = C;/T;. This is not necessary under the CBS
paradigm, where, if a new task is accepted, the other tasks’ bandwidths do not have to be
adjusted.

This difference is due to the fact that F; is computed based on the executed time,
whereas U, is computed based on the demanded time in a given time interval (i.e., the
sum of execution times of the jobs with deadlines within that interval).

Finally, using a CBS, the additional parameter T (period of the server) can be used to
better model the tasks’ temporal behavior of a real-time task.

6.3. PS versus CBS

There is a fundamental difference between the two theoretical models from which the PS
and the CBS approaches derive: if ¢;(#, ;) is the time executed by task t; in the time
interval [t,,7,], a PS scheduler tries to maintain the ratio e;(z,,7,)/(¢; — ,) constant over
any time interval [t,,7,], while a CBS scheduler maintains this ratio constant only
between deadlines.

We believe that imposing a fair execution over any interval of time over-constraints the
system. In fact, in most soft real-time applications it is important to schedule tasks before
their deadlines, not to schedule them in a fair fashion. For example, in a video or audio
player it is important to decode a frame before the start of the next frame, not to decode it
fairly. Since no periods or deadlines are taken into account by a PS scheduler, but only
the tasks’ share, fairness is the only way to enforce QoS requirements. On the other hand,
in the CBS approach, the knowledge of timing constraints can be used to generate a more
efficient schedule (by preventing unnecessary context switches).

Another fundamental difference between the PS paradigm and the constant bandwidth
paradigm is that the former allocates resources in time quanta, whereas the latter does not
require so (it is fully preemptive). This makes PS easier to implement in a conventional
operating system (such as Unix or Windows), whose scheduler is quantum-based, but
introduces some limitations: for example, tasks can be activated only at quantum
boundaries and tasks’ periods must be multiple of Q. Moreover, the fairness property
enforced by PS schedulers generates a larger number of preemptions, as shown in Figure
20, which can penalize the performance of the system (in a real system, context switches
take some time!). On the other hand, if the value of Q is increased to reduce the
preemption overhead, the allocation error becomes larger.

Another problem with the PS paradigm is that it does not model event-based systems
intuitively. For example, a task activated by an external event (e.g., a task that manages
data from the network, or that has to respond to an interrupt) can only be modeled as a
periodic task, and it is not clear how to assign the weight or the share to this task. On the
other hand, using a CBS, we can reserve a given bandwidth to an aperiodic event-driven
task and use the server parameter 7, to model the expected interarrival time. Using a
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Proportional share

Figure 20. Examples of proportional share and constant bandwidth.

CBS, it is also simple to perform a deterministic or stochastic guarantee on the task’s
response time.

In summary, we can say that PS and CBS give different interfaces to similar (but not
equal) allocation models: the CBS programming model is more suited for handling real-
time constraints, so the CBS approach is to be preferred for integrating multimedia
streams in a real-time system, whereas the PS is closer to the classical time-sharing
approach, hence a PS scheduler can be more easily integrated in a conventional operating
system.

As shown in Section 3.2, the CBS provides explicit support for hard real-time
execution (reserving a bandwidth U; = (WCET;/T;) to each hard task and scheduling it
directly with the EDF algorithm). A PS scheduler can also emulate it, but at the cost of
the additional overhead of dynamically rearranging the tasks’ weights.

On the other hand, PS schedulers are more flexible in partitioning the bandwidth
among non-guaranteed tasks: this is useful to run non real-time applications (such as in a
traditional workstation) together with multimedia ones. In this case, the notion of weight
is more intuitive than the reserved bandwidth; the CBS can also emulate such a behavior,
as shown above.

7. Conclusions

In this paper, we presented a novel service mechanism, the CBS, for integrating hard real-
time and soft multimedia computing in a single system, under the EDF scheduling
algorithm.

Temporal protection is one of the most important features offered by the proposed
algorithm, which allows to execute a task so it will never exceed a predefined bandwidth,
independently of its actual requests. We also discussed how the proposed server can be
used for enhancing responsiveness of soft aperiodic tasks and how a statistical analysis
can be applied to perform a probabilistic guarantee.
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The server has been formally analyzed and compared with other known servers,
obtaining interesting results in terms of some well defined QoS metrics, such as the
experienced tardiness. The proposed model has also been implemented on the HARTIK
kernel and on Linux/RK to support typical multimedia applications.

As a future work, we plan to extend the proposed model to designing flexible real-time
systems that can be tuned on line according to the actual task requirements. For example,
the difference between the first and the current CBS deadline can be used as a kind of
feedback for evaluating the request in excess and react accordingly by adjusting the QoS
in overload conditions. The CBS mechanism can also be used to safely partition the CPU
bandwidth among different applications that could coexist in the same system, as shown
in Deng et al. (1997). A task can be used as a QoS manager to dynamically change the
bandwidth reserved to each multimedia task.

Appendix

Proof of Theorem 1 To prove the theorem, we show that a CBS with parameters
(Q,, T,) cannot occupy a bandwidth greater than U, = Q,/T,. That is, if D(¢,t,) is the
processor demand of the CBS in the interval [f},1,], we show that

Vt,,t €Nty > 1, Dyt,1,) < %(r2 —1)

We recall that under a CBS a job J; is assigned an absolute time-varying deadline d;
which can be postponed if the task requires more than the reserved bandwidth. Thus, each
job J; can be thought as consisting of a number of chunks H;, each characterized by a
release time a;; and a fixed deadline d; ;. An example of chunks produced by a CBS is
shown in Figure 2. To simplify the notation, we indicate all the chunks generated by a
server with an increasing index k (in the example of Figure 2, H,; = H|, H,, = H,,
H,; = Hj, and so on). The release time and the deadline of the kth chunk generated by
the server will be denoted by g, and d,.

Indicating with ¢, the server time demanded in the interval [a;,d}] (i.e., the execution
time of chunk H;), we can say that

k2
th,tz, Elkl,kz : Ds<t1)t2) = Z €, = €y
=k

kay>ty Ad<t, k

If ¢,(¢) is the server budget at time ¢ and f; is the time at which chunk H, ends to
execute, we can see that ¢,(f;) = ¢,(a;) — e, while ¢ (a; ) is calculated from ¢(f;) in
the following manner:

(@ + 1) = c(fi), if d; | was generated by Rule 2
s\ 0, if d; ;| was generated by Rule 1 or 3
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Using these observations, the theorem can be proved by showing that:

0,
T

N

Dy(ay, ,dy,) +c(fi,) < (di, — ay,)

We proceed by induction on k, — k;, using the algorithmic definition of CBS shown in
Figure 3.

Inductive base
If in [t,,1,] there is only one active chunk (k; = k, = k), two cases have to be considered.

Case a: dy<a; +T;.

If d,<a, +T,, then d, is generated by Rule 2, so a;, + (¢,(fi_)/0,)T,<d, and

a, =f,_, that is

¢s(ar)
Q

N

a + T;<dy

Being ¢(f;) = ¢,(a;) — e, = ¢;(a;) — Dy(ay, d;), we have

(ar, di) + ¢s(fi)

Ds
dk“!‘ Q

T, <d,
hence
0,
Dy(ay, dy) + cs(fi) <(dp — ar) T
Case b: d;, = a, +T.

If d, = a; +T,, then D(ay,d,) + c,(fi) = ex + ¢,(fx) = Q,. Hence, in both cases, we
have:

D@, i) + (i) = Dl d) + ¢, (£) < (dy — @) 32 = (dy, — a,) 2

N

Inductive step

The inductive hypothesis

0,

Dy(ay, ,dy, 1) + cs(fi,—1) < (dp,—1 — @) T

is used to prove that

Dy(ay, ,dy,) +¢i(fi,) < (dp, —ay ) =
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Given the possible relations between d, and d, _, three cases have to be considered:
® d.>d._,+T, Thatis, d; is generated by Rule 3 or Rule 1 when r; > d;_,.

® d, =d,_,. Thatis, d is generated by Rule 2.

® d_<dy<di_,+T, Thatis, d; is generated by Rule 1 when r; <d;_,.

Case a: dy, = dy, _; +T,.

In this case dy, can be generated only by Rule 1 or 3. Adding ¢, to both sides of the
inductive hypothesis, we obtain:

-1 0.
Zek+ek dk—l_ak)T cs(fi,—1) +ex,

and, since ¢(f;) = ¢;(a;) — ¢;, we have

Z‘fk (di, -1 *ak,)%*cs(sz—l)Jrcs(akz)*Cs(sz)

s

Since dy, is generated by Rule 1 or 3, it must be ¢ (q;,) = O, therefore:

Z ey < (dip—1 — @y, )% = ¢(fi,—1) + Q5 — ¢(fi,)

k
2 0, 0,
Z e+ ¢5(fi,) < (dio—y _akl)?_cs(sz—l) + 0, < (d, -1 — vl) +Qs
=k 5
and finally
D d 0, _ 0,
s, dy) + ¢ (fi,) < (dio—y —ak,)T‘*‘Qs = (o1 + T, — ak,)?
N

2,
T

s

Dy(ay,,dy,) + ¢;(fi,) < (dp, — )

Case b de = de _1-
If dkz = dk2 _1, then dkz is generated by Rule 2. In this case,

by — 1
< 0,
Zek+ek (dy, 1 — ak)T_

N

cs(fi,—1) + ey,
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but, being d;, =dy, i,
have:

cs(fi,) +ex = c(ay,) and cg(a

0,
Cs(akz) + €, = :

Zek dkz 1)%_

hence

Oy
k _
Dy(ky, ky) + ¢,(fi,) E ek (dy, ak)Ts

Case c: dy, _ <dy, <dp,_ +T;.

Ifd, <d, _,+ TS, dy, is generated by Rule 1, so a; + (¢,(f,—1)/Q,)Ts > dy, _;, hence
c(fy, > (a’,<2 — akz) 0,/T,. Applying the inductive hypothesis, we obtain
k=1 0
Zek+ek (di, -1 — k)TS—Cs(fkrl)*‘ekz
from which we have
0, 0,
Zek dk—l_ak)TS (dyy,—1 — akz)?s"i'ekz
o5
Zek (dy, -1 — dk271*akl+ak2)?+€k2
Now, being e, = O, — ¢,(f;,), we have:
ky 0
Z e < (—ay, + akz)Ts—k O, —cy(fi,) = (@, +T —a T cs(fy,)
=k, s
but, from Rule 1 and 3, we have d;, = a, + T, so we can write
0
Z e < dkz 1)73 - Cs(sz)
hence
0, =
Dy(ky,ky) + ¢,(f,) Z e < (dy, — )T
N
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